
electronics

Article

Accelerating Neural Network Inference on FPGA-Based
Platforms—A Survey

Ran Wu 1,† , Xinmin Guo 2,*, Jian Du 3,† and Junbao Li 1,†

����������
�������

Citation: Wu, R.; Guo, X.; Du, J.; Li, J.

Accelerating Neural Network

Inference on FPGA-Based

Platforms—A Survey. Electronics 2021,

10, 1025. https://doi.org/10.3390/

electronics10091025

Academic Editor: Hyongsuk Kim

Received: 2 March 2021

Accepted: 1 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150000, China;
wurandahan@gmail.com (R.W.); lijunbao@hit.edu.cn (J.L.)

2 School of Astronautics, Harbin Institute of Technology, Harbin 150000, China
3 Science and Technology on Special System Simulation Laboratory, Beijing Simulation Center,

Beijing 100000, China; chocolatedj@163.com
* Correspondence: guoxm@hit.edu.cn
† These authors contributed equally to this work.

Abstract: The breakthrough of deep learning has started a technological revolution in various
areas such as object identification, image/video recognition and semantic segmentation. Neural
network, which is one of representative applications of deep learning, has been widely used and
developed many efficient models. However, the edge implementation of neural network inference is
restricted because of conflicts between the high computation and storage complexity and resource-
limited hardware platforms in applications scenarios. In this paper, we research neural networks
which are involved in the acceleration on FPGA-based platforms. The architecture of networks
and characteristics of FPGA are analyzed, compared and summarized, as well as their influence
on acceleration tasks. Based on the analysis, we generalize the acceleration strategies into five
aspects—computing complexity, computing parallelism, data reuse, pruning and quantization. Then
previous works on neural network acceleration are introduced following these topics. We summarize
how to design a technical route for practical applications based on these strategies. Challenges in the
path are discussed to provide guidance for future work.

Keywords: acceleration; FPGA-based platform; neural network inference

1. Introduction

In machine learning, deep neural network (DNN) has shown great improvement over
traditional algorithms [1]. DNN models have been proposed in many areas such as image
classification, detection and segmentation. However, as these models have become increas-
ingly accurate, their data and computing resource requirements have also increased [2]. DNN
models have become deeper and have developed great accuracy with high storage complexity
and computation, which demands to design specialized accelerators on the deployment
platforms for these models. The deployments can be summarized into two kinds—cloud
and edge. The cloud deployment needs to transport the data from sensors to data centers.
Training and inference of models are executed in data centers. The edge computing performs
network inference closed to where data is produced, and models can be pre-trained in data
centers. Marchisio et al. [3] splits these deployments into four use-case scenarios of DNNs: (1)
offline DNN training in data centers, (2) inference in data centers, (3) online learning on edge
device, (4) inference on edge device. In this paper, we focus on the 4th scenarios.

Mostly, edge device cannot provide huge memory and computation resource for
DNNs. The power consumption for network inference is also limited. Therefore, the
first scenario focuses on designing and offline training highly optimized models through
methods like pruning, quantization, shift, and so forth. In another word, it is software
optimization. Typical models like ResNet [4], Yolov3 [5] achieve high recognition rate
as well as frame rate but have hundreds of millions parameters, which means storage
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burden, high bandwidth occupation and complex computation. Lightweight models such
as MobileNet [6–8] and ShuffleNet [9,10] try to reduce the size of the network as well as the
storage use and computation through advanced network structures, but at the cost of accu-
racy loss. Software optimization methods like pruning and quantization aim at fix storage
burden and high bandwidth occupation. To reduce computation complexity, technologies
such as stochastic computing, shift are adopted to replace the multiply operations in net-
works. When it comes to inference on edge device, optimization methods are about high
parallelism and high data reuse, which are adopted on the hardware perspective to build
optimized accelerators. Multiply Accumulate (MAC) is the main computing operation in
DNN. We can not only replace the multiply to reduce complexity but also perform multiple
computing operations at the same time to achieve high parallelism and reduce latency.
For example, a feature map in 416× 416× 3 size is the input of network, the convolution
kernel is 3× 3× 3× 512 and the step size is 2. The total MAC operations can be 22,151,168
for the single input feature map and they can be operated at the same time. Our hardware
platform may not be able to perform them totally at the same cycle, but it is beneficial to
execute them as many as possible in a single loop to realize high parallelism. Since we
cannot finish computing in a single loop, data read/write, and bandwidth are new chal-
lenges in hardware acceleration. Off-chip memory read and write mean more latency and
power consumption. On-chip memory is too small to afford the computing. Take the same
example, the feature map is too big, and parameters of operations are huge, edge platforms
cannot store all of them in the on-chip memory and process elements are not enough for all
the computing operations. As a result, off-chip memory must be involved as well as more
latency and power consumption, and bandwidth is another limitation. In order to reduce
the disadvantages, data reuse is the key method. We can choose a part of data according to
computing times it costs, on-chip memory size, and the number of parameters it contains.
Then all operations about this part of data are performed. Afterwards, it will be abandoned
and never be used again, and another part of data will be read into on-chip memory. In this
way, we can minimize off-chip memory read/write and maximize bandwidth. Data reuse
is essential in edge computing.

After briefly discussing the main challenges and solutions about deployment of DNNs
on edge platforms, we can summarize five primary topics in DNN acceleration: computing
complexity, pruning, quantization, computing parallelism and data reuse. We survey
the architecture of DNNs and analyze its computing and deployment requirements on
edge platforms (Section 2). We then introduce the popular edge computing platform—
FPGA, and compare it with others like GPU, ASIC, MCU (Section 3). After discussing the
architecture of DNNs and characteristics of platforms, acceleration strategies are studied
(Section 4) and technical routes are analyzed (Section 5). Existing challenges are presented
for future work (Section 5). Finally, we conclude our paper (Section 6).

2. Architecture of Deep Neural Network

Deep Neural Networks (DNNs) have been developed many categories, based on their
targets and architectures. Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are two forms of DNNs with different architectures. The architecture and
parameter of DNNs are two main topics in the discussion of deployment on edge platforms.
The parameter determines the computing form in the networks. For example, the weight
and input of one cell are eight bits wide fixed-point numbers, single 16× 16 multiplier
in FPGA can perform multiply operations twice in one clock cycle if the results need to
be accumulated. Other edge platforms roughly follow the same rule. The architecture of
DNNs is the significant factor about programming. Whatever acceleration strategies are
adopted, whole program must be the reflection of network architecture. This part we study
the basic architecture of DNNs and their implementation requirements.
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2.1. Convolutional Neural Network

The typical architecture of CNN comprises convolutional layers, pooling layers, acti-
vation function, batch normalization, dropout and fully connected layers. These structures
are all related with particular computing methods, so the implementation of these sub-
modules is the basic of acceleration. The convolutional layer is composed of a set of
convolutional kernels where each neuron acts as a kernel [11]. The feature map is divided
into several small blocks by convolutional kernels contain a set of weights and the kernels
are slidden on the map. Main operations in convolutional layer are multiplying weights
with corresponding elements in feature map and accumulating the results. The purpose
of convolutional layer is extracting features from figures. The pooling layer has similar
structures and computing operation to the convolutional layers. The difference are the size
of convolutional kernels and the sliding step size. The function of pooling layers is to sum
up similar information in the neighborhood of the receptive field and output the dominant
response within this local region [12]. Activation function follows after convolutional
layers and adds non-linear characteristic into feature combination. The convolutional
layer and pooling layer are just multiplication and accumulation, which means they are
linear process and cannot approximate nonlinearity. However, nonlinearity exists widely
in reality scenario so activation functions such as sigmoid, tanh, maxout, SWISH, ReLU,
MISH are introduced after convolutional layers to perfect the approximation ability of
CNN. Batch normalization is adopted to solve the problem about the internal covariance
shift in feature maps which causes slow convergence. Batch normalization unifies the
distribution of feature-map values by setting them to zero mean and unit variance [13].
The computing operation of this process is different from others above so new computing
module needs to be designed. Dropout skips some connections and units randomly to
improve the generalization of CNNs. It is important and efficient in training, not inference,
as well as acceleration design. Fully connected layer is introduced at the end of the network
to serve as a classifier. Different from the convolutional layer and pooling layer, which are
partial processes, the fully connected layer takes input from feature extraction stages and
globally analyses the output of all the preceding layers [14]. Nevertheless, the computing
structure is still convoluted.

