i?‘lg electronics

Article

Application of Deep Neural Network to the Reconstruction of
Two-Phase Material Imaging by Capacitively Coupled Electrical
Resistance Tomography

Zhuoran Chen ', Gege Ma '*(, Yandan Jiang 2(7, Baoliang Wang 2

check for

updates
Citation: Chen, Z.; Ma, G,; Jiang, Y.;
Wang, B.; Soleimani, M. Application
of Deep Neural Network to the
Reconstruction of Two-Phase
Material Imaging by Capacitively
Coupled Electrical Resistance
Tomography. Electronics 2021, 10,
1058. https://doi.org/10.3390/
electronics10091058

Academic Editors: Theodore
Kotsilieris, Ioannis E. Livieris and

Ioannis Anagnostopoulos

Received: 9 March 2021
Accepted: 26 April 2021
Published: 29 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Manuchehr Soleimani 1'*

Engineering Tomography Laboratory (ETL), Department of Electronic and Electrical Engineering,
University of Bath, Bath BA2 7AY, UK; Zc1020@ic.ac.uk (Z.C.); gm590@bath.ac.uk (G.M.)

State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering,
Zhejiang University, Hangzhou 310058, China; ydjiang@zju.edu.cn (Y.].); wangbl@zju.edu.cn (B.W.)
*  Correspondence: M.Soleimani@bath.ac.uk

1t These two authors contribute equally for this paper.

Abstract: A convolutional neural network (CNN)-based image reconstruction algorithm for two-
phase material imaging is presented and verified with experimental data from a capacitively coupled
electrical resistance tomography (CCERT) sensor. As a contactless version of electrical resistance
tomography (ERT), CCERT has advantages such as no invasion, low cost, no radiation, and rapid
response for two-phase material imaging. Besides that, CCERT avoids contact error of ERT by
imaging from outside of the pipe. Forward modeling was implemented based on the practical
circular array sensor, and the inverse image reconstruction was realized by a CNN-based supervised
learning algorithm, as well as the well-known total variation (TV) regularization algorithm for
comparison. The 2D, monochrome, 2500-pixel image was divided into 625 clusters, and each cluster
was used individually to train its own CNN to solve the 16 classes classification problem. Inherent
regularization for the assumption of binary materials enabled us to use a classification algorithm
with CNN. The iterative TV regularization algorithm achieved a close state of the two-phase material
reconstruction by its sparsity-based assumption. The supervised learning algorithm established
the mathematical model that mapped the simulated resistance measurement to the pixel patterns
of the clusters. The training process was carried out only using simulated measurement data, but
simulated and experimental tests were both conducted to investigate the feasibility of applying a
multi-layer CNN for CCERT imaging. The performance of the CNN algorithm on the simulated data
is demonstrated, and the comparison between the results created by the TV-based algorithm and the
proposed CNN algorithm with the real-world data is also provided.

Keywords: convolutional neural network (CNN); supervised deep learning; capacitively coupled
electrical resistance tomography (CCERT); image reconstruction

1. Introduction

Electrical impedance tomography (EIT) has been studied and widely applied in
medical imaging and process tomography since it was introduced in the 1980s [1-5]. The
conductivity distribution within the target region, such as areas of the human body or the
contents of a pipeline or vessel, can be revealed based on the impedance measurements
via electrodes placed on the boundary of the region [6]. Compared with other imaging
protocols, EIT has the advantages of producing images with high temporal resolutions
while having a relatively low cost, no radiation, no invasion, rapid response, and simplicity
for application [6,7]. In late 1980s, when EIT was introduced to the process tomography
field, electrical resistance tomography (ERT), a particular case of EIT, was proposed [8,9].
Compared with EIT, it has similar imaging processes, except that the phase angle of
the detected impedance is omitted so that the images are reconstructed solely by the
resistance [8].
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However, direct contact between the electrodes and conductive medium in traditional
ERT causes problems. ERT images are sensitive to electrode properties, such as contact
impedance [10]. In medical applications, high-value contact impedance would vary with
body movement and studied areas [11]. Besides that, it is sensitive to the nature of the
contact layer, and thus the lack of boundary properties in clinical experiments could lead to
inaccuracy [11]. In the engineering field, severe errors may be caused by the electrochemical
erosion effect and polarization effect of the electrodes after extended periods of contact
with the conductive liquids [8]. Besides that, the contamination of the electrodes would
bring measurement deviations [12]. In 2010, a contactless approach, termed capacitively
coupled electrical resistance tomography (CCERT), was proposed by Wang et al. [12-14].
Based on the capacitively coupled contactless conductivity detection (C*D) technique,
CCERT avoids contact error by inserting an insulation layer between the electrodes and
conductive contents [11]. Besides that, experiments show that CCERT could have a larger
excitation frequency domain than that of traditional ERT, which results in better imaging
results [15,16]. Therefore, CCERT is attracting more and more researchers’ attention. So
far, CCERT has been applied in gas-liquid two-phase materials, brain imaging, and breast
cancer detection [16-18].

Like other electrical tomography (ET), CCERT also has the highly nonlinear and
ill-posed inverse problem. Traditional algorithms used to solve the ET inverse problem
include noniterative methods and iterative methods, facing the challenges of reconstruction
speed and accuracy [19]. In the last several years, with the development of GPUs, the
deep learning (DL) algorithm has shown its promising potential in image application and
has also been suggested as an alternative for inverse problem solving. Inspired by the
neuronal network of the human brain, DL adopts machine learning algorithms to model
sophisticated abstractions of the raw input data through a deep architecture containing
multiple hidden layers to implement linear and nonlinear transformations [20]. Although
the history of DL dates back to 1965, it has only been rapidly developed in recent years,
mainly in its improved computational abilities and nonlinearity-solving abilities, and
these fast improvements therefore increase the network depth [21,22]. Up to now, deep
neural networks (DNNs) have been applied to solve the inverse problem of imaging,
super resolution, de-noising, and film colorization [23,24]. Since a DNN is flexible in
high-dimensional function expression, it can theoretically approximate the entire inverse
map, thus avoiding the iterative process [25]. More studies on DNNs in inverse problem
solving can be found in [26,27].

