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Abstract: A frequent cause of lower back pain presenting with leg pain is a herniated lumbar
intervertebral disc. A herniation or a herniated lumbar disc is a change of position of disc material
(nucleus pulpous or annulus fibrosis). Usually, the lower back pain goes away within days or weeks.
Regular treatment techniques for lower back pain include medication, exercises, relaxation methods
and surgery. Back pain and back problems regularly occur in the lumbar region. The spinal canal
is made up of vertebrae; each one protects the spinal nerves. Intervertebral discs and facet joints
connect the vertebrae above and below. Groups of muscles and ligaments hold the vertebrae and the
discs together. Muscles support the spine and the body weight, and they allow us to move. Pressure
can result in excessive wear and tear of the other structures. For example, a common problem in the
lower back is disc herniation. In this case, pressure on an intervertebral disc makes its center, the
nucleus pulposus, protrude backwards and push against the spinal nerves, leading to lower back pain.
Detection and classification are the two most important tasks in computer aided diagnosing systems.
Detection of a herniated lumbar disc from magnetic resonance imaging (MRI) is a very difficult
task for radiologist. The extraction of herniated discs has been achieved by different approaches
such as active contours, region growing, watershed techniques, thresholding and deep learning.
In this study, to detect intervertebral disc from axial MRIs we develop a method using generative
adversarial networks (GANs), especially the CycleGAN model, to automatically generate and detect
intervertebral disc and to classify the type of the herniated lumbar disc such as foraminal or median.
We propose to explore the importance of axial view MRI to determine the herniation type. Accurately,
GANs and other generative networks have created several ways to tackle different problems well
known and challenging of medical image analysis, such as segmentation, reconstruction, data
simulation, medical image de-noising, and classification. Moreover, their efficiency to synthesize
images and data at unprecedented levels of realism also gives hope that the chronic scarcity of labeled
data in the medical field can be resolved with the help of these generative models. In our case,
having a database that contains several images is a very difficult task. In this paper, we put forward
a new approach based on GANs, in order to solve the problem of lumbar intervertebral disc images
reduction. This method is based especially on CycleGAN. Consequently, the essential objective of
our work is to generate and automatically classify the herniation type as foraminal or median using
GANs. Our computer aided diagnosis (CAD) system achieved a 97.2% accuracy on our dataset. This
result represents a very high-performance results by providing the state of the art and our work
utilizing the GANs technique. Our CAD is very effective and efficient for classifying herniations of
lumbar intervertebral discs. Therefore, the contribution of this study appears in: firstly, the use of the
CycleGAN model based on convolutional layers to detect and classify the herniation type (median
or foraminal) in lumbar intervertebral discs, secondly, the use of axial view MRI in order to classify
the type of the herniated intervertebral disc. The main objective of this paper is to help radiologists
automatically recognize and classify herniated lumbar discs.
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1. Introduction

