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Abstract: Passive Intermodulation (PIM) distortion is a major problem in wireless communications
which limits cell coverage and data rates. Passive nonlinearities result in weak intermodulation (IMD)
products that are very difficult to diagnose, troubleshoot and model. To predict PIM, behavioral
models are used where spectral components of PIM are estimated from the power spectral density at
the output of the model. The primary goal of this paper is to study the effect of window functions on
the capability of the power spectral density computed from the periodogram of signal realizations to
predict low power PIM components in a wideband multichannel communication system. Different
window functions are analyzed and it is shown that windows with high side-lobe level fail to predict
PIM components which are close to the main channels due to their high spectral leakage; while
window functions with low roll-off rate of the side lobes fail to predict low power higher order PIM
components especially when the frequency separation between the main carriers is high. These
results are supported by simulations of the power spectral density computed using signal realizations
of an LTE carrier aggregated system.

Keywords: passive intermodulation; piecewise linear model; LTE; behavioral models;
threshold decomposition

1. Introduction

Passive intermodulation (PIM) distortion has been a significant problem in modern
mobile communication systems as it limits system performance and capacity. Unlike active
nonlinear distortion which is usually manifested as intermodulation (IMD) products with
significant power levels, passive nonlinearities result in very weak IMD products which
make it very difficult to measure and model [1]. In carrier aggregated systems such as 4G
systems, PIM is manifested as IMD components which result in interference with the main
channels in the receive band.

A simple illustration of PIM in wireless systems is shown in Figure 1a where the input
to the passive nonlinearity consists of two band pass signals centered at frequencies f1
and f2. The power spectral density (PSD) of the output of the nonlinearity is shown in
Figure 1b which consists of the spectra at the fundamental frequencies in addition to the
IMD components at frequencies 2 f1 − f2 and 2 f2 − f1 which may lie within the receive
band 2. In this scenario, the IMD components produced by the passive nonlinearity can
result in significant interference in the receive band which limits system performance
and capacity.

To predict PIM in in such scenarios, behavioral models that relate the output PIM to
the input signal level and frequency are used [2–10]. Behavioral models are developed
using measured characteristics of the nonlinear device and then they can be used to predict
PIM from the computation of the power spectrum at the output of the model.

Estimating PIM from the power spectral density at the output of the behavioral model
using direct application of the Fast Fourier Transform (FFT) to a signal realization can be
a simple task when the power level of the IMD components is high as the case of active
nonlinearities (above −60 dBc). However, with passive nonlinearity, the IMD components
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can have power levels of less than −140 dBc which makes it difficult to predict PIM [7,8].
The reason for this is that the finite length of signal realizations results in high levels
of spectral leakage in the computed power spectrum which tends to obscure the IMD
components as spectral leakage level are usually much higher than the intermodulation
power level.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 12 
 

 

 
(a) 

(b) 

Figure 1. Spectra in a wideband receiver: (a) Input spectrum of two RF signals to a passive non-
linearity and (b) the Output spectrum; dashed line indicates PSD computed using FFT with rec-
tangular window indicating spectral leakage. 

To predict PIM in in such scenarios, behavioral models that relate the output PIM to 
the input signal level and frequency are used [2–10]. Behavioral models are developed 
using measured characteristics of the nonlinear device and then they can be used to pre-
dict PIM from the computation of the power spectrum at the output of the model. 

Estimating PIM from the power spectral density at the output of the behavioral 
model using direct application of the Fast Fourier Transform (FFT) to a signal realization 
can be a simple task when the power level of the IMD components is high as the case of 
active nonlinearities (above −60 dBc). However, with passive nonlinearity, the IMD 
components can have power levels of less than −140 dBc which makes it difficult to pre-
dict PIM [7,8]. The reason for this is that the finite length of signal realizations results in 
high levels of spectral leakage in the computed power spectrum which tends to obscure 
the IMD components as spectral leakage level are usually much higher than the inter-
modulation power level. 