In conclusion, the computing operations in CNN can be divided into three categories—
convolution, activation function and batch normalization but the inner connections of
convolution vary from different layers and requires diverse implementation strategies.

2.2. Recurrent Neural Network

Recurrent neural networks are feedforward neural networks augmented by the inclu-
sion of edges that span adjacent time steps, introducing a notion of time to the model [15].
The connections between adjacent time steps are called recurrent edges, which form cycles
connecting from a node to itself across time. The architectures of CNNs and RNNs are
similar, including convolution layers, pooling layers, activation functions, and so forth.
The difference is in the hidden layer, where the output of the neuron will be saved and
transmitted to the next time step with a special weight. Figure 1 shows the comparison
of CNNs and RNNs. Recurrent edges are exhibited in Figure 2 but the real implemen-
tation would be more complex. Take Long Short-Term Memory (LSTM) as an example,
the memory cell which performs the function of connect adjacent time steps consists of
input node acting as activation function for each time step, input gate deciding maintained
new information, internal state keeping constant error, forget gate deciding maintained
history information and output gate serving as the output of current time. The complicated
architecture of recurrent edges leads to harder acceleration methods than CNNs.
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(a) CNN Structure (b) RNN Structure

Figure 1. Comparison of two networks. (a) is the typical structure of Convolutional Neural Network
(CNN), including Input Layers, Hidden Layers, and Output Layers. (b) is the structure of Recurrent
Neural Network (RNN). Compared to (a), the Recurrent Edge is introduced to connect a Hidden
Layer to itself across time.

Figure 2. A Detailed demonstration of Recurrent edges. Results of last time are transmitted in the
network and contribute to the values of next time by special weights.

2.3. Implementation Requirements

According to the analysis of the architectures of CNNs and RNNs, complicated data
routes versus unmatched hardware topology and heavy memory use versus limited on-chip
memory space are the contradictions which cause implementation difficulties. Since data
routes/connections are complicated and hardware cannot effectively implement them without
optimization, we need to split the connections into small pieces and designing processing
module will be easier. The performance can be better if parallel computing is adopted in the
pieces. Pruning is an additional and no-conflict method because it can reduce the connections
by cut them away. However, other than splitting, performance degradation appears due to
pruning. The memory use in hardware relates to more limitations. Firstly, on-chip memory is
too small to meet the whole model requirement. Secondly, bandwidth and read-write speed
(usually determined by clock frequency) are taken into consideration if leveraging off-chip
memory. So, it is better to read a part of data into on-chip memory and make all use of it and
throw it away without future call. Combining above two method, we can realize an efficient
implementation architecture of DNNs on edge platforms. Problems of parameters will be
introduced in the Section 4 along with quantization and computing complexity.

3. Resource-Limited Platform

Besides the architecture of DNNs, the platform of acceleration is another significant
module. This part we research four kinds of platforms—FPGA, GPU, ASIC and MCU.
They all resource-limited and require optimizations for network implementation. The
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advantages and disadvantages of each platform are taken into account to conclude the
trends of acceleration strategies on them.

3.1. FPGA-Based Acceleration

FPGA shows tremendous potential for NN acceleration because of its programmability,
enabling the developers to consider both the logic and the algorithm and implement
specific logic for target computation. For typical FPGA-based accelerators, there are two
architectures, SoC FPGA and standard FPGA. Figure 3 shows their structures. All FPGA
accelerators consist of two parts, FPGA and CPU. The difference is whether the FPGA and
CPU are arranged on one chip. CPUs are commonly ARMs in edge scenarios.

CPU Portion FPGA Portion

ARM MPU Subsystem

Memory 

Controllers

On-chip 

Memories

PLLs Peripherals

CPU-FPGA

Interfaces

FPGA Fabric

(LUTS, RAMS, 

Multipliers e.g.)

PLLs

HSSI 

Transceivers

Memory 

Controllers

User I/O

(a) Soc FPGA

Host

(CPU)
FPGA

Host

Memory

FPGA

Memory

PCIE

Ethernet

AXI bus

……

(b) Standard FPGA

Figure 3. Two FPGA architectures. (a) is Soc FPGA which combines both FPGA and GPU in the same
package. (b) is standard FPGA. The logic module and computing module are separated. In edge
scenarios, both sorts are usually designed in only one board with other functional modules, but they do
have differences in resources and bandwidth due to their diverse connection pattern and packages.

Both CPUs and FPGAs work with their own external memory and can access each
other’s memory through inner connections. The SoC FPGA provides a higher inner band-
width between the CPU and FPGA, while the standard FPGA offers more logic and clock
resources. However, the connections between FPGA and ARM are not an important factor
to acceleration performance. ARM module cannot afford massive computing operations, so
it serves as a switch to launch the whole system and provides some non-linear computing
capabilities such as non-maximum suppression. FPGA module is a programmable device
which provide many multiplying units and on-chip memory resource. All computation is
executed on FPGA. During the calculation, ARM can also shift the index address of input
or output data according to the computing steps and transmit it to FPGA. Furthermore, the
on-chip storage of both platforms is too small to reach the requirements of popular NN
models. Thus, the measurement of choosing which platform relies on performance and
resource of chips on it rather than structures in generic scenarios.

It is necessary to introduce external storage units or develop massive FPGAs such as
Virtex UltraScale+ VU19P launched by Xilinx or Stratix10 GX 10M announced by Intel. Until
now, developers have still worked on common FPGAs with few resources. Table 1 presents
the latest accelerator designs on FPGA-based platforms and compares their performance.
In general, FPGA-based designs have achieved outstanding energy efficiency, which is
important in mobile and edge applications. However, the speed still needs to be improved.
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Table 1. Performance comparison of state-of-the-art FPGA-based accelerator designs.

