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Abstract: A charge pump (CP) that has low current mismatch to reduce the locking time of the Phase-
Locked Loop (PLL) is proposed. The design is promising in 5G applications with the capabilities
of fast settling and low power consumption. In this design, a charge pump architecture consists of
an operational power amplifier (OPA), switches, three D flip-flops (DFFs) and passive devices. A
phase error compensation technique is introduced in the charge pump to reduce the locking time.
The current mismatch, which is mainly due to the leakage current, is below 1% for a large output
voltage headroom of 84% of the supply voltage. An 18.4% reduction in the settling time is realized by
the proposed design.

Keywords: charge pump; PLL; locking time; 5G

1. Introduction

A phase-locked loop (PLL)-based frequency synthesizer is a vital component in com-
munication systems [1,2]. To support the high data-rate transmission in 5G systems, the
stringent requirements of being both fast settling with low power consumption must be
satisfied. Owing to its wide locking range and low phase offset, the charge pump (CP) PLL
is widely used in practice [3–5]. However, the current mismatch in charge pump eventually
leads to static phase offsets and reference spurs, which is a main issue in PLL design.
Many approaches have been proposed to reduce the mismatch between the injected current
and removed current. The work reported in [6] used the active feedback circuit based
operational power amplifier (OPA) to increase output resistance and reduce current mis-
match. However, with an extra OPA circuit, the power consumption would be increased.
Report [7] proposed a method in which the control words are used to calibrate the current
mismatch. The complexity of the whole CP was increased vastly. These methods greatly
increase the complexity of charge pumping. A self-tracking CP was proposed in [8], but
the technique was limited by PVT (Process Voltage Temperature). To achieve the possible
largest frequency range, ideally, the CP output voltage should be in the range of 0 to the
supply voltage to maximize the use of the oscillator tuning range. Being fast settling with
no data loss during frequency locking is required for the high data-rate transmission in
5G applications. The fast-locking capability is particularly critical for systems requiring
a frequency-hopping operation. The main idea of reducing the settling time is to widen
(narrow) the loop bandwidth in locking (locked state). Several strategies are employed to
adjust bandwidth-dependent parameters/components, such as the CP current/low pass
filter (LPF). Reference [9] straightly used two sets of CP and switches to adjust the current
and resistance values of LPF. Reference [10] combined the programmable divider with sets
of CP to compensate for phase error. Though the above methods could improve the locking
speed, more transistors are needed, and the design complexity is increased.
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In this work, a phase-locked loop charge pump, which has low current mismatch
and reduced locking time, is proposed. The current mismatch is reduced to less than 1%
for a voltage headroom from 0.4 V to 4.6 V. A phase error compensation module is also
employed in the design. The locking time is reduced by 18.4% with low complexity and
circuit cost.

2. Design of Low Current Mismatch Charge Pump with Broad Voltage Headroom

To support high data-rate 5G application, the settling time is always expected to be
reduced as much as possible. Modulating the bandwidth to accelerate the locking process is
the main strategy. As shown in Figure 1a, the bandwidth is hard to be controlled when the
parameters and structures of CP, voltage-controlled oscillator (VCO), LPF and divider are
fixed. As the CP current is positively related to the bandwidth, an adjustable charge pump
is proposed to reduce the settling time as shown in Figure 1b. The proposed CP should be
able to maintain a low current mismatch while having a broad voltage headroom. It could
also be modulated by the phase error compensation module to reduce the settling time.
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Figure 1. The main structure of (a) a traditional PLL design, and (b) the proposed CP in PLL.