Figure 1b shows an illustration of this phenomenon where spectral leakage that re-
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spectra and their power level depend on the frequency separation between the main 
channels and the input power and, thus, it is important to use an appropriate spectral 
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Spectral leakage can be minimized through windowing where signal samples are 
weighted by a given time window which enhances the accuracy of spectral estimation 
[11]. The type of the window has a significant impact on spectral leakage where low-peak 
side lobe of the frequency response of the window function indicates small spectral 
leakage. Several window functions have been used in the literature for suppression of 
spectral leakage [12–14]. However, the choice of the window function is a compromise 
between the amount of spectral leakage and the frequency resolution and, hence, the 
computational complexity of computing the windowed FFT [3]. 

This problem has been studied in the context of prediction and reduction of har-
monics in power systems where it was shown that the direct application of the FFT has 
inherent performance limitations, such as spectral leakage and the picket fence effect [11]. 
However, limed research has been done on the effect of selection of window functions on 
spectral identification of PIM. This paper aims to provide an assessment of the perfor-
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Figure 1. Spectra in a wideband receiver: (a) Input spectrum of two RF signals to a passive nonlin-
earity and (b) the Output spectrum; dashed line indicates PSD computed using FFT with rectangular
window indicating spectral leakage.

Figure 1b shows an illustration of this phenomenon where spectral leakage that results
from the Fast Fourier Transform (FFT) makes it impossible to predict IMD components
from weak passive nonlinearities. In principle, the frequency of intermodulation spectra
and their power level depend on the frequency separation between the main channels
and the input power and, thus, it is important to use an appropriate spectral estimation
algorithm so that these IMD components can be predicted.

Spectral leakage can be minimized through windowing where signal samples are
weighted by a given time window which enhances the accuracy of spectral estimation [11].
The type of the window has a significant impact on spectral leakage where low-peak side
lobe of the frequency response of the window function indicates small spectral leakage.
Several window functions have been used in the literature for suppression of spectral
leakage [12–14]. However, the choice of the window function is a compromise between the
amount of spectral leakage and the frequency resolution and, hence, the computational
complexity of computing the windowed FFT [3].

This problem has been studied in the context of prediction and reduction of harmonics
in power systems where it was shown that the direct application of the FFT has inherent
performance limitations, such as spectral leakage and the picket fence effect [11]. However,
limed research has been done on the effect of selection of window functions on spectral
identification of PIM. This paper aims to provide an assessment of the performance of
various window functions on in the ability of the power spectral density to predict the
IMD components in a wideband system. The significance of this research in that the results
presented can be used in the design of simulation models and measurements setups for
accurate prediction or measurement of PIM in wireless systems.

This paper provides an analysis of passive nonlinearity in a carrier aggregated system
using a polynomial based behavioral model and develops the output of the nonlinearity
for two carrier aggregated signals which represents the practical scenario by which PIM
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is manifested in wireless system. Next, the paper provides a theoretical study of power
spectral density of the output of the passive nonlinearity where the characteristics of
various window functions which are used to overcome spectral leakage are explored. The
last section provides simulation results which quantify the ability of power spectrum
computed using various window functions to predict passive intermodulation levels.

2. Modeling of Passive Intermodulation

Perhaps, the most common approach to modeling nonlinearity is the Volterra like
approaches [15]. One of the most common simplifications of Volterra models is the memo-
ryless polynomial model which has extensively been used to model active nonlinearities
with no memory effects. The response of an RF nonlinearity to multiple signals in a carrier
aggregation system such as LTE system was studied in [16], where the response of a memo-
ryless polynomial model to multiple communication signals at multiple carrier frequencies
of the form.

x(t) = ∑M
m=−K

1
2

xm(t)ej2π fmt (1)

where xm(t) is the complex envelope of the input signals centered at frequencies fm and K
indicates the number of signals. The analysis in [17] was based on multinomial analysis of
the polynomial model which can be described as:

y(t) = ∑N
n=1 yn(t) (2)

where yn(t) = anxn(t), an represents the n-th order coefficient of the memoryless nonlinear-
ity and N is the nonlinear order. Note that only odd order polynomial terms are considered
in this model as the passive nonlinearity is considered to have an odd symmetry in its
I/V characteristic [17]. This means that the model can only model IMD components that
lie within the proximity of the carrier in the frequency spectrum, which is a reasonable
assumption as low frequency IMD components that result from even IMD products can
usually be removed by filtering.