Models Quantization Speed (GOPS) Energy Efficiency (GOPS/W) Platform

ESE [16] 12b 282.2 6.9 XCKU060
C-LSTM [17] 16b 131.1 6.0 Virtex-7

DeltaRNN [18] 16b 192.0 26.3 XC7Z100
BBS-LSTM [19] 16b 304.1 15.9 Arria 10 GX1150

Synetgy [20] 4-4b 47.09 8.56 Zynq ZU3EG
DoReFa-Net [21] 2b 410.2 181.5 ZC702
XNOR-Net [22] 1b 207.8 44.2 ZC702

As is summarized in Section Section 1, strategies taken in FPGA-based acceleration
follow five guidelines—computing complexity, pruning, quantization, computing paral-
lelism and data reuse. Computing complexity can be reduced by shift operation, look-table,
approximate computing, stochastic computing and Winograd algorithm. The adoption of
special instruction sets such as RSIC-V or ISA is also helpful. Pruning in FPGA acceleration
mostly focus on structural methods because irregular tunnels are incompatible with the
design philosophy of FPGA. Quantization tends to transform long float-point data to short
fix-point one due to the gap between the computing burden of two data forms. Computing
parallelism and data reuse are methods taken in accelerator design. The typical rule in
acceleration is to make the best of on-chip memory and minimize data transmission from or
to off-chip memory. If data transmission is inevitable, bandwidth should be fully utilized.
We elaborate these methods as well as relative samples in Section 4.

3.2. GPU-Based Acceleration

GPUs are still the most widely used processors in neural network development. A
typical GPU consists of many of arithmetic logic units (ALUs) for data processing and a
few caches for data retransmission. Controllers merge multiple data accesses into fewer.
GPUs can afford massive, parallel and pipelined computation which is important in DNN
inference. Meanwhile, the high parallel structure and high inner bandwidth of a GPU
determine its excellent performance in DNN training processes. However, common GPUs
is not a good choice for edge application due to high power consumption, large space
requirement and severe thermal design.

In addition to common GPUs, embedded GPUs have become the other development
platforms because of the limits of applications of common GPUs in mobile scenarios. Taking
the NVIDIA Jetson TX2 as an example, Figure 4 shows the structure of the TX2. The GPU
core in Jetson TX2 is small and have low complexity, enough for network inference but
hard to train DNNs on this platform. Jetson TX2 can afford 1.3 TFLOPS (Tera Floating-point
operations per second) with single precision floating point data.
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Figure 4. Jetson TX2 architecture. There are three main module: CPU(ARM), Pascal GPU, Memory.
Computing is operated on CUDA cores.
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Acceleration on embedded GPUs centers on lightweight design of network, namely,
quantization and pruning. Unstructured pruning is still ineffective on the GPUs, just like
on FPGAs. Nevertheless, quantization methods are unlimited because of professional
floating-point units (FPUs) in GPUs. But the units support different precision floating
point numbers so consideration about data format is necessary. The deployment of DNNs
on embedded GPUs, as well as the acceleration strategies, relies on frameworks such as
Tensorflow, Pytorch, which lead to short development times and less program difficulty,
compared to FPGAs.

3.3. ASIC Acceleration

ASIC designs can achieve higher efficiency than FPGA-based accelerators but require
a much longer development cycle and higher cost. They are optimized for particular
algorithms or even specific computational operations. Well-known ASIC products include
TPU [23], DianNao series [24–27], and so forth. Table 2 shows some of the latest ASIC
accelerators and their performance.

Table 2. Performance comparison of state-of-the-art FPGA-based accelerator designs.

D.Han [28] TPU-V2 PDFA [29] Eyeriss [30] Envision [31] UNPU [32] Sticker [33] SNAP [34]

Technology (nm) 65 20 65 65 28 65 65 16
Frequency (MHz) 200 \ 50–200 100–250 200 5–200 20–200 33–480

Power (mW) 126 225000 168 235–332 7.5–300 3.2–297 20.5–248.4 16.3–364
Data Width INT13,16 bfloat16 INT13,16 INT16 INT1-16 INT1-16 INT8 INT16

Peak Throughput (GOPS) 51.2 45000 129.5 42.0 408 345.6 102–5638 \
Area (mm) 3.52 \ 5.76 12.25 1.87 16 7.8 2.4

Energy Efficiency (GOPS/W) 406.4 200 770.8–1321 126.5 260–10,000 3080 411–62,100 21,550

The development time and difficulty of ASIC platforms are far beyond embedded
GPUs or FPGAs. The co-design of hardware and software makes ASIC chips the most effi-
cient platform with relatively smaller areas. Meanwhile, the co-design, which is maturely
realized on embedded GPUs by development frameworks and can be realized through
Integrated Development Environment (IDE) on FPGAs (FPGAs act as customize platform
that can build specific circuits by code), in ASIC demand developers with professional
hardware and software knowledge. In general, ASIC is a good choice for commercial and
industrial application rather than explorative research.

3.4. Microprogrammed Control Unit Acceleration

Microprogrammed Control Unit (MCU) is another striving direction in hardware
acceleration. MCUs have been widely promoted in various application because of cheap
cost and stable performance. Namely, deploying and accelerating DNNs on MCUs is the
most economical choice. However, MCU, just like its name, Sis good at controlling rather
than computing. Complicated logic control units, large cache and high clock frequency
guarantee that MCUs can execute multi processes in short latency. Meanwhile, limited
floating point units lead to poor computing performance. So lightweight networks are
suitable for MCUs. Quantization on MCUs aims at fixed point data with short bit width to
reduce computing burden. Structured pruning is also helpful on MCUs. NNoM [35] is
proposed as a framework to effectively implement neural networks on MCUs. Evaluating
the development time and difficulty of DNN deployment on MCUs is hard on account of a
lack of published works but we consider it as a relatively simple task without potentiality
bounded by hardware resource.

3.5. Why Choose FPGA

After discussing all these resource-limited platforms and barriers in acceleration,
we are going to illustrate why we prefer FPGA as acceleration platform. Five aspects
are taken into account including—development time (t), development difficulty (d), cost
(c), flexibility ( f ), throughput (p). In fact, these indicators vary in different designs even
they are in the same hardware, not to mention that ASIC platforms are actually different
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hardware chips each. Our comparison relies on our research which could be imperfect and
reaches compromise, qualitative standards among diverse designs.

Development time. The development time of ASIC is the longest without doubt. Then
is FPGA. Embedded GPU and MCU is similar if mature frameworks are adopted.

Development difficulty. ASIC is still the first in this aspect due to its complicated
design process combine hardware and software. FPGA is the next. MCU is the third one
because of its limited hardware resource. Embedded GPU is the last.

Cost. It is obvious that MCU is the cheapest among four categories. Embedded
GPU is the second one after mass production. FPGA is a little expensive if we need
high performance. Dedicated chips have the potential to become economical if be mass-
produced. However, ASIC is now still an expensive, rare choice.

Flexibility. FPGA is the most flexible device due to its programmability. Embedded
GPU, MCU and AISC are all immutable designs so the flexibility of them is limited.

Throughput. As is shown in Tables 1 and 2, ASIC and FPGA share approximate
performance level. Embedded GPU shows excellent capacity of computing floating point
data. MCU, limited by poor computing resource, has poor throughput. Figure 5 intuitively
compares these platforms and illustrates merits and demerits of each kind chip.

Figure 5. Comparison of platforms on five aspects. FPGA shows great merits in Flexibility, which
is important in further research. Other platforms also show excellent performance in accelerating
neural network inference, but mainly rely on developed frameworks.

Based on Figure 5, we summarize our reasons for choosing FPGA. Firstly, the pro-
grammability of FPGA, namely flexibility, shows compatibility of diverse algorithms and
acceleration strategies. Secondly, the development time and difficulty are moderate, not a
circumstance to ASIC. Thirdly, throughput of FPGA is enough for network deployment,
even though it is not up to embedded GPU. Although the price of high-performance FPGAs
is not very cheap, we think it is acceptable considering its benefits.