For ET techniques, DNN algorithms are also suggested as a way to solve the inverse
problem and reconstruct images. The convolutional neural network (CNN), one of the
most-used DNN models, has the properties of being a deep, fully connected, and feed-
forward model. As a CNN is good at extracting essential features from the input data
and mapping nonlinear functions, it is relatively computationally efficient compared to
other DNN methods [28]. In recent studies, the cascaded end-to-end convolutional neural
network (CEE-CNN) was built by Wei et al. to apply the induced current learning method
(ICLM) to solve the nonlinear reconstruction problem in EIT [29]. Motivated by the lin-
ear perturbation analysis of the forward map, Fan et al. used the BCR-Net-based neural
network to approximate both the forward and inverse maps, using the proposed neural
network to replace the traditional Dirichlet-to-Neumann (DtN) map [25]. More studies of
CNN-based ET applications can be viewed in [30,31]. In addition, the studies of artificial
neural networks (ANNSs), another popular DNN model, have also attracted lots of interest
for ET application. Fernandez-Fuentes et al. developed an ANN-based inverse problem
solver for EIT, which takes the boundary measurements as the input and generates the
conductivity value of each mesh of triangular elements of the image [32]. Rymarczyk et al.
compared some machine learning algorithms for industrial ET, including the ANN, LARS,
and elastic net methods, and they used a set of trained subsystems to generate the value of
each pixel of the image in parallel [33].
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In this work, a multi-layer feedforward CNN was established to achieve image re-
construction for CCERT industrial application. During training, the 2D monochrome
2500-pixel image was divided into 625 clusters, and then the proposed CNN was trained
separately for each pixel cluster of the image to achieve feature extraction and classification.
A supervised learning algorithm built a mathematical model for the cluster to map the
input resistance to the output pixel pattern. With the 12-electrode circular CCERT system,
the proposed multi-layer CNN model was examined by both simulation and experiment
data. In addition, the reconstructed images obtained with the CNN method were compared
with the images produced by a traditional reconstruction algorithm: a TV algorithm.

2. Methods
2.1. System Configuration and Data Acquisition Principle

For the CCERT system, data were collected via the boundary-placed electrodes. This
research studied the performance of a circular electrode sensor, where 12 electrodes were
evenly spaced and attached to the outside of the sensing area with an angle of 25°, as
shown in Figure 1a. The size of one electrode was 150 mm x 24 mm, with the inner and
outer diameters of the sensing area being 106 mm and 110 mm, respectively.

Excitation
electrode

AC voltage

Detection
electrode

current

Figure 1. (a) Demonstration of an electrode pair. (b) Equivalent detection circuit.

During the measurement process, a 3.3 V AC voltage with 500 kHz was applied
as the excitation signal. For each independent measurement, only two electrodes were
selected as the exciting and detecting electrode pair, where the AC voltage was injected
into the excitation electrode and the current was detected via the detection electrode, and
the remaining electrodes were kept at floating potentials at the same time. The equivalent
detection circuit can be simplified as in Figure 1b, in which C; and C, express the coupling
capacitances and Z, represents the impedance of the sensing area. Only the resistance part
was involved in the CCERT system, and it could be calculated from the applied voltage
and the real part of the detected current based on Ohm’s law. In a complete measurement
cycle, electrode 1 was first selected as the excitation electrode, and electrode 2 to electrode
12 were successively selected as the detection electrode. The whole process continued
until electrodes 11 and 12 constituted an electrode pair. For the same sample, the detected
resistance between a certain electrode pair remained the same no matter which acted as

the excitation electrode or the detection electrode. Therefore, in each measurement cycle,
n(n—1) _ 12x(12—1)
2 - 2

the total number of independent measurements was = 66, where 1 is the

number of electrodes.

2.2. Conventional Forward Modeling and Image Reconstruction Algorithm of CCERT

Conventional CCERT is the technique that enables the reconstruction of the internal
conductivity distribution from the boundary resistance measurements with the sensitivity
matrix and reconstruction algorithm. The imaging process has two essential stages: one is
the forward modeling, and the other is image reconstruction, often termed as the inverse
problem [34]. During the test, the time difference (TD) method was adopted to obtain the
resistance projection (P), where P equaled the difference of the resistances at different times:
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one with a homogeneous conductive background and the other with detected samples
added into the background [35]. Tap water with a conductivity of o = 0.018 S/m was taken
as the background medium.

In the forward problem, the boundary equations were obtained based on the known
conductivity distribution within the target region. Two assumptions are made in the
forward modeling process. The first assumption is that the electromagnetic field can be
regarded as a quasi-static electric field, since the detected area is much smaller than the
wavelength of the excitation signal under the commonly applied frequencies [18]. The
second one is that the fringe effect caused by the finite electrode length can be neglected in
order to simplify the modeling process [18]. Therefore, based on Maxwell’s equations, the
forward problem at the under-radio frequency within the sensing area () can be written
as [11]

V-(0(x,) + jwe(x, ) Va(x,y) =0, (x,y) €O M

where o(x,y), e(x,y), and u(x, y) are the conductivity, permittivity, and electrical potential
distribution of the sensing area, respectively, w is the angular frequency of the excitation
signal (w = 27 f, where f is the excitation frequency), and V represents the gradient
operator. Then, the boundary conditions can be derived as

ug(x,y) =V (x,y) €T,
Latb(x,y) =0 (xy) €T )
J%QJ:O (0 y) CT¢ (cap. )

where V is the amplitude of the excitation voltage, I represents the normal unit vector
pointing out of the boundary. 4, b, and c are the indexes of the excitation electrode, the
detection electrode, and the remaining floating electrodes, respectively, and I'y, I';, and I'¢
are the spatial locations of the corresponding electrodes.