To analyze the response of the nonlinearity to multiple signals, the output of the
nonlinearity can be found by inserting (1) into (2) where the n-th order nonlinearity can be
written as:

yn(t) =
( an

2n

)(
xm(t)ej2π fmt

)n
= ∑

n−M f−M+...+nM fM= f

an

2n

(
n

n−M . . . ., nM

)( n

∏
i=1

xmi e
j2π f t + x∗mi

e−j2π f t

)
(3)

The case of two signals at frequencies f 1 and f 2 is unique as it makes the analysis
more tractable and; at the same time, this enables nonlinear distortion to be quantified and
predicted at IMD frequencies in a wideband carrier aggregated wireless system. For a two-
signal input, the passive nonlinearity results in IMD components at the IMD frequencies.
In this scenario, the input to the passive nonlinearity is represented as

x(t) = A1(t) cos(2π f1t + φ1(t)) + A2(t) cos(2π f2t + φ2(t)) (4)

The complex envelop of the input signal can be written as

x̃(t) = A1(t)eφ1(t)e−2π f0t + A2(t)eφ2(t)e2π f0t (5)

where f0 = f2− f1
2 .

As shown in [17], by inserting (5) into (3), the output of the nonlinearity in (2) consists
of the fundamental signals at frequencies − f0 and f0 in addition to the IMD components at
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the IMD frequencies as shown in Table 1 below. The output of the polynomial model at the
fundamental frequencies can be as [17]:

z̃ f0(t) =
N

∑
n=1

n−1
2

∑
l=0

bn,l ũl
−2ũ

n−1
2 −l
−1 ũ

n+1
2 −l

1 ũl
2 (6)

where

bn,l = an2n−1
(

n
l, n−1

2 − l, n+1
2 + l, l

)

Table 1. IMD frequencies for a two-tone input.

N Upper Intermod
(Band Pass)

Upper Intermod
(Envelop)

Lower Intermod
(Band Pass)

Lower Intermod
(Envelop)

3 2 f2 − f1 3 f0 2 f1 − f2 −3 f0

5 3 f2 − 2 f1 5 f0 3 f1 − 2 f2 −5 f0

7 4 f2 − 3ω1 7 f0 4 f1 − 3 f2 −7 f0

9 5 f2 − 4 f1 9 f0 5 f1 − 4 f2 −9 f0

11 6 f2 − 5 f1 11 f0 6 f2 − 5 f1 −11 f0

This expression represents the output of nonlinearity at the first carrier and captures
nonlinear distortion that results from the interaction of the two signals by nonlinearity. In
a similar manner, the third order IMD components at the lower IMD frequency 3f 0 can be
found as [17]

z̃3 f0(t) =
N

∑
n=1

n−2
2

∑
l=0

bn,l ũl+1
−2 ũ

n−3
2 −l
−1 ũ

n+1
2 −l

1 ũl
2 (7)

where

bn,l =
an

2n−1

(
n

n−3
2 − l, l + 1, l, n+1

2 − l

)
and higher order IMD components can be derived in a similar way. The above analysis
enables PIM in carrier aggregation systems to be predicted. In the above formulation, PIM
is manifested as gain compression, spectral regrowth and cross modulation distortions at
the carrier frequency plus a nonlinear distortion component with a wider bandwidth at the
intermodulation frequency. Figure 2 shows the output spectra of a passive nonlinearity to
the sum of two OFDM signals each of which has a 20 MHz bandwidth with a frequency
separation of 120 MHz between them. The figure shows the IMD components which
appear at 360, 600, 840, 1080 MHz respectively. Note that the widened spectrum at the
fundamental frequency −f 0 represents the spectral regrowth and cross modulation while
the spectral components at the IMD frequencies which may interfere with other channels
in a carrier aggregation system or with the receive bands.
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Figure 2. PSD of the output of nonlinearity for an input that consists of the sum of two OFDM signals
with frequency separation of 100 MHz.