The spine is composed of 24 vertebrae including twelve dorsal, five lumbar vertebrae
and seven cervical [1]. The intervertebral disc connects each two vertebrae to each other;
acting like a shock absorber cushion [1]. The intervertebral discs are composed of two
important components: a nucleus pulposus surrounded by a fibrous annulus [1]. When a
part of the nucleus protrudes outside, this is called a herniated disc [1]. The latter represents
the rupture of the fibrous of an intervertebral disc [1]. It usually occurs between 35 and 55
years old due to overweight, overwork and pregnancy [1]. Lumbar disc herniation (LDH)
is a major public health problem in the world [1]. The main cause of this disease is a loss
of the height of one intervertebral disc or many discs [1]. In this study, we concentrate on
lumbar disc extraction from the axial view [1]. This task of features extraction represents
a difficult task in computer aided diagnosis (CAD) to aid radiologist in LDH detection
and classification [1]. The occurrence of LDH goes through the following steps. The first
step, bulging: a bulging disc can be referred to as a protruding or slipped disc [1]. The
second stage is protrusion [1]. The third step is extrusion [1]. The last one is exclusion [1].
CAD systems are based on the analyzing different types of patients (including their bodies,
physical examinations or medical history) to help radiologists quickly diagnose [1]. Various
medical imaging modalities can be used to extract lumbar disc herniation [1]. The focus of
this work is on MRI [1]. There are two different views used to diagnose the LDH: sagittal
and axial MRI [1]. The sagittal view (Figure 1) allows for defining the LDH, the normal
lumbar intervertebral disc, the shape of each disc ((L1–L2), (L2–L3), (L3–L4), (L4–L5),
(L5–S1)) and its situation [1]. However, the axial view MRI provides more information
about the herniated disc, including the type of the LDH and its stage [1]. There are different
works for intervertebral disc labeling, detection, feature extraction and segmentation [1].
Chwialkowski et al. [2] developed a novel technique to extract pathologies in lumbar
intervertebral discs images by first detecting candidates’ vertebrae with an estimated
model and then studying the change in gray-level intensities in healthy and damaged
intervertebral discs [1]. Tsai et al. [3] presented an approach to detect the herniation
from computed tomography volumes and 3D MRI of discs by using geometric features
like the size, the location and the shape [1]. Rabia et al. [4] put forward models for
lumbar spine intervertebral disc segmentation. They proposed a minimally supervised
3D segmentation approach of lumbar intervertebral herniated discs for MRI scans which
exploits weak shape priors encoded in simplex mesh active surface models [1]. Alomari
et al. [5] developed a fully automated herniation detection system using gradient vector
flow snakes for an initial disc contour, and then trained a Bayesian classifier on the resulting
shape features [1]. They achieved 92.5% accuracy on 65 clinical MRI cases, with the low
sensitivity of 86.4%. Michopoulou et al. [6] achieved 86–88% accuracy for normal vs.
degenerated disc classification [1]. The authors used fuzzy C-means to perform semi-
automatic atlas-based disc detection and then used a Bayesian classifier model [1]. They
also achieved 94% accuracy using texture features for 50 manually extracted discs [1]. Booth
et al. [7] put forward a novel system that could automatically locate the center of the spinal
canal on the axial images based on a symmetry measure [1]. They proposed an algorithm
that could automatically extract the center of the spinal canal [1]. Hoad et al. [8] respectively
proposed an approach to detect the spinal cord and the vertebrae on MRI [1]. For both
cases, the initialization step needed user interaction to manually extract the center of the
spinal cord at every spine level or to manually locate four points on each vertebral body [1].
On the other hand, they put forward a system that could automatically detect the center of
the spinal canal on the axial MRI based on a symmetry measure [1]. The authors applied
an active contour model to detect the spinal canal [1]. Ghosh et al. [9] developed a majority
voting algorithm for LDH that used planar shape features texture features and intensities,



Electronics 2021, 10, 982 3 of 19

extracted by the gray-level co-occurrence matrix [1]. Their system was tested on a dataset
containing 35 subjects and the accuracy achieved was 94.86%. They put forward a robust
and fully automated LDH diagnosis system [1]. They reduced the time to analyze each
case [1]. They developed five several classifiers (SVM, PCA + LDA, Bayes, PCA + QDA,
PCA + SVM) and combined them to achieve the best results; they got 94.86% accuracy and
95.90% specificity. Shi et al. [10] put forward an unsupervised segmentation method which
did not require initialization and admitted combinations of different features such as the
position and the brightness. Peng et al. [11] achieved the best sagittal slice to extract the
lumbar intervertebral disc based on a canny edge operator creating open contours. Elias
et al. [12] suggested a novel system in order to diagnose LDH disease by MRI. The authors
used the Otsu thresholding method and detected features by calculating the shape feature,
and they finally found the classification by using the k-nearest neighbor (KNN), support
vector machine and multi-layer perceptron (MLP). The KNN and MLP classifiers showed
around 92.38% and 91.90% of accuracy, respectively. Chevrefils et al. [13] put forward
a novel technique by combining two approaches, the morphological operations and the
watershed method, to extract the intervertebral discs from MRI. An automated approach
was proposed to regulate the initial values of the centroid of the cluster using intuitionistic
fuzzy clustering. The writers suggested a new function complement, which was introduced
for intuitionistic fuzzy clustering using axial MRI. The evaluation was done using recall,
precision, Jaccard coefficient and Dice coefficient. Alawneh et al. [14] built a simple CAD
that would diagnose lumbar disc herniation using MRI as a normal or herniated disc. In
Alwaneh et al. [14], the herniated lumbar disc was detected over two passes: horizontal
and vertical extraction. Each image was read and converted to a gray scale if the image was
in RGB (Red Green Blue). Then, they sliced an initial strip around the center column of the
image. The initial vertical strip was converted to a binary one using adaptive thresholding.
Added to that, a random threshold was chosen and the image histogram was divided into
two parts around this threshold. After that, a threshold value was calculated as the average
of the two means of the two histograms. They built a CAD that diagnoses lumbar disc
cases using axial view MRI as normal or abnormal. Seifert et al. [15] put forward a novel
system for cervical intervertebral disc detection using the statistical shapeware deformable
models and the Hough transform.