4. Computing and Memory Oriented Accelerating

In this part, we expound how the architecture and parameter of DNNs determine the
acceleration strategies on FPGA-based platforms. The parameter determines the computing
form in the networks while the architecture of DNNs is the significant factor of program
structure. Illustrating from five points: computing complexity, pruning, quantization,
computing parallelism and data reuse, we refer to the latest works of other developers,
summarizing and comparing different methods.

4.1. Reducing Computing Complexity
4.1.1. Multiplication Optimization

The computing complexity comes from multiplications in network inference, so it is a
direct optimization to replace or remove part of multiplications. In [20], the authors propose
DiracDeltaNet, which is based on ShuffleNetV2, where all of the 3× 3 convolutions and



Electronics 2021, 10, 1025 9 of 25

3× 3 depth wise convolutions are replaced with shift operations and 1× 1 convolutions.
The shift operators aggregate spatial information by copying nearby pixels directly to the
center position [20]. A 3× 3 convolution needs to traverse 9 points. If the number of
channels is greater than 9, in order to traverse the information of all pixels, they divide
channels into 9 groups and adopt the same shift in each group, while the rest channels
choose the center point. However, the contribution of each channel to the output in this
approach needs to be evaluated according to the model and data set. An ideal allocation
should consider not only the redundancy of features but also the contributions of each
shifted feature.

Baluja et al. [36] eliminates all multiplications and float-point operations by deploying
a precomputed multiplication table. The authors receive |A| activations after quantizing
nonlinear activation functions and confirm |W | weights in the neural network. Then,
they compute all of the multiplications and store the results in a A×W table. Figure 6
shows the working process. According to the input of the layer, we can calculate the
index and find the multiplication results in a simple 1D array. This approach does avoid
the consumption of processing elements, but it presents new challenges for both storage
and index by requiring scaling of the boundaries of the multiplication table in the face of
different activation functions, and by calculating more multiplication tables if different
quantization of weights is adopted.

bit-shift(>>s)

0 1 1 1 2 2 3 3 4 4

add all the 

inputs to 

the units

bit shift to remove least significant s bits

Index into a single location in the activation table and return the stored activation index

weights

ac
ti

v
at

io
n

s

index offset 

Stored Multiplication Table

(last row is for bais, last column is for final layer output) 

Figure 6. Using a stored multiplication table to avoid multiplication [36]. Calculations are trans-
formed into search operations, which obviously reduces computation.

4.1.2. Approximate Computing

The rising performance demands are expected to outpace the growth in resource
budgets; hence, over provisioning of resources alone will not solve the conundrum that
awaits the computing industry in the near future [37]. Approximate computing (AC) has
become a promising method for solving this problem. In [38], the authors propose an AC
strategy that trains a neural network to mimic an approximable code region. This method
enables the compiler to invoke a low-power NPU to replace the original code. In [39],
the researchers present a technique to accelerate approximable code regions on limited-
precision analog hardware by a NN approach. ApproxANN [40] considers the impact
of each neuron on the output quantity and energy consumption and obtains a criticality
ranking, whereas unimportant neurons have higher priorities for approximation. Then,
the authors use iterative heuristics to decide the number of neurons to be approximated
and the approximation strategy. A method is proposed in [41] to transform any given
neural network to an approximate neural network (AxNN) and a quality-configurable
neuromorphic processing engine (qcNPE) to execute the AxNNs. Xu et al. adopt iterative
training in the quality control of approximate computing. They propose an optimization
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framework to coordinate the training of the classifier and accelerator with a judicious
selection of training data [42]. In [43], a new method of approximate computation is
introduced, namely, dynamic-voltage-accuracy-frequency-scaling (DVAFS), which can
dynamically balance the energy and accuracy. DVAFS reuses inactive arithmetic cells under
reduced precision to improve the energy efficiency.

4.1.3. Stochastic Computing

Stochastic computing (SC) is a very unique algorithm that represents and processes
information in the form of digitized probabilities [44]. It has low computational complexity
but needs long computation times and shows low accuracy. Figure 7 shows a demonstration
of SC. The data in SC are coded as the probabilities of observing a 1 at a bit-stream with
a given length. The output of the AND gate is the product of two probabilities if two
bit-streams are suitably uncorrelated or independent. So, improvement of the accuracy of a
stochastic computation requires an exponential increase in the bit-stream length as well as
the computation time. A high degree of error tolerance is another feature of SC, especially
for transient or soft errors caused by process variations or cosmic radiation [44]. Changing
a single bit of output, as shown in Figure 7b, the result would not change greatly because
each bit of the output in SC enjoys the same weight.

Stochastic computing can radically simplify the hardware implementation of arith-
metic units and has the potential to bring the success of DCNNs to embedded systems [45].
SC-DCNN [46] is the first framework that applies SC to DNN, according to the authors.
They propose the most efficient implementations of SC to inner product/convolution,
pooling and activation functions. For example, they replace the conventional AND gate
of SC to a 16-bit approximate parallel counter (APC) in order to improve the accuracy;
they split each of four bit-streams into several segments and infer the largest bit-stream
according to the largest segment of the four candidates in order to reduce the latency of
the pooling; and they adopt Btanh as an activation function to address different bit-stream
lengths. In [47], near-zero weights is removed to improve the accuracy of SC when it was
adopted in a DNN. Their experiments show that the XNOR operation, which represents
multiplication in bipolar encoding, causes a very large error if the near-zero weights are
introduced into the computing. They also scale the weights to a large range in such a way
that the weights would become far from the zero center.

SC is also inefficient with storage; thus, some researchers convert bit-streams into bi-
nary numbers to avoid the overhead of SC and reduce computing time. BISC-MVM [48] has
been developed by introducing a novel stochastic number generator (SNG). By simplifying
and restructuring the computation process from BN-to-SN conversion to an SC process and
to SN-to-BN conversion, the authors apply this method in DCNN acceleration, reducing
the computing time. In [45], authors introduce normalization and drop-out to the SC-based
DCNN framework. The authors use an approximate parallel counter, a near-max pooling
block and an SC-based rectified linear activation unit to extract the features and propose
a novel SC-based normalization design. Researchers have found that SC multiplication
would be more accurate after logarithmic quantization and integrates SC and logarithmic
quantization [49]. SkippyNN [50] proposes a differential multiply-and-accumulate unit
called the DMAC to reduce the computation time of SC-based multiplications in convo-
lutional layers. In the SC domain, the computation time of this product is determined by
the length of the bit-streams. For example, xj × wj takes wj clock cycles in BISC-MVM [48].
Thus, SkippyNN uses ∆w = wj − wi in the calculation to reduce the computation time.
The weights are reordered in ascending order so that ∆w < wj.
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0,1,1,0,0,1,1,0 (4/8)

1,1,1,0,1,1,0,1 (6/8)
0,1,1,0,0,1,0,0 (3/8)

(a)

0,1,1,0,0,1,1,0 (4/8)

1,1,1,0,1,1,1,0 (6/8)
0,1,1,0,0,1,1,0 (4/8)

(b)

Figure 7. A demonstration of stochastic computing. (a) is an accurate computing process of two irrelevant number. By contrast,
(b) shows an incorrect value but not the result see a great gap to the accurate one, which means the effects will be negligible.