3. Estimation of Power Spectral Density of the Output of a Passive Nonlinearity

The power spectral density of a random signal is defined as the statistical average of
the signal periodogram of signal realizations of infinite lengths [11]:

Sxx(ω) = E{ lim
M→∞

px,M(ω)} (8)

where

px,M(ω) = 1
M |DTFT

(
x(n)|2 | = 1

M

∣∣∣∣M−1
∑

n=0
x(n)e−jωn

∣∣∣∣2
⇔ 1

M

M−1−|l|
∑

n=0
x(n)x(n + |l|)

(9)

is the periodogram of the output signal which is basically the squared magnitude of the
DTFT of the signal realization of a finite length M. Therefore, the periodogram represents
an unbiased estimate of the power spectral density (PSD) which is a random variable with
zero mean, but has a non-zero variance as it represents a single realization of the signal [11].
Note that the periodogram of finite length signal does not represent the PSD of the signal as
the PSD in (8) assumes a signal of infinite length; however, the accuracy of the periodogram
in representing the PSD increases as the length of the signal realization used is increased.
The finite length of the signal realization results in spectral leakage where extra frequency
components are generated in the vicinity of the main frequency component [13]. Spectral
leakage results in the inability of the periodogram to represent other frequency components
of the signal such as harmonics and IMD components.

To overcome the problem of spectral leakage, the input signal is multiplied by a
window function where any finite length signal is viewed as having an infinite length when
viewed from a window of a finite length and, hence, the periodogram can better represent
the actual PSD from a finite length realization of the signal as will be seen in the following
section. The periodogram of the windowed signal is called the modified periodogram and
is expressed as [11]:

pxw ,M(ω) =
1
M

∣∣∣DTFT(xw(n)|2
∣∣∣ = 1

M

∣∣∣∣∣M−1

∑
n=0

xw(n)e−jωn

∣∣∣∣∣
2

(10)

where xw(n) = x(n)w(n) is the windowed signal and w(t) is the window function and M
is the signal size. The windowed periodogram can enhance the accuracy of the spectral
analysis of the PIM components and produce better estimates of nonlinear distortion.

Note that the periodogram is an estimate of the PSD of the signal. The accuracy of
the estimate depends on the bias of the estimate while its precision depends on the mean
squared error. The bias of the estimate results in spectral leakage while the variance of the
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estimate results in inconsistency of the estimate. The periodogram of a finite length signal
is always a biased estimate of the PSD but this the bias can be controlled by windowing.
A larger window size (Ts) which means higher resolution (1/Ts) results in smoother
transitions which means less bias of the estimate and hence, less spectral leakage. Therefore,
the choice of the window function depends on a compromise between the amount of
spectral leakage and the frequency resolution and, hence, the computational complexity
of computing the windowed FFT [13]. In general, window functions with narrow main
lobe have a smaller frequency resolution while those with wide main lobe result in high
frequency resolution. On the other hand, the low level of side-lobes and their high roll-off
rates result in lower spectral leakage than those with high side-lobe levels or low roll-off
rates [13].

On the other hand, the consistency of the estimator depends on the variance of the
estimate which decreases as the number of segments of the signal is increased. Therefore,
for a fixed T seconds of data, there is a trade-off between the length of the segments which
controls the bias and number of segments, which controls the variance of the estimate. In
principle, the variance the periodogram does not tend to zero as the data length L tends to
infinity and hence, it is not a consistent estimator of the PSD; however, it can be a useful
estimate of the PSD when the data record long.

Figure 3 shows the spectrum of various types of windows which shows that the
rectangular window has the lowest main lobe width while the Blackman Harris window
has the widest main lobe. Table 2 shows the various properties of these windows [11,14].
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Table 2. Properties of various window functions.

Window w(n)
Width of the Main

Lobe (3-dB BW)
(π samples

cycle )

Max Side Lobe
Level (dB)

Side Lobe
Roll-Off Rate
(dB/Octave)

Rectangular

{
1 0 ≤ n ≤ N
0 Otherwise

0.011719 −13.3 −6

Hanning 1
2

(
1− cos

(
2πn

N

))
, 0 ≤ n ≤ N 0.019531 −31.6 −18

Hamming 0.54 + 0.46 cos
(

2πn
N

)
, 0 ≤ n ≤ N 0.019531 −43.7 −6

Blackman 0.42− 0.5 cos
(

2πn
N

)
+ 0.08

(
4πn

N

)
,

0 ≤ n ≤ N
0.023438 −58.2 −18

Blackman–Harris
0.35875− 0.48829 cos

(
2πn

N

)
+0.14128 cos

(
4πn

N

)
− 0.01168 cos

(
6πn

N

) 0.027344 −92.2 −6

Kaiser

I0

[
β
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2
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, 0 ≤ n ≤ N