Figure 1. GAN (Generative Adversarial Networks).

To overcome the shortfalls of the existing techniques, we have suggested in the
present work to use the cycle generative adversarial network (CycleGAN) model on axial
view MRI and have improved the lumbar intervertebral disc generation, detection and
classification by implementing a powerful classifier based on GANs. Lumbar discs are
classified using CycleGAN to have the probabilities of the presence of a foraminal or
median herniation in the studied dataset. The CycleGAN uses a combination of two
generators and a combination of two discriminators in order to select real and fake samples.
Furthermore, we propose to use axial view MRI. Thus, the suggested technique allows us
to generate, localize and classify the type of lumbar intervertebral discs, contrarily to the
above-mentioned existing approaches, which can only detect lumbar intervertebral discs.

We develop a novel approach based on CycleGAN for generating, detecting and
classifying lumbar intervertebral discs using axial view MRI. This system is used for
diagnosing the LDH; it is based on GANs, which have achieved great success in artificial
intelligence and in several applications in recent years. Therefore, GANs approaches have
been extensively used to analyze and synthesize biomedical images. Indeed, CycleGAN
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is a model used to solve MRI-to-MRI translation tasks, the objective being to learn the
mapping between an input image (class A) and an output image (class B) using training
based on a cycle consistent adversarial network.

The aim of this paper is to automatically generate lumbar intervertebral discs in MRI
and classify the type of herniation as foraminal (classA) or median (classB), which can
assist radiologists and clinicians in diagnosing based on a large dataset of axial view MRI.
A novel algorithm is proposed using the CycleGAN based on convolutional layers. The
results of our study are evaluated with regards the accuracy of real and fake samples
as well as the generator accuracy. We provide for GANs general introduction and a
state of the art. Next, we introduce results obtained of generated data and classified
herniations using CycleGANs with a discussion of the limitations of GANs methods.
Herniated intervertebral discs represent the modification of their height (one disc or more
discs). This herniation is the main cause of lower back pain or sciatica. Little LDH
MRI is a challenging problem in the various research works. Furthermore, the herniation
classification as foraminal (class A) or median (class B) represents the most difficult problem.
To help radiologists recognize the type of the herniated lumbar intervertebral disc and to
increase the number of MRI cases, we suggest exploiting the CycleGANs to generate the
dataset. Moreover, to automatically classify the herniation type. GAN models must learn to
capture the statistical distribution of training data [16], allowing us to synthesize samples
from the learned distribution [16]. GANs provide a way to learn deep representations
without any extensively annotated training data [17]. GANs are made up of two essential
neural networks, the discriminative models in which the convolutional neural networks
try to discriminate between image pixels that correspond to different classes [18]. The
optimization of these convolutional network is supervised by a loss function that quantifies
the agreement between reference labels and model predictions [18]. Second, the generative
models aim to learn the underlying distribution of the data and the generative process
that creates them [18]. We summarize various existing techniques for GANs, which are
highlighted in Table 1.

Table 1. Different techniques in biomedical images based on Generative Adversarial Networks (GANs).

Ref Method Architecture Loss Modality Dataset Performance

[19] cGAN, U-Net cGAN, U-Net Adv MRI IXI PSNR = 39.53 ± 4.12

[20] cGAN, U-Net cGAN, U-Net Adv MRI IXI PSNR = 40.20 ± 4.07

[21] cGAN, U-Net cGAN, U-Net

Adv, feature
matching,

Perceptual,
penalty

MRI Train: 3000 3D test:
1200 PSNR = 31.82 ± 2.28

[22] GAN chain,
ResNet

GAN chain,
ResNet Adv, Cyclic MRI Brain: IXI PSNR = 38.71 ± 2.5

[23] SRGAN,
subpixel-NN

SRGAN,
subpixel-NN LSGAN, GDL MRI (Brain) ADNI (Train: 470,

Test: 119) PSNR = 39.28, 33.58

[24] ResNet, GAN ResNet, GAN Adv MRI MRI (Brain) PSNR = 24.2

[10] DenseNet,
WGAN

DenseNet,
WGAN MSE, WGAN MRI Unknown (Train:

891, Test: 111) PSNR = 35.88

[25] ResNet,
LSGAN

ResNet,
LSGAN

Adv & MRI
(Chest) MRI MRI abdomen

pediatric PSNR = 37.95

[26] ResNet, GAN ResNet, GAN Adv MRI Unknown (Train:
1560, Test: 346) PSNR = 37.95

[27] ResNet, GAN ResNet Adv, CNN
saliency

Retinal
Funduscopy

Unknown
(5000 data)) PSNR = 44.3, 39

[28] GAN GAN Adv, Perceptual Microscopy
(Cell)

Unknown (Train:
11,000, Test: 500) PSNR = 27.8591
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Table 1. Cont.