4.1.4. Winograd: Fast Convolution Algorithm

The Winograd algorithm was first discovered by Toom [51] and Cook [52] and it was
generalized by Winograd [53]. In [54] this method was introduced into neural networks. The
Winograd algorithm can decrease multiplications in the convolution at the cost of increasing a
small number of additions and shifts which shows great potential for hardware accelerators
because most hardware can perform addition by consuming negligible logic and power
resources. In [55], researchers propose the application of Winograd on FPGAs. To minimize
the bandwidth requirement, they design a line-buff structure that caches the feature map for
the Winograd algorithm to reuse the data and propose an efficient Winograd PE to enhance the
parallelism during the convolution operation progress. UniWiG [56] is a unified architecture
that can accelerate Winograd-based convolution and general matrix multiplication (GEMM)
on the same process elements (PEs). Previous studies, such as [55,57,58], all design especially
designed PEs for Winograd-based convolution, which means that the CONV layers and
FC layers need separate PEs, thus leading to heavy resource utilization. Moreover, the
Winograd algorithm is mostly used to accelerate convolutions with a small kernel size, and
large kernels need direct convolution. UniWiG transforms the Winograd operation into matrix
multiplication by a blocked Winograd filtering algorithm in order to perform the GEMM and
Winograd algorithm on the same data path.

4.2. Increasing Computing Parallelism
4.2.1. Loop Unrolling

To increase the parallelism of computation, the basic strategy is loop unrolling. Loop
unrolling is a multi-dimensional expansion of convolution operation. It can be divided into
four categories—unrolling convolution kernel, unrolling input channel, unrolling output
feature map, unrolling output channel. Though all of these methods utilize the parallelism
in network inference, only unrolling convolution kernel and unrolling input channel are
commonly used considering their combination with data reuse.

Figure 8a demonstrates the process of unrolling convolution kernel. The width and
height of th kernel is kx and ky. After initialization, the multiplication of kx× ky weights
and features are parallelly performed in a single cycle and accumulated to get intermediate
results which are stored in on-chip memory. The final results are restored in off-chip mem-
ory and will be transmitted to on-chip memory when involved in subsequent computing.

…
…

…
…

Input Pixels

Kernel Weight

(a) Unrolling convolution kernel

Input Pixels

Kernel Weight

…
…

…
…

(b) Unrolling input channel

Figure 8. A demonstration of loop unrolling. (a) is the method of unrolling convolution kernel. The
parallelism is developed according to the size of kernel. (b) explores the parallelism in the channels
of the input map.
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Figure 8b shows the expansion of the input channel. Pixels in the same region of
each channel multiply the relative weights in the kernel in a single clock cycle. Whole
convolution operation needs all pixels in feature map are traversed. We can accomplish
it with two approaches—feature map precedence or kernel weight precedence, which
determine whether we calculate all multiplications about one pixel then move to the next
or we prefer to completely utilize one weight and never require it afterwards. We will
expound the options and relevant conditions in the part of data reuse.

4.2.2. Pipeline

Another path to realizing high parallelism hides in the loop processing during infer-
ence. Single loop contains the data read and write. The generic approach only performs
an operation in one clock cycle. Therefore, at least eight clock cycles are needed to com-
plete 3 loops. A method called pipeline are introduced to read, write and calculate at
the same time, which can improve the effective utilization rate of bandwidth and data
storage. In [59], three versions of pipeline are presented: single loop optimization, nested
loop optimization and array partition optimization. Figure 9a is the common flow of loop
processing with three steps—reading, computing and writing. Figure 9b shows how a
pipeline reduces processing time from 8 clock cycles to 3 by executing reading, computing
and writing simultaneously. Nested loop optimization adopts a strategy named rewinding
to deal with nested loops. When the first loop is finished, there will be an idle period
for reestablishing a new reading and writing operations for the next loop. Therefore, we
rewind the address from end to start in advance before the first loop finished and preload
the data for the next loop. In this way, the first and second loop are connected just like
a single one. When the above methods are employed, the inner bandwidth of on-chip
memory becomes a bottleneck. Only one element can be updated form BRAM in one clock
cycle. If one loop is much longer than others, it would make other computing to wait
for its accomplishment. On account of this phenomenon, array partition optimization is
introduced to loop processing, where a single loop is divided into two part and processed
in two data routes. It can decrease the inner-layer latency obviously. Other methods such
as dataflow, ping-pong operation follow the same guideline.

RD CMP WR RD CMP WR RD CMP WR

3 cycles

8 cycles = 3 loops

(a) Without pipelining

RD CMP WR

RD CMP WR

RD CMP WR

1 cycle

4 cycles = 3 loops

(b) Single loop optimization

WR0

CMP WR1

RD2 CMP WR2

RDN CMP WRN

First Loop
RD0 CMP WR0

RD1 CMP WR1

RD2 CMP

RDN

Second Loop

Switch to next loop 

without latency

(c) Nested loop optimization

RD0 WR0CMP0RD0 WR0CMP0

RD2 WR2CMP2

RD1 WR1CMP1RD1 WR1CMP1

RD4 WR4CMP4

RD3 WR3CMP3

RD5 WR5CMP5

(d) Array partition optimization

Figure 9. Comparison of processing with and without pipeline [59]. Pipeline can increase the efficiency and speed of the
computing process, especially there are sparse hardware resources. According to the application situation, the method can
be divided into three categories: single loop optimization, nested loop optimization, and array partition optimization. These
techniques can be combined.

4.2.3. In-Memory Processing

In-memory processing (IMP) is a newly developed technology which is suitable for
parallel computing. The computation is moved from digital logic to analog domain. The
application of IMP in hardware acceleration can be divided into several types—one type
is using the inherent dot-product characteristics of the crossbar architecture to accelerate
matrix multiplication [60]; another type is to utilize the analog nature of eNVMs to imple-
ment a neuromorphic network; and the third type is to avoid ADC/DAC blocks in the
IMP by implementing logic using memristor switching. Most IMP technologies depend
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on emerging nonvolatile memory technologies (eNVMs), such as phase change memory
(PCM) [61] and resistive RAM (RRAM) [62], especially RRAM which has been wide used.

RRAM becomes a promising solution in the implementation of CNNs on embedded
platforms because of its capacity for calculating the matrix-vector product with high
precision [63], high parallelism and the characteristic of energy efficiency. RRAM devices
are able to support a large number of signal connections within a small footprint by taking
advantage of the ultra-integration density [64]. RRAM can realize a resistive cross-point
structure called the crossbar. The RRAM crossbar can store weights as conductance values
of cells, and feature maps are converted into input voltage signals. The output feature
maps can be read out through the accumulated currents on the bitlines. Figure 10 shows
the basic structure of the RRAM crossbar and the operations on it, which are elementary
units in the computing process. The crossbar and operations on it are independent. M× N
times M-V products which replace multiplications can be performed concurrently and
intermediate results are the accumulated currents on the bitlines. RRAM offer concurrent
computing ability based on its circuit configuration while methods we proposed above
center on program structure. Namely, they are orthogonal because those methods are
software design, but RRAM is an excellent hardware module for realizing them. FPGA
and RRAM are also compatible.

……

…
…

1 2 M

1

2

N

crossbar

……

…
…

(a) M-V product

……

…
…

1 2 M

1

2

N

crossbar

……

…
…

selected 

crossbar

(b) Memory write

Figure 10. RRAM crossbar and the basic operations on it [64]. All the operations are realized by the
changes of voltage signals.