(β is a parameter that determines the
tradeoff between main lobe width and

side lobe levels)

0.011719 −14.7 −6

As discussed in Section 1, spectral leakage causes low power spectral components
to be obscured especially when their power level is low. In the problem of estimating
PIM from the PSD at the output of a nonlinear model, this is manifested as inability of the
estimated PSD to show the PIM components at the IMD frequencies when the input power
is low as PIM components usually have power levels of 100 dB less than the power of the
main channel. In the following section, simulations of the PSD of the output a passive
nonlinearity using various window functions are presented.

Simulation Results and Discussion:
The theoretical concepts presented in the paper are verified by simulations results.

The behavioral model used in the simulations is based on a hyper tangent function which
has been shown in [18,19] to follow measured nonlinear I/V characteristics of a passive
nonlinearity over an input power range of more than 30 dB. The hyper tangent function is
given by 9

I(t) = g0[1 + k1tanh(k2V(t))] (11)
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where g0, k1 and k2 are the model parameters which can be adjusted to fit a wide variety of
nonlinear characteristics. Note that these characteristics can model the less than 3 dB/dB
behavior of a passive nonlinearity by the proper selection of the model parameters. The
passive nonlinearity in the simulations that will follow was generated using a hyper tangent
model with parameters k1 = 6 × 10−5, k2 = 3 × 10−3 and g0 = 1. Figure 4a shows the I/V
characteristics of the hyperbolic tangent model and Figure 4b shows the input/output
power characteristics of the model.
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The input signal to the model was generated in Matlab and is based on the specifica-
tions of the Orthogonal Frequency Division Multiplexed (OFDM) signals that resemble LTE
signals as shown in Table 3 [16]. The periodogram of the output of the passive nonlinearity
in (10) was computed for an input that consists of two simulated OFDM signals with
20 MHz bandwidth each and a frequency separation of 100 MHz. The periodogram was
estimated using different window functions. Note that, in order for the periodogram of the
output of the nonlinearity to show the IMD components, the sampling frequency needs
to be greater than the highest IMD component. For example, in order to show the 9th
intermodulation component, the sampling frequency must be greater than 9ω0.

Table 3. OFDM Signal Parameters.

No. of Sub-Carriers 1705

Modulation 16 QAM
Constellation type: Gray

Pulse Shaping Rectangular pulse
PAPR 10.8 dB

Input Power range 0 dBm to 35 dBm

The simulation results include computing PIM distortion from the PSD of the output
of the nonlinearity at various IMD frequencies and power levels. The power of the input
signals is swept in a range of 0 to 35 dBm and the periodogram was computed at each
power level. The power in the IMD components is computed within a bandwidth of
20 MHz. In order to study the effect of the intermodulation frequency on the prediction
capability of the power spectral density with a given window function to predict PIM
components, the frequency separation between the input carriers was swept and the
passive IMD components were computed at various frequency separations and using
different window functions.
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4. Results

Figure 5 shows the PSD of the output of the nonlinear model for an input that consists
of two OFDM signals separated by 100 MHz. The PSD was estimated using a periodogram
with two window functions: a Hanning window and a rectangular window when the
input power is much lower than the saturation point of the nonlinearity (Pin = 30 dBm). At
this input power, the level of the IMD components is very low as compared to the main
channel power. The figure clearly shows that with a rectangular window the periodogram
only predicts the third order PIM component but fails to predict all higher order IMD
components due to the severe spectral leakage. In contrast, a periodogram that uses
a Hanning window predict all IMD components which have power levels as low as
−200 dBm.
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Figure 5. PSD of the output of the passive nonlinearity using a Hanning window and a rectangu-
lar window.