Ref Method Architecture Loss Modality Dataset Performance

[29] GAN, Cyclic GAN, Cyclic Adv, Regular Endo-
microscopy Train: 202, Test: 36 SSIM = 0.87

[30] DCGAN DCGAN Adv SD-OCT
scans

Unknown (Train:
270, Test: 20) Precision = 0.8834

[31] AnoGAN,
WGAN-GP

AnoGAN,
WGAN-GP

WGAN-GP,
Regular MRI MRI (brain) AUC = 0.92

[32] WGAN,
U-Net WGAN, U-Net Adv MRI MRI (brain) NCC = 0.27

[33] U-Net, GAN U-Net, GAN MSE MRI (NCT) Heidelberg Specificity =
0.98 ± 0.14

[34] cGAN, U-net cGAN, U-net Adv Natural skin Natural skin Correct detect = 0.914

[35] GAN GAN Adv, Local,
Contour

Ultra-sound
(prostate)

Ultra-sound
(prostate) DSC = 0.92 ± 0.3

[36] CNN, GAN CNN, GAN CNN, Adv CT (phantom) CT (phantom)
Agatston score:
Median = 20.7,

Min = 6.1, Max = 145.1

[37] U-net U-net Adv, L1 CT (ear) -
P2PEs: Median = 0.409,

STD = 0.133,
Max = 0.912

[38] MGAN,
ResNet MGAN, ResNet Pixel-wise,

MGAN CT - PSNR = 26.77

The present paper is organized as follows: we provide an introduction to GAN and
CycleGAN methods with a focus on applications in biomedical image analysis.

In Section 3, we describe state of the art of GANs networks in biomedical images.
In Section 4, we describe the use of CycleGAN network to map images from one class
(foraminal herniation) to another class (median herniation). Section 5 explains results
found from CycleGAN on our dataset collected from the university hospital of Sousse.
Section 6 presents the conclusion of our work.

2. Overview of GANs in Medical Images

From the early days of medical image analysis, machine learning and artificial intel-
ligence driven systems have been a key component for complex decision-making. There
are different networks based on CNN, spiking neural networks (SNN), GANs and other
networks applied on medical images. The reconstruction of many research-based magnetic
resonance images focuses on data augmentation generative adversarial network (DAGAN)
architecture [19]. In this approach, a perceptual loss was added to pixel-wise and adver-
sarial (Adv) losses to compare generated information and deep extracted features in real
time, which would enhance the stability of GANs. Different work has refined the DAGAN
architecture over time [20]. The next update of DAGAN was presented in [21], which pro-
posed adding a refinement model in order to separate perceptual information and a similar
architecture was proposed in [22], where the authors proposed a chain of generators to
address the ambiguities made in other ones. The authors in [23] adapt the super-resolution
using a generative adversarial network (SRGAN) with 3D convolutional layers to enhance
the stability of the proposed GAN model. The writers in [24] developed a novel approach
based on 3DSRGAN, along with two loss of functions to prevent over-fitting and to control
data interpolation. The authors in [10] put forward a Mdcsrn, multilevel densely connected
super-resolution network, representing a combination of a modified version of dense net
and the Wasserstein generative adversarial network (WGAN) model. The writers in [25]
developed a novel technique based on generative adversarial networks, especially based
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on least squares generative adversarial networks (LSGAN) as a solution to address training
instability. The authors in [26] proposed a multi-channel deep GAN for MRI reconstruc-
tion. The writers in [27] suggested an image super resolution technique using generative
adversarial networks which would take low-resolution input fundus images and generate
high-resolution ones for retinal image analysis. The authors in [28] suggested a novel
algorithm based on GANs for phase contrast microscopy image super-resolution. Daniele
et al. [29] have proposed an unsupervised super resolution framework based on adversarial
deep neural network with a physically inspired cycle consistency, designed to impose some
acquisition properties on the super-resolved images [30].