There are several challenges while applying RRAM in NN accelerators. It mainly
suffers from two challenges: parametric variation and switching variation [65]. Parametric
variation is caused by imperfect fabrication such as line-edge roughness, oxide thickness
fluctuations and random discrete dopants [66]. Switching variation is due to driving
circuits. Any changes in the current or voltage during programming would cause a large
variation in the resistance. Consequently, the resistance of a memristor might not be
changed as required. In [67], researchers present a fault-tolerant training method as well as
an online fault detection system for RRAM-based neural network adaption. Researchers
avoid mapping the large-weight synapses to the abnormal memristors by deriving a
weight-memristor mapping for variations and defects [65].

In addition to the fact that faults can occur during implementation, there is divergence
between NN networks and RRAM structures. First, RRAM is used as an analog computing
device, and it is difficult to directly store large amounts of analog intermediate results, while
some other functions in the CNN, such as max pooling, are difficult to implement in analog
circuits [64]. Therefore, the analog-to-digital converters (ADCs) and digital-to-analog
converters (DACs) are necessary for RRAM, which causes more than 98% consumption of
power and area. In [64], the DACs are eliminated by quantizing the data between the layers
into single bits and reduces the employment of ADCs while merging the results of RRAM
crossbars by using quantized data as selection signals. Second, RRAM crossbar-based
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architectures cannot take advantage of the sparsity of neural networks since RRAM is
a dense device. In [68], researchers propose a neural network computation architecture
called SNrram, which is based on RRAM to leverage the sparsity in both the weights and
activations. In [69], researchers present MaxNVM, which is a codesign of sparse coding
and eNVM technologies (i.e., RRAM). The authors find a balance between the density
and reliability.

4.3. Data Reuse
4.3.1. Loop Tiling

In addition to computing, we must allocate the on-chip memory reasonably. Due to
cost and other factors, the on-chip memory is commonly not large enough to meet the
requirements of storing all the weights, input feature maps and intermediate calculation
results on the chip. Therefore, data must be stored in off-chip memory but there is a big gap
between bandwidth of off-chip and on-chip memory. In the convolution computation, the
problem of reading off-chip memory is involved both in and between layers. In the layer,
blocks of weights or pixels need to be read from off-chip memory and intermediate should
be stored in on-chip memory while final results are stored in off-chip memory (determined
by memory space) and reload from it if used. Between the layer, we have to load the new
pixels and weights of next layer which are saved in off-chip memory. In order to avoid
the network inefficiency caused frequent memory reading and writing, efficient memory
architecture design and reasonable data reuse are necessary.

Loop Tiling is the basic strategy. As is shown in Figure 11, the input feature map is
divided into blocks of Tix× Tiy size and kernel weights are in Tkx× Tky blocks. Only Ti f
input channels and To f output channel are taken into account in a single part of whole loop.
After the loop is partitioned, input feature maps and weights of block size are respectively
read and stored on the chip during calculation. In order to reduce the reading and writing
times of off-chip storage to the greatest extent, it is necessary to carry out data reuse after
block circulation, and the choice of data reuse needs to be considered comprehensively
according to block size and block calculation times. In addition, as we mentioned above, the
block loop after cyclic partitioning can also apply a higher-level flow design like pipeline
or dataflow to improve the parallelism of elements reading, computing, and writing.

Input feature map

Tix

Tiy

Tif

Tif

…
…

Tof

Tkx

Tky

kernel

Tox
Toy

Tof

Output feature map

Figure 11. Loop tiling. Every time only a share of input feature map is introduced into computing.
Hence, the convolution kernels are split into small slices and only a small part of output is calculated.

After introducing loop tiling, another choice appears. We have the final results of
several regions in the layer and start to calculate the next part. Whether should we wait the
whole layer finished or we just start to calculate the next layer with existing results along
with the next part of current layer? The answer depends on the resource consumption and
bandwidth requirement of current layer. The key point is that only calculating a single layer
needs to write results back to DRAM which could be directly transmitted and used in the
next layer. If parameters are huge, such as the first and second layer, and the rest resource
can afford the computing of the next layer, we should start the next layer to save bandwidth.
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If the layer is small with more kernels and channels, namely huge potential parallelism
with fewer parameters, starting the next layer is a not wise attempt. Furthermore, if the
bandwidth cannot reach the requirements of the first case (we need to write intermediate
results to BRAM and final results back to DRAM) and on-chip memory is big enough (the
second case requires results for next layer computing, so they are stored in BRAM), the
second scheme is better.

4.3.2. Parameter Reordering

When the block inputs are load into chip, latency exist owning to discrete memory
access since we initialize parameters and stored them in the order but in usage, they are not
continuous due to loop tiling. So, reordering the parameters as we required can improve
the utilization efficiency of bandwidth. Figure 12 demonstrates the flow of parameter
reordering. Inputs whether pixels or weights are saved in the order of they are gathered not
in the logic order. The continuous access to DRAM (commonly serves as off-chip memory)
determines large burst length, namely, high bandwidth.

Figure 12. Parameter reordering. According to loop tilling, only a small share of input map is introduced.
Thus, the sequence of the feature map can be reorganized to speed the process of memory reading.

4.3.3. Near-Memory Process

The long data path of reading or writing is another cause of latency in memory access
which makes near-memory process (NMP) an effective strategy. Fundamentally different from
IMP, the underlying principle of NMP is processing in proximity of memory—by physically
placing monolithic compute units (GPU, FPGA, ASIC, CPU and CGRA) closer to monolithic
memory—to minimize the data transfer cost [60]. Previous work, such as EXECUBE [70]
and DIVA [71], is not being widely applied due to the cost and manufacturability of the
implementation. Along with the progress in die stacking technology, the challenges in NMP
have been alleviated, and newly developing memories contribute to the application of NMP
in the hardware acceleration of neural networks. TensorDIMM [72] is a NMP architecture
for embeddings and tensor operations. This method gathers tensors in “near-memory” and
copies a single, reduced result to GPU memory, which can reduce the latency of the gathering
as well as the size of the data transmission. Moreover, commodity DRAM devices are still
leveraged in this method, so the cost and manufacturability are acceptable.

In [73], authors concentrate on accelerating the training in hardware accelerators. The
authors propose a near-memory acceleration engine called NTX, which is an FP streaming
coprocessor on TCDM. Combining NTX with a general RSIC-V processor core on a TCDM
that provides a shared memory space with single-cycle access, this method is proven to
require less area and power consumption as well as less latency.

These considerations are based on ideal conditions. In practice, the storage read
latency, data transmission latency, time consumption of computing exists, and the existence
of such factors makes optimization more complicated. How to use pipeline covering the
time delay, maximum bandwidth utilization and processing elements, minimize the latency
in the accelerator? It is hard to give the optimal decision and various factors in the actual
situation require deliberateness and experiments.
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4.3.4. Reconfigurable Convolutional Kernels

The reconfigurable convolutional kernel is proposed in [74]. The authors find that inter-
val parameters in a convolution do not change over a long time in weight stationary CNNs,
which provides feasibility in adopting reconfiguration. This work presents a scheme that
uses a variant of Chapman’s KCM technique [75], fast LUT -based reconfiguration [76,77],
pipelined compressor trees [78,79] and faithful rounding [80]. The authors construct their
reconfigurable architecture based on LUTs, which is the fundamental unit in FPGAs. The
reconfigurable cell consists of two LUTs controlled by the same input. One of the LUTs is
called shadow LUT, which means that it is not involved in current calculations and can
be activated in a single clock cycle. The reconfigurable time can be ignored if it is faster
than the convolution operations with the same parameters, and results can be achieved by
switching the select signal during the computation. However, more memory resources are
required. This method provides a new direction of data reuse.