Then, the sensitivity matrix (S), which reveals the relationship between the resistance
projection (P) and conductivity distribution (G), can be determined based on the simula-
tion [12]. During the forward simulation, a critical process is to mesh the sensing region
and the system model into a finite number of elements. In this work, the discretization
process is conducted by COMSOL Multiphysics. The simulation process is carried out by
MATLAB R2020b, MathWorks.Inc, USA, as well as COMSOL Multiphysics. The excitation
AC voltage is simulated as a 500 kHz frequency and 1 V amplitude signal. After inject-
ing the AC voltage signal to the electrode, the ith current measurement on the detection
electrode can be represented as

I = / JorndT 3)

where I; is the ith current measurement (i = 1,2, ...,66) and [;,—, is the measured current
density of the electrode pair m and n. Then, the corresponding ith resistance measurement
between the electrode pair can be written as

R; = Real(‘f) = Real(}) 4)

With the whole measurement data, the sensitivity matrix of CCERT is

Siu -+ Sin

Smi -+ SmN

a Real(ff —1?) _ 1/R—1/R?

S--: _— =
v 90 o — 0 o — 0

(S5 € 9) (6)
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where M is the total number of measurements, N is the total number of meshing elements,
Sij is the sensitivity matrix associated with the ith measurement and jth element, and IZQ
and R? are the ith current and resistance measurement when the imaging region is at a
background state, respectively, where the conductivity of all elements equals to 0. When
the conductivity of the jth element changes from oy to 07 while the remaining elements still

have oy conductivity, the ith current and resistance measurements then become I{ and Rg.

After calculating the sensitivity matrix, the image reconstruction process can be
conducted. For simplicity, the approximated linear relationship between P (change in
resistance measured data), S, and G (change in electrical conductivity) can be expressed as

P=SG @)

The inverse problem cannot be solved directly by multiplying P and the inverse of S
to obtain G, given the following reasons. First, the solution is under-determined since there
are more variables than equations [11]. Secondly, G is very sensitive to the perturbations
of P [11]. Additionally, CCERT is a type of soft field tomography, which means the actual
sensitivity matrix changes with the conductivity distribution [11]. Therefore, proper image
reconstruction algorithms are needed in order to solve the inverse reconstruction problem.

For circular CCERT, linear back projection (LBP) was adopted first due to its advan-
tages of simplicity and rapidity, but the image quality was limited. Therefore, an algorithm
which combined LBP with a K-means clustering method was proposed to improve the im-
age quality [36]. In 2014, a new hybrid algorithm which adopted Tikhonov regularization
as the initial guess and took the simultaneous iterative reconstruction technique (SIRT) for
standard iterations was proposed [12]. In 2017, the method consisting of a combination of
the Levenberg—-Marquardt (L-M) method and the simultaneous algebraic reconstruction
technique (SART) was put forward. This method applied L-M for the initial guess and
SART for final reconstruction [37]. Recently, the total variation (TV) algorithm with split
Bregman iterations was used for CCERT reconstruction [15].

A simple image reconstruction can be performed using LBP:

G~ STp (8)

An iterative TV algorithm is an effective method for recovering and reconstructing
piecewise constant signals. It is a deterministic technique that safeguards discontinuities in
image processing tasks, so it is well suited for this two-phase imaging.

An anisotropic TV regularization term is expressed by Equation (9):

Rirv(G) = ZHD]'GH1 &)
j

where D; represents a finite difference approximation of the spatial image gradient. An
isotropic version of the TV function is given by Equation (10) and was used in this work:

G=argming («|[VG|);), st|[SG-P|*<q (10)

where g is the error threshold and « is the regularization parameter. The higher the
regularization (smoothing) parameter gets, the more impact the regularization will have
on the solutions and, consequently, the more details will be lost from the image. Indeed,
with the increase of «, the contrast of the image becomes lower, and the boundaries within
the object become smoother. After carefully choosing the regularization parameter, we
optimized the image by deleting the artifacts. A more detailed description of the proposed
TV method for CCERT can be seen in [15]. To be able to compare this method with the binary
CNN algorithm, the TV-reconstructed images were the thresholds for the binary images.
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2.3. CNN-Based Image Reconstruction CCERT

The supervised learning algorithm is one kind of machine learning algorithm. As
task-driven learning, it aims to find a mathematical model for mapping the inputs and
their correct outputs through a backpropagation (BP) learning algorithm. It is commonly
applied in various classification problems, including image classification, fraud detection,
and diagnostics, as well as regression problems including risk assessments, score prediction,
and market forecasting.

In this research, a CNN-based supervised learning algorithm was adopted for image
reconstruction which established a mathematical model of mapping the input of 66 re-
sistance measurements to the desired output pixel pattern [38]. The resulting image was
meshed into a 50 x 50 pixel grid, and the pixels were equally spaced. These 2500 pixels
were sorted first by row and then by column. As such, in the first column and from the first
row to the last row, the pixels were numbered from 1 to 50. Then, in the second column and
from the first row to the last row, the pixels were numbered from 51 to 100. Following the
same rule, the pixels in the last column from the first row to the last row were numbered
from 2451 to 2500. If a single CNN were used to image the entire 2500-pixel image, there
would be 2% pixel distribution classes for the CNN to classify, which would be almost
impossible for training. The problem was solved by dividing the 50 x 50 pixel image
into a 25 x 25 pixel image with non-overlapping clusters, with each cluster representing a
2 x 2 pixel block. Since the space of each pixel point on the image was the same, the space
of the clusters was also the same among each other. The conversions between pixels and
clusters can be viewed in Figure 2. The clusters were also sorted first by row and then by
column. Thus, taking cluster 1 as an example, it corresponds to the area of pixel 1, 2, 51,
and 52.
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Figure 2. Conversion between pixels and clusters, showing the whole picture of the pixels and the demonstration of
conversion process.