Compared with the traditional OPA-based CP in Figure 2a, the current sink and
current source have been eliminated in the proposed design Figure 2b. In the locking
mode, static power consumption is saved. Moreover, in the proposed design, with the
help of OPA, charge sharing issues are no longer significant. The charging signal “UP” and
discharging signal “DN”, which are the output signals of the phase frequency detector, are
at high and low voltage levels, respectively. When the loop is locked, Switches S1, S2 and
S3 are switched off while S4 is switched on. For the virtual-short and virtual-off features,
there are no current flows through R1. Therefore, the output voltage (VOUT) of CP can be
expressed as the following:

VOUT = VC + QOUT/CC1 (1)
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Figure 2. (a) Structure of a traditional OPA-based CP; (b) circuit schematic of the optimized CP; (c) the optimized CP in 

locking mode; and (d) the optimized CP in discharging/charging mode. 

Figure 2. (a) Structure of a traditional OPA-based CP; (b) circuit schematic of the optimized CP; (c) the optimized CP in
locking mode; and (d) the optimized CP in discharging/charging mode.

The output voltage of CP is maintained and influenced only by the leakage current as
shown in Figure 2c. When the phase and frequency of signal “Fdiv” are faster and higher
than that of signal “Fref”, respectively, both signals UP and DN are set to the low level.
Then, S3 and S4 are switched off; S1 and S2 are switched on as shown in Figure 2d with a
black line. The discharging current and time-dependent output voltage can be obtained as
the following:

IDN = (VCC−VC)/R (2)

VOUT(t) = VOUT − (IDN ·t)/CC1 (3)

On the other hand, as shown in Figure 2d with a red line, the charging current and
time-dependent output voltage can be obtained as follows:

IUP = VC/R (4)

VOUT(t) = VOUT + (IUP·t)/CC1 (5)

When the voltage of VC is set to half of VCC, the charging and discharging currents
have the same magnitude.

Compared with the traditional OPA-based CP shown in Figure 2a, the primary power
consumption is reduced and dependent on the OPA in the locking mode. The control
voltage range is extended without considering the current mismatch caused by the PMOS
and NMOS.

3. Design of Simplified Charge Pump for Fast Locking PLL

As discussed above, the primary approach for reducing the locking time relies on
adjusting the bandwidth during the locking process and at the locked state. However, as
shown in Figure 1a, when the structures of LPF, VCO gain and CP current are fixed, it is
hard to modulate the bandwidth. The LPF has passive devices which are hard to switch
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and that occupy more area. The VCO design is independent of the bandwidth. A current
control module is needed for the design as shown in Figure 1. When the structure and
parameters of the LPF are fixed, the bandwidth of the PLL mainly depends on the current
of CP. According to Equations (2) and (4), the bandwidth can be varied with the DC voltage,
VC. Then, TDC and common-mode voltage selection modules are added to reduce the
settling time.

TDC (Time to Digital Converter) is used to capture the phase information in practical
design [10–13]. As shown in Figure 3, DFF (D flip-flop) is used as the delay cell, which has
delayed time T to quantize the phase error.
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Figure 3. The transformation between phase error and common-mode voltage.

The positions of the rising edge and falling edge indicate the size of the phase error
and polarity, as shown in Figure 4. The binary string ‘001’ or ‘011’ indicates that signal
“Fdiv” is faster than signal “Fref”. On the other hand, the binary string ‘100’ or ‘110’
indicates that signal “Fref” is faster than signal “Fdiv”. The rest of the binary strings are
not assigned to contribute to the whole loop. The binary strings are decoded as different
DC voltages, which are assigned to common-mode voltage VC as shown in Figure 4.
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The decoded common-mode voltages are used to adjust the bandwidth of the loop by
changing the current of the CP as shown in Figure 3. When the phase error between “Fref”
and “Fdiv” is less than 2T, the loop enters the fast-locking process. When “Fdiv” is faster
than “Fref” and the phase error falls in the range of (T, 2T), the common-mode voltage VC
is assigned with 0.3 VDD. The discharging current can be obtained as follows:

IDN = (VCC− 0.3VCC)/R (6)
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The bandwidth is widened by the enlarged discharging current IDN and the settling
time can be reduced. By varying the voltage of VC, the current of CP is increased or
decreased to accelerate the locking process.