4.4. Pruning

Weight reduction is a common method for making the models sparse. There are
many approaches that have been proposed. One kind is to approximate the weight
matrix with a low-rank representation [1], which has been applied in [81–84], and so
forth. Another method is pruning. By utilizing the inherent redundancy in the neural
network, pruning directly removes weights with small absolute values with negligible
accuracy loss. In [85–87], this solution is applied in different processes, and divergent
pruning criteria can be used for compact networks.

Pruning can be divided into two categories: structured pruning and unstructured
pruning. Unstructured pruning just remove the connections but reserve the neurons. A
neuron will not be deleted if at least one connection exists. The unrestricted sparsity lead to
irregular computation and memory accesses, limiting the realizable parallelism, especially
when the implementation is on FPGAs [19] or GPUs [88]. Unique encoding formats like
CSC, CSR are adopted to optimize memory access. Structured pruning delete unimportant
neurons so the network is still density. This is hardware friendly but the importance of all
connections linking to the removed neurons is difficulty for detailed analysis.

An algorithm combining unstructured pruning and structured pruning is proposed
in [85]. A hardware-friendly compact model is generated. They trim unimportant connec-
tions and neurons according to the weight and size of the output, removing connections
(neurons) if and only if the weight (neuron output) is smaller than a predefined threshold.
Specifically, it is divided into two steps: deleting weights and deleting neurons. They treat
connections with low effective weights as irrelevant and remove them. In each iteration,
only the least important weights (such as the top 1%) in each layer are removed, and then
the entire DNN is retrained to restore its performance. After each iteration of insignificant
weight pruning, if all inputs or outputs of a neuron are deleted, the neuron pruning is
performed to remove the neuron. Furthermore, they propose a local region convolution
algorithm, which allows the convolution kernel to convolve only the regions of the image
of interest. This method drastically reduces the number of Floating-point operations per
second (FLOP).

In [19], a proposed pruning method called “bank-balanced sparsity" is used in the
long short-term memory (LSTM) network on the FPGA platform. In a bank-balanced
sparsity (BBS) pattern, each matrix is split into multiple equal-sized banks, and each bank
has the same number of nonzero values [19]. The relatively large weights would remain
so that the model accuracy can be maximally maintained. Parallelism can also be utilized
inside and between the banks instead of using block sparsity. Figure 13 shows an example
of the comparison of unstructured sparsity, block sparsity and BBS with a 50% sparsity
ratio. As shown in Figure 13, unstructured sparsity selects the smallest number (50%) of
weights globally; block sparsity divides the entire matrix into 8 banks with a 2× 2 size
and represents each bank with their average weight; and bank-balanced sparsity splits
each matrix row into 2 equal banks and fine-grained prunes within every bank. In order to
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realize effective implementation of BBS in FPGA, they put forward the Compressed Sparse
Banks (CSB) encoding format using the balance characteristic of the BBS, eliminating the
need for decoding.
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Figure 13. Comparison of unstructured sparsity, block sparsity and bank-balanced sparsity [19].
Unstructured sparsity selects the smallest number (50%) of weights globally; block sparsity divides
the entire matrix into 8 banks with a 2× 2 size and represents each bank with their average weight;
and bank-balanced sparsity splits each matrix row into 2 equal banks and fine-grained prunes within
every bank.

In [89], the sparsity in Resistive Random-Access Memory (ReRAM) accelerators is
different from that in common methods because of the characteristics of ReRAM. This
kind of accelerator consists of multiple processing engines (PEs) connected with on-chip
interconnects [89]. Each PE is composed of multiple computation units (CUs) that have
multiple crossbar arrays. The acceleration of the convolution and fully connected layers
depends on these crossbars. Weights are stored as conductance values of ReRAM cells, and
feature maps are converted into input voltage signals; the output feature maps can be read
out through the accumulated currents on the bitlines [89]. Therefore, we must find all-zero
rows/columns of a crossbar array for compression and all-zero decomposed input bits of a
crossbar array to exploit the activation sparsity. In [90], ReCom is proposed to regularize
the distribution of zero weights and to find more all-zero rows/columns. In [68], all-zero
filters are used to compress the models. A special method based on k-means clustering is
presented in [91]. Authors exploit the weight and activation sparsity together by practical
fine-grained OU-based computations [89]. In [92], authors put forward an approach that
reduces the computation by the ReLU function.

Generic sparsification exposes several inefficiencies on GPUs [93]. Similar to FPGAs,
GPUs are not optimized for sparse matrices since they have different rows and columns from
the original matrix. It is difficult to partition the workload evenly into GPUs [94]. Second, the
number of nonzero elements in each row is unknown until runtime, which makes it difficult
to choose an optimal tiling scheme for data reuse [88]. Furthermore, the long latency of the
memory access is nonnegligible even if a sparse matrix theoretically has less computation.
In [88], researchers run 2 sparsity on an NVIDIA Tesla V100 GPU, and the result shows that
even if we increase the sparsity to 96%, the sparse layer cannot achieve the same performance
of the dense layer, only 73% of it. Therefore, to realize the advantages of sparsity on GPUs,
we need optimized methods. A pruning methodology called Vector Sparse is presented with
iterative vector wise sparsification and retraining for CNNs and RNNs [88]. Collaboratively
designed with Tensor Core, the ultimate accuracy of Vector Sparse exhibits a negligible
difference between the network having 75% sparsity and the dense network, while Vector
Sparse is 63% faster than the dense counterparts on the GPU CUDA Cores.

ASIC CNN accelerators show higher performance and efficiency than other platform
accelerators, and the sparsity technique can be more individual. Eyeriss [30] uses a power
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gating unit to power off the multiplier when the activation or weight is zero [95]. EVI-
SION [31] adopts the same strategy. The sparsity of the activations and weights can be used
to improve the energy efficiency but not the performance because the total clock cycles
remain unchanged. Eyeriss v2 [96] integrates a new PE architecture that enables sparse
weights and input activations to be handled directly in the compressed domain, resulting
in not only energy efficiency but also throughput improvement. STICKER [33] proposes
autonomous neural network processors and multi-sparsity compatible convolution PE
arrays, routing nonzero results to 2-way memory banks and ultimately realizing high
energy efficiency and computation acceleration at the same time. Moreover, [95] presents
an N-way group association architecture to reduce the output memory overhead in sparse
CNN accelerators.

4.5. Quantization

Quantization is a parameter-level optimization strategy. The influence of parameters
on network inference focuses the speed and precision. The weights and activations are
represented and stored by floating point data in most neural networks, which retains
information but leads to slow computing, especially on FPGA. Replacing this representation
with low-bit and fixed-bit data can not only reduce bandwidth usage and memory storage
space but also simplify the computation and reduce the cost of each operation, nevertheless,
sacrificing the precision. In this part, we discuss three quantization methods: linear
quantization, nonlinear quantization and binary neural networks.