Thomas et al. performed unsupervised learning based on GANs to identify anomalies
in imaging data as candidates for markers [30]. Chen et al. [31] have studied the detection
of lesions in brain MRI using constrained adversarial auto-encoders by learning the data
distribution of brain MRI of healthy subjects using auto-encoder based methods [31]. The
authors in [32] have suggested the visual attribution GAN (VA-GAN) for Alzheimer’s
disease detection. For aggressive prostate cancer detection [33] and skin lesion detection,
the authors in [34] have put forward the use of U-Net architecture as the generator of a
GAN and a cGAN, respectively. In prostate US, the low contrast of tumor boundaries was
challenged contour detection. The writers in [35] address this problem using GANs. The
authors in [36] have suggested learning tissue texture information from a small amount
of paired data and address the blurring effect using GANs [36]. Correspondingly, [21]
have developed a novel technique based on conditional GAN (Cgan) in order to remove
metal artifacts from CT images. The authors in [37] have proposed the sharpness aware
generative adversarial network (SAGAN) to work on the sharpness of the denoised images.
The authors in [38] presented a biologically-inspired cognitive supercomputing system
(BiCoSS) that integrates multiple granules (GRs) of SNNs to realize a hybrid compatible
neuromorphic platform. The writers in [39] developed a large-scale cerebellar network
model for supervised learning, as well as a cerebellum-inspired neuromorphic architec-
ture to map the cerebellar anatomical structure onto the large-scale model. The writers
in [40] presented a novel technique; one of the challenging problems in real-time control of
movement disorders is the effective handling of time-variant brain activities that involve
stochastic functional networks with nonlinear dynamics. For such challenges in neuromod-
ulator tasks, fuzzy logic control (FLC) has shown significant potential. Their objective was
to present a FLC based strategy to treat pathological symptoms of movement disorders
with higher performance. The authors in [41] presented a real-time digital neuromorphic
system for the simulation of large-scale conductance-based spiking neural networks which
has been the advantages of both high biological realism and large network scale. Using this
system, a detailed large-scale cortico-basal ganglia-thalamocortical loop is simulated using
a scalable 3-D network-on-chip topology with six Altera Stratix III field-programmable
gate arrays simulate one million neurons. The writers in [42] proposed a novel multilayer
extreme learning machine (ELM) classification model combined with dynamic genera-
tive adversarial net (GAN) to tackle limited and imbalanced biomedical data. In [43],
hyaluronic acid (HA) is represented; a natural linear polysaccharide that has been used
extensively in the biomedical field, as it is a biocompatible, biodegradable, nontoxic and
non-immunogenic polymer with high water affinity. Besides, the presence of multiple acid
and hydroxyl groups in the HA molecule makes it an ideal candidate for chemical modifi-
cation. They described the synthesis and characterization of HA-based hydrogels. For this
purpose, an aqueous mixtures containing 5% (w/w) of HA and different concentrations
of Gantrez S97 (GAN) (1%, 3% and 5% w/w) were used to prepare HA-based hydrogels.
There are several studies based on GANs, Yu et al. [44] developed a novel system based on
generative networks for fast compressive sensing MRI. This model can lessen parameter
tuning and stabilize training with fast convergence. They used k-space information to re-
construct images. The authors in [40] developed a FLC-based strategy to treat pathological
symptoms of movement disorders with higher performance. Multicompetent emulation is
an essential step to enhance the biological realism of neuromorphic systems and to further
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understand the computational power of neurons. In [41], the writers present a hardware
scalable, efficient and real-time computing strategy for the implementation of large-scale
biologically meaningful neural networks with one million multi-compartment neurons
(CMNs). The writers in [45] developed a model named dendritic event-based processing
(DEP) that effectively solves the credit assignment challenging. The results show that
the suggested DEP achieved high performance and spiking representations can rapidly
learn. The authors in [46,47] provide an overview of the developments in neuromorphic
computing for both algorithms and hardware and highlight the fundamentals of learning
and hardware frameworks. They discussed the main challenges and the future prospects
of neuromorphic computing, with emphasis on algorithm hardware code sign.