After completing the transformation, a distinct CNN could be applied for each clus-
ter, and the classification became feasible since there were 2* = 16 pixel patterns within
one cluster. Their labeling and matrix expressions are displayed in Table 1. As the pro-
posed CNN model was designed for two-phase material application, the result could be
represented as the binary image, where 0 and 1 mean the background and inclusion.

Table 1. Pixel distributions within one cluster.
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Then, the image reconstruction could be realized by the conversion process via the
625 CNN models, as shown in Figure 3. The 625 CNN results were converted into 625
2 x 2 binary matrices, based on Table 1, and the conversion between cluster patterns and
the final pixel image took the reverse of the conversion from pixel to cluster, as explained
in Figure 2, to form the final 50 x 50 pixel image. The development of each CNN followed
the general procedure of the deep learning method as shown in Figure 4, which mainly
included accessing data, constructing network architecture, setting training options, and
conducting training, along with hand-tunings to achieve a fitting model.

Input Data

66 real numbers of resistance value

625 trained CNN models

625 label values (Ni € {1...16}

625 2 by 2 binary matrices

Reconstructed Pixel Image

50 by 50 binary matrix

Figure 3. The reconstruction processes.



Electronics 2021, 10, 1058

8 0f 23
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(quality & quantity)

| Construct Network Architecture (Layers) |<—

Modify Network Architecture

(layers & hyper-parameters)
| Train the Network |,_| Alter Training Options I.
| Check Accuracy |

| Save Trained Network |

Figure 4. The CNN (convolutional neural network) model development.

Simulation data were generated based on the precalculated sensitivity matrix (5) and
labeled for each CNN based on the cluster’s pixel pattern. A total of 10,000 cases were
generated for the network training, containing 5000 single-inclusion cases, 2500 double-
inclusion cases, and 2500 triple-inclusion cases. All the inclusions were in the quasi-circular
shape, with diameters from a 10 pixel-length to a 20 pixel-length placed on all locations of
the image. Random noise was added to the simulation based on the standard deviation
value of the background measurement for network training. Each set of 66 resistances
were scaled to [0 1] to avoid gradient vanishing and converted into an 11 x 6 matrix. The
structure of the matrix could be any combination of a size of 66, such as 11 x 6, 6 x 11, or
2 x 33. The final result would be the same no matter what matrix structure was used.

The CNN layers were constructed with the aid of the deep network designer ap-
plication MATLAB R2020b, MathWorks.Inc, USA. After hand-tunings, the 625 CNNs
adopted the same 19-layer architecture to realize feature extraction and classification, and
the network architecture is displayed in Figure 5. In this work, hand-tuning of the hyper-
parameters included the following: (1) tuning the hyperparameters related to the network
structure, such as the number of hidden layers and units and the activation function, and
(2) tuning the hyperparameters related to the training algorithm, such as the optimizer,
initial learning rate, number of epochs, and batch size. For different cases, the hand-tuning
was different, but the trade-off needed to be considered alongside the training to avoid
underfitting or overfitting cases. Convolution layers functioned as feature extractors by
executing convolution operations between the receptive fields of the input and the kernels.
An activation function—the rectified linear unit (ReLU)—introduced nonlinearity to the
network via ReLU(x) = max(x, 0). Max pooling performed nonlinear downsampling on
each feature map by taking the max value of the feature block to reduce computation while
keeping essential information and providing invariance to the local translation. Batch
normalization improved the stability, performance, and speed of the network. The fully
connected (FC) layer flattened the 3D features into a 1D vector for classification, and the
softmax layer calculated the probability of the input data belonging to each class. The
distribution of 16 pattern classes was unbalanced. After randomly sampling the different
cases, Table 2 shows the 16 classes” distribution for all sampled cases. Though the num-
ber appearing for each class may have varied with the added noise, class 1 and class 16
accounted for the majority of the possibilities. Thus, the focal loss layer was critical, since
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it was applied as the output layer to deal with the data imbalance between classes. The
details of the CNN layers and parameters are given in Table 3.

CONVOLUTION Focal loss
+NORMALIZATION CONVOLUTION Output
INPUT  +RELU +NORMALIZATION CONVOLUTION SRR
» POOLING +RELU +NORMALIZATION CONVOLUTION ]
POOLING  ,peiy +NORMALIZATION
POOLING +RELU

LABEL 1
LABEL 2
LABEL 3
LABEL 4
LABEL 5
LABEL 6
LABEL 7
LABEL 8
LABEL 9
LABEL 10
LABEL 11
LABEL 12
LABEL 13
LABEL 14
LABEL 15
LABEL 16

(CIITTITTITITITIITTITI11A8

[TTTTTTTTTITTTTT

v Y

FEATURE EXTRACTION CLASSFICATION
Figure 5. The CNN architecture illustration.

Table 2. The 16 class distributions of the sampled cases. (Each case had 625 distribution possibilities).