Linear quantization represented the floating points with fixed points. The large gap
between the range of the floating points and fixed points makes most of the weights and
activations underflow or overflow if the nearest fixed points is adopted. Scaling and
biasing factors can avoid this phenomenon by changing the value range of parameters.
In [81], authors indicate that the range of the weights and activations in a single network is
limited and shows a difference between different layers. Thus, the authors adopt diverse
bit widths for the weights and activations according to their layers. Researchers attempt to
maintain a large data width for only the first and last layers, and the middle layers would
be quantized to 3 or 2 bits [97]. However, it is proved in [98] that selecting the same data
width for all of the values in the network, even the width differs in each layer, would not
be a good choice. The authors propose Shape Shifter, which suggests groupings of weights
and activations and uses a specific data width to encode each group, the sizes of which
vary from 16 to 256 values. In addition to shortening the bits of weights and activations, we
can scale the data on the basis of the exponent sign or a logarithm. REQ-YOLO implements
a heterogeneous weight quantization using the alternating direction method of multipliers
(ADMM) [99]. For some convolutional layers, they adopt isometric quantization; for other
convolutional layers, they use the mixed powers-of-two-based quantization. The mixed
weight representation based on two powers consists of symbol bit part and amplitude bit
part. The first bit represents symbol bit, and the last five bits represent amplitude bit. The
product of the input and the weight is the sum of the two shifted values. In [100], they
adopt a logarithmic data representation in the data quantization. This method reduces the
bit width of both the weights and the activations, and it further reduces the complexity of
the processing elements (PEs) and the energy consumption.

Different from linear quantization, nonlinear quantization introduces a look-up table,
assigning weights and activations to binary codes in the table. In [101], researchers use
a hash function to create a look-up table and train the values in it. Weight sharing and
clusters are adopted in data quantization in [102]. Table-based neural units [103] propose
to quantify all parts of the neural networks and replace the activation-weight-multiply
step with a simple table-based look-up. In [104], the authors formulate the weights and
activations quantization operation as a differentiable nonlinear function and explore a
simple and uniform method for quantization. This method achieves lossless results with
only 3 bits of weight quantization on ResNet-18 and obtains slightly better results than
ADMM on object detection tasks.



Electronics 2021, 10, 1025 19 of 25

The binary neural network (BNN) is the result of extreme quantization, where data
can have only two possible values, namely, −1(0) or +1 [105]. The benefit of this method
is that it has less memory storage because all weights and activations are represented by
1 bit. Furthermore, the multiplication operations can be simplified as XNOR or Bit count
operations which shows hardware-friendly properties. The challenge is to optimize the
strategies of model binarization to maintain the model accuracy. In [106], Bi-Real Net is
proposed, which focuses on reducing the information loss by adding a strategy called
Bi-Real. Researchers show that the number of neurons is more influential to the BNN
and improves the performance of a BNN by ensemble methods [107]. Liu et al. propose
that the binarization of the activations is the main cause of the large performance loss
of binary networks and suggest applying multiple binarizations to the activations [108].
In [109], authors takes advantage of BNNs, combining parallel SRAM arrays with BNNs
and proposing HBNN and XNOR-BNN. Binary convolutions are also adopted on SRAM
to accelerate the BNN [110]. The authors present two proposals, namely, one based on a
charge sharing approach to perform vector XNOR and approximate pop count and another
based on bitwise XNOR followed by a digital bit-tree adder for an accurate pop count.

5. Technique Discussion

After discussing various techniques in Section 4, we summarize how to design a tech-
nical route for practical application in this part. As shown in Figure 14, starting from model
and deployment platform (M-P), all techniques are around the base circle and stratified
according to their optimization targets. The inner layers include multiplication optimiza-
tion, approximate computing, stochastic computing and Winograd algorithm, all of which
centers on reducing computing complexity, namely, remove or replace multiplications,
and cannot be employed together. The second layer is quantization. After the computing
format is decided, the length and range of parameters are taken into account. Afterwards,
pruning becomes the third layer, which change the inner connection structure of network.
The mutual effect of quantization and pruning need to be paid attention since they both
influence the precision of network. The fourth layer is IMP and NMP. These technologies
are adopted in hardware designs as optional choices. IMP is a potential way to parallel
computing. NMP can reduce the memory access latency through shortening the data route.
The outermost is about efficient computing and memory access, including loop tiling, loop
unrolling and pipeline. The three strategies can be united. Loop unrolling and pipeline
are basic optimizations but prominently improve the speed of network inference. Loop
tiling is the foundation of data reuse. Reconfigurable convolutional kernels are a special
and optional approach which reuses the data by retaining the state of LUTs concerned to
former computing, at the cost of on-chip resource. Parameter reordering is an optional
optimization method when loop tiling is used.

The technical route can be drawn on the figure from inside out. The innermost and
outermost layers are necessary as the start and end. The innermost layer determines the
model and platform in the acceleration task. The outermost layer is essential because
without at least one of these strategies, acceleration is impossible on the edge platforms
especially FPGAs. Other layers can be skipped because they are all optional methods. L1
describes a ordinary design of accelerator which only adopts quantization, pruning. L2
utilizes multiplication optimizations such shift operations. Quantization and pruning are
also taken into consideration. This design requires a extra hardware platform supporting
NMP. The outermost methods are all in use to realize the optimal accelerator structure.

There are still challenges in the path. The quantization approaches we introduced in
Section 4 are various and all reach pretty good performance as well as precision. It is hard
to differentiate these methods and provide a guideline for quantization strategy selection.
Furthermore, though shorter bit width of parameters is normally regarded as better choice
for faster computing and transmitting, the latency of each layer is determined by the most
time-consuming operation which means low-bit computing sometimes may not be able
to obviously reduce the delay. Namely, longer bit width can be explored and precision
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may be improved. Challenges also exist in pruning. The struggle between structured
and unstructured pruning is presented in Section 4. Besides the ambiguous effects to
precision and inference efficiency of both kinds of methods, the role of pruning in hardware
accelerator design is more confusing. Different from quantization which directly improve
throughput, pruning brings more complicated memory access but same computing format,
which means no hardware efficiency improved. When it comes to segmentation networks,
the encode-decode connections make sparseness of network difficult to analyze. In addi-
tion to common detailed convolution structure, there are still heteroideus operators such
as atrous convolution, depthwise separable convolution, deformable convolution. It is
necessary to redesign memory structure and data reuse scheme. The generalization of
acceleration frameworks is another topic worth studying. Most implementations are based
on specific platforms and algorithms. Xilinx has proposed a framework called DPU with
Vitis-AI library, which has officially supported Resnet50, Inception V1/V2/V3, Mobilenet
V2, Yolov1, Yolov2, Yolov3, FPN, SP-net, and so forth. However, segmentation algorithms
like DeepLab, SetNet still need developers’ future work.
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Figure 14. Technical route design. The normal acceleration scheme usually involves different
gradations from the bit width of weights to the selection of different platforms and models. In this
process, several techniques which are listed on the figure will be introduced. They can be chosen
individually but tight connections will be built in the final realization.

6. Conclusions

In this paper, we review resource-limited platforms and neural networks about accel-
eration. We analyze the architecture of networks and characteristics of hardware platforms,
generalizing their effects on acceleration strategies. Potential techniques for acceleration
are divided into five topics—computing complexity, computing parallelism, data reuse,
pruning and quantization. We illustrate their technical details and benefits as well as
disadvantages. Our research provides a feasible method to design technical routes for
acceleration tasks. The research also shows that there are still challenges about method
selection/evaluation. There are many special structures waiting for optimization. The
generalization of acceleration frameworks is another issue. More research is needed in
both hardware and software to make neural networks practical in production.
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