3. Generative Adversarial Networks

GANs consist of a training dataset X (in our case there are two datasets X1: foraminal
cases and X2: median cases) and a pair of competing models: Discriminator (D) with
weights (θD) and generator (G) with parameters (θG) (see Figure 1). G focuses on mapping
x = G(z; θG) which draws latent random variables z ~ pz(z) mapping from a prior
distribution pz to generated data x ∈ Xˆ, which is expected to follow the distribution pθ(x|z).
The primary objective is to optimize this drawn such that the generated distribution
data X resembles the distribution of the training data X, i.e., pθ(x|z) ∼preal . In other
words, G is supposed to generate fake data, which must not be distinguishable from real
data. This is achieved with the help of the discriminator network D, whose task is to
classify between fake and real samples. Essentially, D is a binary classifier which yields
D(x) = 1 for real samples and D(x) = 0 for fake data. Both networks are adversaries,
as G attempts to gradually synthesize more and more realistic samples that D would
misclassify as real, while D constantly learns to differentiate between real and synthesized
samples. Mathematically speaking, D and G play a two-player minimax game with the
following value function V(G, D) (see Equation (1)). In order to optimize Equation (1),
the discriminator D is trained to maximize the probability of correct label assignment
for real and fake samples, however, the generator G is trained to make D think that a
generated data is real by minimizing log(1 − D(G (z))) [48]. These two networks are
regularly implemented as convolutional neural networks or multi-layer perceptron and
trained with minibatch stochastic gradient descend [48]. Once learned, it is sufficient
to sample a random z and feed it through the generator to synthesize data [48]. This
generative adversarial network shows a few interesting properties: (1) the generator G
is updated only through gradients back propagated from the discriminator; and (2) no
explicit correspondences between z, x and x are required, such that input is not explicitly
memorized by G [48]. Finally, (3) as proven by the authors, optimization for Equation
(1) minimizes the Jensen–Shannon (JS) divergence between the distributions of real and
synthetic data [48]. Although theoretically well grounded, the vanilla GAN has proven to
be quite hard to train [48]. General convergence is heavily dependent on hyper parameter
tuning to avoid vanishing or exploding gradients, and they are prone to mode collapse [48].
This term describes a phenomenon where GANs map all z to very similar synthetic samples
covering only a single mode of the data distribution [48]. During optimization, these modes
might also change (so-called mode hopping) [48]. A plethora of extensions and subclasses
has been proposed to cope with these problems, a selection which is introduced in the
following subsections [48].

Each GAN consists of two essential neural networks. Firstly, the generative model
aims to generate synthetic samples x Pf ake from a real data Pdata. A noise vector z is
transformed from PZ (distribution) into new samples: X = G(z) (as shown in Figure 1).

GminDmaxV(D, G)= Ex Pdata(x)[log(D(x))] + Ez Pz(z)[log(1− D(G(z))] (1)

Secondly, generator G takes a noise vector z sampled from distribution PZ as an
input and uses fully connected or convolutional layers to transform this vector into a
sample x. The discriminator D tries to distinguish these samples from samples drawn
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from the real data distribution Pdata. The Figure 1 illustrates GAN model architecture,
which involves two sub-models: a generator model for generating new examples and a
discriminator model for classifying whether generated examples are real, from the domain,
or fake, generated by the generator model, and also classifies lumbar intervertebral discs
as foraminal or median.

4. Proposed Approach

We have put forward a novel approach based on CycleGAN as illustrated in Figure 2 to
solve the problem of the lack of background information [48]. The generative model consists
of two mapping functions (i.e., F: X→ Y and G: Y→ X) and adversarial discriminators
(i.e., DX and DY). Actually, DX makes the outputs of G(y) distinguishable from domain
X. Similarly, DY makes the outputs of F(x) distinguishable from domain Y. To further
regularize the mappings, we introduce a kind of cycle consistency loss where we can arrive
at our starting point if we translate from one domain to another and back again. In Figure 3,
the image translation cycle brings X and Y back to themselves through functions F(x) and
G(y). This cycle consistency loss can be expressed as:

Lcyc(G, F, X, Y) = Ex∼Pdata(x)
[||G(F(x))− x||] + Ey∼Pdata(y)

[||G(F(y))− y||] (2)

where Pdata(x) and Pdata (y) are the distributions of X and Y, respectively. Minimizing the
loss between G (F(x) and x and between F (G(y) and y can make the generated images
close to real images [48]. Our objective is to learn a mapping from a source domain A with
foraminal lumbar intervertebral discs herniations images to a target domain B, which is a
median one. The inputs of the network are unpaired training image samples a in A and b in
B. As shown in Figure 4, the CycleGAN that consists of two generators GA and GB and two
discriminators DA and DB is an improvement on the convolution level from the original
CycleGAN. The images taken from two datasets or two different classes, converting an
image from the representation of one class to another (e.g., foraminal intervertebral discs
to median ones or vice versa) is suggested as an image-to-image translation [23]. We can
summarize the principle of CycleGAN as it converts one image classified into class X to
another image classified into class Y, with the aim to learn the mapping (F) from X to Y, the
F mapping corresponds to the GAN builder and F can convert the image x in X to image
F(x) in Y. The mapping G can transform the image y into G(y) in X.