When the number of delay cells in TDC increases, the resolution of TDC can be
improved, but a larger power consumption and chip area are required. In the present
design, only three delay cells are utilized to demonstrate the theory of reducing locking
time. If the delay time is set to small, TDC works only at the part of the near-locking
process. If the delay time is set to a large value, the TDC works only at the beginning of the
near-locking process. Then, there is a trade-off between the power consumption, the unit
delay time of TDC, and the number of delay cells. All of these parameters can be adjusted
according to the applications. The delay time is set to 7 ns in the present design when the
period time is 100 ns.

4. Simulation and Experimental Results

Compared with the traditional CP structure, there is no current mismatch between the
injected current and removed current in the locked phase in the proposed design. Only the
leakage current affects the stability of the control voltage of the VCO. When the common
voltage of OPA is varied with the phase error, the variation of the leakage current is as
shown in Figure 5a. Though the signal VC is set to the range of (1.5 V, 3.5 V) in this design,
the leakage current is acceptable in a broad output voltage headroom of (0.4 V, 4.6 V). The
leakage current is reduced to less than 400 nA in range, but rises dramatically when VC is
out of range.
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As shown in Figure 6, the current mismatch is below 1% (500 nA) for a broad output
voltage headroom of 84% of the supply voltage. As shown in Figure 7, the distribution of
the leakage current is little affected by temperature.
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The leakage current and output voltage range are the major factors in the CP de-
sign. The output voltage range always varies from 66.6% to 83.3% (Table 1). An 84%
output voltage range was achieved in this design. When the source and sink currents are
eliminated, the output voltage range is enlarged. Then, the leakage current in the source
and sink currents are also eliminated. Compared with other works, the leakage current
in this work is below 1%, which is quite acceptable. The whole area of the PLL core is
0.55 mm × 0.6 mm, as shown in Figure 8.

Inspired by the phase error compensation technique, a 3-bit TDC is constructed. It
switches the common voltage VC to accelerate the locking process, as shown in Figure 9a.
According to Figure 9b, the magnitude of VC is assigned by the decoded binary string
‘Q0Q1Q2′. The control voltage of the VCO is calibrated by the common mode voltage VC
to limit the phase error of the PFD to less than T. During the fast-locking mode, the phase
error is monitored and reduced through compensation.

Table 1. State-of-the-art compensated PLL charge pumps.

Items [14] [15] [16] [17] This Work

Technology node (nm) 180 130 130 180 250
Current mismatch (%) ≤0.9 ≤1.7 ≤1 ≤2.1 ≤1

Output voltage range (V, %) 0.2–1, 66.6 0.2–1, 66.6 0.1–0.48, 76 0.2–2.7, 83.3 0.4–4.6, 84
Supply voltage (V) 1.2 1.2 0.5 3 5

compensation method Body-bias
compensation

Dual
compensation

circuits

Dual feedback
loop 3 Rail-to-rail OPs

Elimination of
source and sink

currents
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Figure 9. (a) Simulated PLL lock process optimized by the proposed CP; and (b) the workflow of the
PLL locking process.

Figure 10 shows the comparison of the simulated settling time between the optimized
CP in the present design and the traditional CP without phase error compensation under
different supply voltages. The results presented in Figure 10 were obtained from the
schematic simulations. Compared with the traditional CP without phase error compensa-
tion, the optimized CP of the present design reduces the phase error of the PFD, leading to
a decrease in the settling time from 89.6 µs to 73.1 µs. In the present design, only a 3-bit
TDC was used to quantize and encode the phase error. With an increase in the bit number
of the TDC, the delay time T decreases, and the locking capability can be further improved.
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5. Conclusions

In this work, a PLL charge pump with a low current mismatch for reducing locking
time is proposed. The current mismatch caused by leakage current is below 1% for a
broad output voltage headroom of 84% of the supply voltage. Based on an OPA, with the
technique of phase error compensation, reduction of the settling time by 18.4% is achieved.
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