To analyze the effect of the window function on the capability of the PSD to predict
PIM components, the periodogram was computed using the different window functions
presented in Table 1 and with a frequency separation of 20 MHz between the two input
carriers. The power of PIM at the IMD frequencies was calculated from the PSD within the
same bandwidth of the input signal for various input power levels as shown in Figure 6a–d.
The figures show the input power levels at which the periodogram (which uses a given
window function) can predict the PIM power of all nonlinear orders.
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The effect of frequency separation between the two carriers was also studied where
the PSD of the periodogram of the output of the nonlinearity was simulated using different
window functions at different frequency separations and, hence, different separation
between IMD frequencies and the fundamental frequencies at a carrier power of 35 dBm as
shown in Figure 7a–d.
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5. Discussion

Table 4 summarizes the results obtained from Figure 6a–d where it is shown that
the Blackman and Blackman–Harris windows have best performance in predicting PIM
components in comparison to other windows at all power levels and all orders of PIM. The
table also shows that at low input power levels, Blackman window surpasses other window
function in predicting all PIM component, while at high input power, the Blackman and
the Blackman–Harris windows show a similar result in predicting PIM component. These
results are consistent with the properties of the window function in Table 1 which shows
that although the Blackman window has side lobe level (−58 dB) which is much higher than
the Blackman Harris window, it has better performance than the Blackman Harris window
for higher order IMD components. The reason for this is that although the Blackman
Harris window has a better side lobe level performance (−92 dB), the Blackman window
has a much higher roll-off rate of the side lobes (−18 dB/decade) especially when the
frequency separation between the two input signals is small and hence, high frequency
PIM components. On the other hand, at high input power level, the PIM components have
a higher power level and hence, both windows have similar PIM prediction performance.

Table 4. IMD estimation using various window function.

Pin = 0 dBm Pin = 30 dBm

Window IMD3 IMD5 IMD7 IMD9 IMD3 IMD5 IMD7 IMD9

Rectangular −53 −58 −60.9 −62.8 −6.8 −25.7 −31.4 −33.7
Kaiser −53.4 −58.3 −61.2 −63.1 −6.8 −25.8 −31.7 −34

Hamming −70.9 −75.9 −78.8 −80.7 −7 −27.3 −43.7 −50.9
Hanning −96.7 −174.4 −211 −218 −7 −27.3 −45.8 −64.7
Blackman −97.5 −175.3 −219 −226 −7.4 −28 −46.8 −65.6

Blackman Harris −98.1 −136.5 −139.4 −141 −7.8 −28.8 −47.9 −66.8

The results in Figure 7a–d show that for higher order PIM components (5th order
and higher), the Blackman and Hanning windows provide the lowest IMD power and
hence, the best PIM prediction capability regardless of the frequency separation. With
other window functions, the figures show that the PIM level decreases with increasing
the frequency separation between the carriers as a result of spectral leakage. These results
comply of the properties of the different window functions in Table 1 where the Blackman
and Hanning windows have the best side lobe roll of (−18 dB/decade), which means that
the spectral leakage decreases rapidly with increasing frequency separation and hence, the
PSD can better predict IMD components of all orders than other window functions. For the
third order PIM component, Figure 7a shows that Hamming and Kaiser windows provide
better prediction capability at high frequency separations and, at the same time, the worst
PIM prediction capability at lower frequency separations. The reason for this is the low
side lobe roll-off rate of these windows which results in higher spectral leakage at low
frequencies. On the other hand, the Blackman and Hanning windows offer reasonable PIM
prediction at all frequency separations, which make them better candidates for spectral
estimation of PIM than the Hamming and Kaiser windows.

6. Conclusions

In this paper, prediction of PIM in carrier aggregated system from the output spectrum
of a behavioral model of a passive nonlinearity has been studied. Since PIM components
usually have a very low power levels, it has been shown that spectral leakage has a
significant effect of the prediction capability of the PSD to identify PIM components. A
detailed analysis and simulations of the impact of the choice of the window functions
on prediction of PIM distortion has been presented. Since the frequency and the power
of IMD frequencies depend on the frequency separation between the main channels and
their power levels, it has been shown that accurate prediction of PIM components from the
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output PSD requires window functions that compromise the side lobe levels and the side
lobe roll-off rates. The simulation results showed that, in principle, window functions that
have high side lobe roll-off rates (Hanning and Blackman) offer better PIM prediction when
IMD components are strong and distant from the main carrier (high frequency separation
between the main carriers). On the other hand, window functions with low side lobe levels
(Blackman and Blackman Harris) offer better prediction of PIM components when the IMD
components are weak and close to the main carriers (low frequency separation between
the main carriers).
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