Figure 2. CycleGAN architecture.
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Figure 3. Some examples of lumbar intervertebral disc detection results using the CycleGAN model:
(a) input images; (b) detected masks.
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Figure 4. A survey on generative adversarial networks for medical image analysis: The pie chart
represents the visual examples of GANs applications. Examples are taken from papers as follows:
denoising, reprinted with permission from ref. [36]. Copyright 2017 IEEE. conditional synthesis,
reprinted from ref. [49]; registration, reprinted from ref. [50], reconstruction reprinted with permission
from ref. [44]. Copyright 2018 Springer. detection reprinted from ref. [51], classification reprinted
from ref. [52], unconditional synthesis reprinted from ref. [17], and segmentation reprinted from
ref. [53] Source: reprinted from ref. [46].

4.1. System Based on CycleGAN

We evaluate our developed CycleGAN classification method on our MRI dataset
collected from the University Hospital of Sahloul, Sousse using axial view MRI. There are
two classes: class A, which contains the median herniations, and class B which contains
the foraminal herniations. These experimentations were conducted in the Informatics and
systems Laboratory, France. All data sets and results were staged, analyzed and evaluated
by an expert radiologist. The dataset A is divided into two folders: train A and test A. The
dataset B is segmented into train B and test B.

4.2. Evaluation Metrics

The best metric to evaluate our detection approach on our dataset is the intersection
over union (IoU). The IoU is used usually for evaluation segmentation (show results in
Figure 3) and it calculates the ratio of the area intersection to the area of unions. We need
two parameters:

(1) Predicted bounding boxes from our model.
(2) Ground truth bounding boxes.

IoU =
A ∩ B

A ∪ B− A ∩ B
(3)

Table 2 summarizes the IoU results, comparing our performed result and other results
for other work. We can conclude that the CycleGAN is the best one for detecting lumbar
discs in order to recognize type of herniation (foraminal or median), as shown in Figure 4.
Our system CAD is made up of two essential steps, the first one is generation and localiza-
tion. The second one represents classification (automatically classifying herniation type,
as given in Table 3). Table 3 summarizes results found using the CycleGAN model based on
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three essential metrics, namely precision, recall and average precision (see Table 3). GANs
built a two-player game between the generator model and the discriminator one. The first
generates fake or synthetic samples and the second one decides whether these images are
real or fake samples. This game takes up as the generator network learns well how to
produce more realistic samples and the discriminator network improves its capacity to
classify samples as real or fake images. Although our model based on the CycleGAN model
is utilized to generate synthetic data, we use the process to better improve the segmentation
results and effectively ameliorate classification performance. Our datasets were divided
into two classes (class A: foraminal herniations and class B: Median herniations), and were
randomly divided into training and test sets (as depicted in Figure 4). Approximately 2/3
of lumbar intervertebral discs images are utilized for training and 1/3 for testing. The
CycleGAN model was tested with the remaining 1/3 of our dataset. Our system consists of
three stages: the generation of lumbar intervertebral discs, the detection of intervertebral
discs and finally the classification of herniated lumbar discs (as foraminal or median). We
evaluated the detection results using intersection over union (IoU) and classification ones
utilizing accuracy (see Figure 4). The latter are the precision of our system; we propose
using precision, average precision and recall (see Table 3).

Table 2. IoU results using different architectures.

Architecture IoU Results

Medium Gaussian SVM 66%
Segnet 58%
U-net 93.3%

CycleGAN 97.2%

Table 3. CycleGAN model results (%).

A P R AP

Foraminal 93.4 85.5 56 43
Median 94.6 97.5 93.6 89.9

The generator model (as illustrated in Figure 3) is fixed with ten hidden nodes, one
random value input attribute, and three output values. We performed the generative
adversarial network experiments multiple times using several discriminator configurations
and note the performance of our system. The discriminator model includes either one
or two hidden layers. The number of nodes per hidden layer changes between 2 and
100. For coherence, two hidden layer experiments included the same number of nodes for
both hidden layers. For each trial, training is stopped when the mapping error on the test
set increases. The mapping error is defined as the distance between the inferred output
array and the known labels, using one-hot encoding. The mapping error is also known
as the validation loss. The discriminator model takes as an input one 28 × 28 grayscale
image and it outputs a binary prediction as to whether the image is real (class = 1) or fake
(class = 0). The last one is implemented as a modest convolutional neural network (CNN)
using the LeakyRelu activation function, Adam version of the stochastic gradient descent, a
momentum of 0.5, learning rate of 0.0002 and a 2 × 2 stride downsampling. The generator
network takes as input a point in the latent space and it outputs a single 28 × 28 grayscale
image. This was performed by utilizing a fully connected layer to clarify the point in the
latent space and to achieve sufficient activations that can be reshaped into many copies
of a low-resolution version of the output image. The results associating to the training of
this network are illustrated in Table 2, and the metrics that are selected for evaluating the
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performance of our system are: recall (R), precision (P), accuracy and average precision
(AP) (see Equations (4)–(7)).