With a Single
16-Pixel Length

Support

With a Single 14-Pixel With 14- and 16-Pixel = With 16-, 14-, and 12-Pixel

Length Inclusion . Length Inclusions Length Inclusions
Inclusion
1 45 34 82 102
2 0 1 0 3
3 0 1 0 3
4 0 1 0 3
5 0 1 0 3
6 0 0 0 0
7 0 0 0 0
8 3 3 5 3
9 3 3 5 3
10 3 0 5 3
11 3 0 5 3
12 1 1 1 4
13 1 1 1 4
14 1 1 1 4
15 1 1 1 4
16 564 577 519 483
Table 3. Details of CNN (convolutional neural network) layers and parameters.
Layer Name and Type Operation Activations Learnable
1 Imageinput 111 X6x1 1’mages V\.Ilth. 11x6x 1 ;
(Image Input) zerocenter’ normalization
5 conv_1 150 3 x 3 x 1 convolutions with stride [1 1] 11 % 6 x 150 Weights 3 x 3 x 1 x 150
(Convolution) and padding ‘same’ Bias 1 x 1 x 150
batchnorm_1 o . Offset 1 x 1 x 150
3 (Batch Normalization) Batch normalization with 150 channels 11 x 6 x 150 Scale 1 x 1 x 150
relu_1
4 (ReLU) ReLU 11 x 6 x 150 -
5 maxpool_1 2 x 2 max pooling with stride [1 1] and 10 % 5 x 150 )

(Max Pooling) padding [000 0]
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Table 3. Cont.
Layer Name and Type Operation Activations Learnable

6 conv_2 125 3 x 3 x 150 convolutions with stride 10 % 5 x 125 Weights 3 x 3 x 150 x 125
(Convolution) [11] and padding ‘same’ Bias1 x 1 x 125
batchnorm_2 . . Offset1 x 1 x 125

7 (Batch Normalization) Batch normalization with 125 channels 10 x 5 x 125 Scale 1 x 1 % 125
relu_2

8 (ReLU) ReLU 10 x 5 x 125 -
maxpool_2 2 x 2 max pooling with stride [1 1] and ;

? (Max Pooling) padding [000 0] 9 x4x 125

10 conv_3 50 3 x 3 x 125 convolutions with stride [1 1] 9 % 4 x 50 Weights 3 x 3 x 125 x 50
(Convolution) and padding ‘same’ Bias1 x 1 x50
batchnorm_3 . . Offset 1 x 1 x 50

11 (Batch Normalization) Batch normalization with 50 channels 9 x 4 x 50 Scale 1 % 1 x 50
relu_3

12 (ReLU) ReLU 9 x 4 x 50 -
maxpool_3 2 x 2 max pooling with stride [1 1] and }

13 (Max Pooling) padding [0 00 0] 8330

14 conv_4 16 3 x 3 x 50 convolutions with stride [1 1] 8x3x16 Weights 3 x 3 x 50 x 16
(Convolution) and padding ‘same’ Bias1 x1x 16
batchnorm_4 . . Offset1 x 1 x 16

15 (Batch Normalization) Batch normalization with 16 channels 8 x3x16 Scale 1 x 1 x 16
relu_4

16 (ReLU) ReLU 8§ x3x16 -
fc Weights 16 x384

17 (Fully Connected) 16 fully connected layer 1x1x16 Bias 16 x 1
softmax

18 (Softmax) Softmax 1x1x16 -
focallossoutput

19 (Focal Loss Layer) Focal loss layer - -

The training was carried out on each CNN separately through the BP algorithm
and Adam optimizer in order to find the most suitable weights and bias for the model,
which could result in minimal prediction cross-entropy loss. The simulation dataset
was randomly divided into training data, validation data, and test data at a ratio of
80%:10%:10%, respectively. The ‘initial learning rate’ was set as 1 x 107>, “‘MaxEpochs’
was 20, ‘MiniBatchSize” was 50, the validation frequency was 20, and the rest of the
configuration parameters were set to the default values. The optimization process went
through a maximum of 3380 iterations before reaching the final convergence. For these
625 CNN networks, the minimum validation accuracy after training was 85.6% and the
average validation accuracy was 94.4%. The number of clusters with a validation accuracy
above 90% was 536, accounting for 85.7% of all clusters. Figure 6 displays the training
progress plot generated by MATLAB R2020b, MathWorks.Inc, USA, for the 313" cluster,
which was the hardest one to reconstruct as it was located in the center of the sensing area.
Due to the characteristic of the soft field, the sensitivity in the center area was lower than
that near the sensor. In Figure 7b, the validations and test accuracies of the other clusters
are also shown. The selected demonstration clusters were positioned at the midline of
the vertical axis with the same space. Figure 7a shows the position of the selected cluster
with red squares, and the corresponding clusters are the 63rd, 188th, 313th- 438th, and
563rd clusters. From the results, it can be seen that the cluster near the sensor area would
have better CNN performance. In Figure 6, the deep blue curve and black curve in the top
image represent the training accuracy and validation accuracy, respectively, and the orange
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curve and black curve in the bottom image represent the training loss and validation loss,
respectively. With the growing training iterations, the accuracy curves increased gradually,
achieving over 85.6% accuracy after training, while the loss curves decreased. Based on the
tendency of the curves, it could be regarded as a good-fitting network. Besides that, the
accuracy of the test dataset for the 313" cluster reached 85.93%, verifying the generalization
ability of the model.

Final

g
3 Accuracy
£ 50
2 Training (smoothed)
< 40 Training
30H — —@— — Validation
20 Loss
ok Training (smoothed)
[ 10 20
0 | 1 1 | | L] 1
0 500 1000 1500 2000 2500 3000 3500

lteration

Loss

Final
| |
0 500 1000 1500 2000 2500 3000 3500
Iteration

Figure 6. The training progress plot for the 313 cluster, generated by MATLAB.

Validation accuracy and Test accuracy for different clusters

98.00%

96.00%
§ 94.00%
8 92.00%
=
= 90.00%
o
© 88.00%
3
R R ) §  scoox
= - L . . = <
84.00%
82.00%
80.00%
63th 188th 313th 438th 563th
Cluster Cluster Cluster Cluster Cluster
M Validation Accuracy 95.48% 88.69% 85.67% 87.74% 95.19%
M Test accuracy 96.22% 89.34% 85.93% 86.98% 95.38%
M Validation Accuracy M Test accuracy
() (b)

Figure 7. (a) Cluster grid and the selected clusters (marked with red squares). (b) Comparison of the selected clusters for
validation and test accuracy.

When assessing the performance of the CNN, if the dataset used to train the network
was unbalanced, the trained network may have been underfitted. Therefore, metrics
other than the accuracy were needed to assist in the analysis, such as the confusion
matrix (including recall and precision values) and the receiver operating characteristic
(ROC) curve. In our design, since we trained the distinct CNN for each cluster instead
of individual pixels, and these 16 classes of the same cluster would not have the same
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occurring probability, thus there were variabilities in the recall and precision values of
different classes for the same cluster. Classes 1 and 16 had the highest occurring probability;
therefore, the precision and recall values of 625 CNNs for these two classes were relatively
stable and high, and the metrics showed that the value was smaller when the cluster was at
the center area while larger when the cluster was close to the sensor. Figure 8 shows the plot
of the precision and recall values of 625 CNN networks for class 1 and class 16. For class 16,
the minimum precision and recall values of the 625 CNNs were 86% and 96%, respectively.
For class 1, though a few networks underperformed, in aggregate, 85.9% of the networks
achieved more than a 75% precision value, and 79.6% of the networks achieved more than
a 75% recall value. For the other classes, the performance of the network varied among
clusters, and the values of these metrics were low, mostly falling below 20%. Although
such results may have introduced errors in boundary reconstruction, it was necessary to
train the network with all 16 classes. By training the network with more different cases,
the performance of the 625 CNNSs for classification could be improved, thus providing the
images with more accurate boundaries.

1 - v : W AT RT
TR
| g | I\ | I| |
I I .
0.8 \| f Ml'] I"f||ll| j‘M
— 0.6 [ !
g
0.4
1 0.2+ ]
——class 1 ——class 1
——class 16 ——class 16
1 L L D 1 L 1
1 100 300 500 625 1 100 300 500 625
Cluster Index Cluster Index

(a) (b)

Figure 8. The plot of the (a) precision and (b) recall values of 625 CNN networks for class 1 and class 16.

Compared with other simple networks such as the shallow neural network, our
proposed 625 multi-layer deep neural network performed better. The 625 CNNs possessed
an average accuracy of 94.4% and had high precision and recall values for class 1 and class
16, which were the two most important classes. Taking the 63rd, 188th, and 313th clusters
as examples, the test accuracy of the 625 CNNs was 96.22%, 89.34%, and 85.93%, while the
accuracy of the shallow network with the same depth (150) was 93.7%, 84%, and 83.7%,
respectively. Moreover, the recall and precision values of the 625 CNNs for class 1 and class
16 were much higher than those of the shallow network, implying that the shallow network
has a higher probability of misclassifying class 1 or class 16 than other classes, which will
affect the image results. Judging from the complete simulation and experimental image
results shown in the following sections, our network was able to correctly determine the
location and size of the inclusions, and the performance of the system met our design goals.

The 625 CNN models were saved separately and applied for simulation reconstruction
and experimental reconstruction. The image reconstruction accuracy was analyzed quanti-
tatively by calculating the structural similarity (SSIM), the mean squared error (MSE), and
the peak signal-to-noise ratio (PSNR) between the reconstructed image and the referencing
image. The SSIM, MSE, and PSNR are all metrics used to assess image quality [39,40]. The
MSE is the average energy of the difference between the current image and the referencing
image, while the PSNR is the ratio between the energy of the peak image value and the
mean energy of the noise. The calculations of these two methods are both based on the
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error between the corresponding pixel points. Suppose that there are two images: the
current image X and the referencing image Y. The total number of pixels is N for both
images, and the pixel value belonging to them is x; and y;, respectively. Therefore, the
calculating algorithm of the MSE and PSNR can be expressed as

MSE = L3 = & 2w 1)
- N - 1 - N - 1 yl
L? L

—— =20-log)y ——=
MSE 810 /VISE
where L is the maximum pixel value of the current image. The less distorted image should
have a higher PSNR value but a lower MSE value.

The SSIM is an index showing the similarity between two images. Different from
the MSE and PSNR, the SSIM evaluates the quality of an image with a region of pixels
instead of the individual pixel points, and thus it conforms to the human visual system. It

calculates the similarity between the images in terms of luminance, contrast, and structure.
The formulation of SSIM is

PSNR(in dB) = 10- logy, (12)

(2pxpy +c1) 20y +c2)

SSIM =
(® + 12 + 1) (0 + 0y + 2

(13)

where ji, is the average of x, i, is the average of y, 0;> and 0,2 are the variance of x and y,
respectively, oy, is the covariance of x and y, and ¢1 and c; are the variables that stabilize
the division. The value range of the SSIM is 0-1, and the image with better quality should
have a higher SSIM value.

3. Results
3.1. Simulation Reconstruction Results

In all simulation and experiment results, binary images were used, and they were cut
into circular shape to match the shape of the sensing system. The reconstruction results
obtained via traditional TV algorithm were also given. For the accuracy analyses of the TV
and CNN results, we used the input simulation image as the reference (“True’ image). To
give a better comparison between the two methods, the term “TV-CNN’ was also given.
This took the TV result as the reference and thus showed the difference between the CNN
results and the reference.

Table 4 gives the results of 9 simulation cases, in which cases 1-3 and cases 4-6
contained single inclusions with diameters of 16 pixels and 14 pixels, respectively, cases
7-8 were for double inclusions with diameters of 16 pixels and 14 pixels, and case 9
included three inclusions with diameters of 16 pixels, 14 pixels, and 12 pixels. For a better
comparison, the initial pixel images recovered by the CNN were converted from binary
images to RGB images with our MATLAB R2020b, MathWorks.Inc, USA, drawing function.
Since some noise was added to the simulated measured data during the training process,
the noise in the data translated to artifacts in the image domain. In the real experiments, we
had the true 0 and 1 situations representing the conducting and nonconducting materials,
where any value in between was ignored.
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Table 4. Detailed simulation reconstruction results and accuracy analyses.

Case Image Reconstruction Illustrations Evaluation Metrics

True v CNN CNN 0.9011

SSIM vV 0.8544

TV-CNN 0.9215

CNN 0.0140

1 TV-CNN True-TV True-CNN MSE v 0.0240
TV-CNN 0.0100

CNN 18.5387

PSNR vV 16.1979

TV-CNN 20.0000

True ™v CNN CNN 0.9150

SSIM TV 0.8425

TV-CNN 0.8863

CNN 0.0124

2 MSE TV 0.0296

TV-CNN True-TV True-CNN

TV-CNN 0.0180

\} @ CNN 19.0658

PSNR TV 15.2871

TV-CNN 17.4473

True v CNN CNN 0.9043

SSIM vV 0.9842

TV-CNN 0.9131

CNN 0.0132

3 TV-CNN True-TV True-CNN MSE v 0.0020
TV-CNN 0.0120

<y ‘ CNN 18.7943
fes PSNR v 26.9897

TV-CNN 19.2082

True ™ CNN CNN 0.9502

SSIM TV 0.9270

TV-CNN 0.9170

CNN 0.0064

4 TV-CNN True-TV True-CNN MSE v 0.0116
TV-CNN 0.0132
- o CNN 21.9382
0 £ PSNR vV 19.3554
TV-CNN 18.7943
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Table 4. Cont.
Case Image Reconstruction Illustrations Evaluation Metrics

True CNN CNN 0.9288

SSIM TV 0.8886

TV-CNN 0.8576

CNN 0.0092

5 T MSE TV 0.0184
TV-CNN 0.0276

CNN 20.3621
PSNR TV 17.3518

TV-CNN 15.5909

CNN 0.9538

SSIM vV 0.8735

TV-CNN 0.8668

CNN 0.0060

6 True-TV True-CNN MSE v 0.0168
TV-CNN 0.0196

0 g CNN 22.2185

= PSNR TV 17.7469

TV-CNN 17.0774

True v CNN CNN 0.7713

SSIM vV 0.6736

TV-CNN 0.6740

CNN 0.0388

7 MSE TV 0.0568

True-CNN

TV-CNN 0.0660

N o~ CNN 141117

Y PSNR TV 12.4565

TV-CNN 11.8046

CNN CNN 0.7660

SSIM TV 0.6240

TV-CNN 0.6574

CNN 0.0356

8 True.CNN MSE TV 0.0704
TV-CNN 0.0724

:‘*] [ CNN 14.4855

. PSNR TV 11.5243

TV-CNN 11.4026
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Table 4. Cont.

Case Image Reconstruction Illustrations Evaluation Metrics

True ™v CNN CNN 0.7016

SSIM vV 0.5970

TV-CNN 0.4947

‘ CNN 0.0472

9 MSE vV 0.0604
TV-CNN True-TV True-CNN

- . . TV-CNN 0.0868

'x,,f : S S o CNN 13.2606

P [ Q: < :*"} [ PSNR TV 12.1896

< s & TV-CNN 10.6148

From the above table, we can see that the 625 CNN models could effectively reveal
the number, size, and position of the simulated inclusions, with an average SSIM of 0.8658,
average MSE of 0.0203, and average PSNR of 18.0856. With the increasing number of
inclusions, the SSIM dropped and the MSE increased, while it could still reach an SSIM of
over 0.7 and an MSE of less than 0.05 for three-sample detection. The consistency between
the TV results and CNN results verifies the reliability of the CNN models and provides
feasibility for experimental reconstruction.

3.2. Experimental Reconstruction Results

Experimental data was collected from the CCERT system as shown in Figure 9a,b,
which included an insulating pipe, a 12-electrode circular array sensor, 12 excitation and
detection units, a signal control and processing unit, and a microcomputer. Plastic rods
with diameters of 34.5 mm, 29.5 mm, and 26.5 mm were utilized as detected samples, which
approximately matched the simulated inclusions with diameters of 16 pixels, 14 pixels, and
12 pixels, respectively. Their distributions also corresponded to the examined simulation
cases in Table 4, so we took the same simulation image as the true image for each case. The
TD method was adopted to eliminate background effects. Like in the simulated training
data, each set of 66 experimental resistances were scaled to [0 1] and converted into an
11 x 6 matrix before being put into the models. The experimental reconstruction results
are demonstrated in Table 5.

12-electrode CCERT |
Micro- array sensor
computer

Flat cable

Excitation and

12 excitation and
detection units ¥~_\

Signal
control and USB
processing — AN

unit Micro-
computer

Signal control and processing unit

@) (b)

Figure 9. (a) A photo of the 12-electrode CCERT (capacitively coupled electrical resistance tomography) system and (b) the
12-electrode CCERT system setup.
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Table 5. Experimental reconstruction results and accuracy analyses.

Case Image Reconstruction Illustrations Evaluation Metrics

True ™v CNN CNN 0.8509
SSIM vV 0.8300

! TV-CNN 0.8224
CNN 0.0264

TV-CNN True-TV True-CNN MSE v 00592
TV-CNN 0.0400

CNN 15.7840

{) () PSNR vV 14.0671
TV-CNN 13.9794

True L CNN CNN 0.8599
SSIM vV 0.8357

TV-CNN 0.8729

CNN 0.0240

True-TV True-CNN MSE v 0.0408

TV-CNN 0.0320

0 K‘) CNN 16.1979

= = PSNR TV 13.8934

TV-CNN 14.9485

True CNN 0.8071
SSIM vV 0.8531

TV-CNN 0.8226

CNN 0.0352

True TV MSE vV 0.0260

TV-CNN 0.0268

() .,‘;5 CNN 14.5346

PSNR vV 15.8503

TV-CNN 15.7187

True CNN CNN 0.8778
SSIM vV 0.8879

TV-CNN 0.8581

CNN 0.0216

MSE vV 0.0204

TV-CNN True-TV True-CNN

TV-CNN 0.0268

3 - " CNN 16.6555
- C g A PSNR TV 16.9037
TV-CNN 15.7187
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Table 5. Cont.

Case Image Reconstruction Illustrations Evaluation Metrics
e CNN 0.8937
SSIM v 0.8708

TV-CNN 0.9000

CNN 0.0200

True-TV True-CNN MSE v 0.0268
TV-CNN 0.0284

O () CNN 16.9897
PSNR vV 15.7187

TV-CNN 15.4668

e b CNN 0.7317
SSIM v 0.8679

TV-CNN 0.7244

CNN 0.0464

MSE v 0.0200

TV-CNN 0.0464

CNN 13.3348

PSNR v 16.9897

TV-CNN 13.3348

CNN 0.6939

SSIM TV 0.6830

TV-CNN 0.7469

CNN 0.0580

True-TV T MSE TV 0.0700
TV-CNN 0.0472
CNN 12.3657

PSNR TV 11.5490

TV-CNN 13.2606

CNN 0.7415

SSIM v 0.7236

' TV-CNN 0.7440

CNN 0.0576

True-TV True-CNN MSE v 0.0696
TV-CNN 0.0496
3 o AT CNN 12.3958
. | PSNR TV 11.5739
TV-CNN 13.0452
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Table 5. Cont.
Case Image Reconstruction Illustrations Evaluation Metrics
True v CNN CNN 0.6037
SSIM TV 0.6000
TV-CNN 0.6500
CNN 0.0776
True-TV True-CNN MSE v 00792
TV-CNN 0.0664
\ ) Yo CNN 11.1014

O < 0 f'_“ PSNR v 11.0127

TV-CNN 11.7783

Comparing Tables 4 and 5, for each case, the SNR value by the CNN for experimental
reconstruction was lower than that of the simulation reconstruction due to the random noise
and interference during measurements. Besides that, the effect of scaling also amplified
the differences. Taking case 1 as an example, Figure 10 plots the 66 scaled resistance
measurement data of the simulation and experimental tests. Both reasons led to a decrease
of the SSIM and increase of the MSE in practical reconstruction. Even so, Table 5 shows
that the CNN can be well applied for real data to reveal the relative size and position
of the plastic rods, with an average SSIM of 0.7846, average MSE of 0.0408, and average
PSNR of 14.3733, which indicates that our networks did well in terms of noise tolerance.
The average SSIM, MSE, and PSNR for the TV method were 0.7947, 0.0436, and 14.1732,
respectively. Figure 11a—c shows the comparisons of the SSIM, MSE, PSNR values via the
CNN and TV methods.
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Figure 10. Simulated and experimental resistance plot for case 1.
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Figure 11. (a) SSIM (structural similarity) plot (b) MSE (mean squared error) plot (c) PSNR (peak
signal-to-noise ratio) plot for 9 reconstruction cases by CNN and TV (total variation).

In all nine experimental cases, six cases had higher SSIM values, lower MSE values,
and higher PSNR values with the CNN method than those with the TV algorithm, which
demonstrates the improvement in image reconstruction accuracy for the CCERT system
by the multi-CNN approach and the feasibility of applying deep learning for two-phase
material imaging by CCERT. What is more, the typical calculation time to reconstruct the
image with the 625 DL models was around 1 min. Though the time of producing one image
with a CNN was longer than that with the TV algorithm (several seconds) at the current
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time, the improvement of GPUs in the future can accelerate the reconstruction process to
provide real-time imaging.

4. Conclusions

This research studied the feasibility of a CNN-based reconstruction algorithm for a
circular CCERT system. CCERT has the same advantages as the traditional ERT system,
including simplicity, no invasions, no radiation, rapid response, and a low cost. Addition-
ally, CCERT avoids contact errors by inserting an insulation layer between the conductive
mediums and electrodes. Additionally, CCERT could achieve a higher image quality due
to the extended frequency range. The forward model was simulated based on the Maxwell
equations and FEM method, and the image reconstruction was realized by a deep learning
approach. A CNN was adopted as the network architecture due to its superior ability to
extract features from the input data, and thus its suitability to use CNNs for classification
tasks. Each 2500-pixel image was divided into 625 clusters so that a CNN could be applied
on each cluster to solve the distinct multi-class classification problems. Each CNN took in
data and mapped them into a label representing the pixel distribution. The CNN models
were achieved by accessing data, constructing layers, setting training options, and conduct-
ing training. The training of each CNN was carried out separately to pursue a fitting model
for each cluster. After tunings, the 625 models could achieve satisfying training accuracies,
and they were then applied for the reconstruction of entire images. Both the simulation
images and practical measurement images achieved acceptable results, which confirmed
the practicability of applying multiple CNNs for image reconstruction in circular CCERT.
The training with the simulated data and successful tests conducted with experimental
data are very promising; the results allow greater depth of computer-based optimization
of the CCERT system. In this study, the CNN approach was compared with one of the
state-of-the-art total variation algorithms and provided similar performance. The TV algo-
rithm still needed thresholding of the final image, which was not always straightforward,
while the CNN was directly producing binary images. In this work, we considered nine
scenarios to test whether the proposed CNN was capable of imaging with high quality. It is
worth noticing that there were good performances shown by the state-of-the-art traditional
imaging methods, such as TV algorithm, as well as both the shallow and deep neural
networks. In future work, as more scenarios are considered to train the system, such as
the case where inclusions contact each other, the performance of the system will become
better. In theory, the proposed method should handle such nonlinearity, but it needs to be
compared with a nonlinear traditional algorithm.
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