A =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(4)

P =
True Positive

True Positive + False Positive
(5)

R =
True Positive

True Positive + False Negative
(6)

AP = ∑
n

Rn − Rn−1 (7)

4.3. Dataset

We collected our dataset MRI from the University hospital of Sousse. It includes axial
view MRIs for each lumbar intervertebral disc. Our images were divided into 1500 cases for
training and 500 cases for testing. The CycleGAN model had two generators (generators A
and B) and two discriminators (discriminators A and B).

4.4. Results

The results are described in Table 3. In fact, we performed with higher precision of our
CycleGAN model on our dataset. The generated and reconstructed images are presented in
Figure 5. The architecture of generator network and discriminator network are described
in Figures 6 and 7. Therefore, the accuracy of real and fake samples and of the generator
are shown in Figure 8.

Figure 5. Generated and reconstructed images results using CycleGAN. On the left, we have the
original images, in the center, we have the first generated images, and on the right, we have the
second generated images which should look like the original images.
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Figure 6. Generator architecture.

Figure 7. Discriminator architecture.
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Figure 8. Accuracy of (a) real samples, (b) fake samples and (c) generator.

Figure 8 shows us the accuracy curves of real samples (Figure 8a), fake samples
(Figure 8b), and generator (Figure 8c). This also shows that the generalized dataset through
the CycleGAN model performed appropriately to target the lumbar discs images and
preserved the most important features; we can conclude through our experiments that
the intensity generalization of CycleGAN are very efficient. The loss of the discriminator
(as illustrated in Figure 9a,b) is expected to rapidly decrease to a value close to zero, where it
remains during training. The loss of the generator (as illustrated in Figure 9c) is expected to
either decrease to zero or continually decrease during training. The generator is expected to
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produce extremely low-quality images that are easily identified as fake by the discriminator
(as illustrated in Figure 9). We remark on the performance of all the experiments using the
CycleGAN model.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 19 
 

 

illustrated in Figure 9a,b) is expected to rapidly decrease to a value close to zero, where it 
remains during training. The loss of the generator (as illustrated in Figure 9c) is expected 
to either decrease to zero or continually decrease during training. The generator is ex-
pected to produce extremely low-quality images that are easily identified as fake by the 
discriminator (as illustrated in Figure 9). We remark on the performance of all the exper-
iments using the CycleGAN model. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Loss of (a) fake samples; (b) real samples and (c) generator. 

0

0.5

1

1.5

2

0 100 200 300 400 500

Lo
ss
_f
ak
e

Epochs

d-fake

0

0.5

1

1.5

2

0 100 200 300 400 500

Lo
ss
_r
ea
l

Epochs

d-real

0

1

2

3

4

5

0 100 200 300 400 500

lo
ss
_g
en

Epochs

d_gen

Figure 9. Loss of (a) fake samples; (b) real samples and (c) generator.

5. Discussion

We have conducted different experiments using the CycleGAN model to validate
our own dataset and to open perspectives for future works. We have performed the best
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results in generating and classifying lumbar intervertebral discs on axial view MRI. From
the analysis and discussion results introduced in Tables 2 and 3, we remark that a distinct
performance has been achieved in terms of IoU and accuracy. Our system has a higher
and clearer performance compared to other CAD systems. Additionally, using axial view
MRI aids radiologists in the recognition of herniation types (median, foraminal). Moreover,
locating intervertebral discs on axial view MRI is more significant than on sagittal views.
The performed results for lumbar herniated disc detection and classification of herniated
discs are promising, and highlight the importance of CycleGAN for dataset generation,
classification and detection. To the best of our knowledge, this is the first use of CycleGANs
on our dataset including axial view MRIs and collected from university hospital of Sousse,
which presents the contribution and originality of our work. For this reason, we will further
continue research on putting forward methods and techniques based on GANs, which are
very interesting models applied in many fields.

6. Conclusions

We have developed a system based on GANs using the CycleGAN model. We have
utilized intervertebral discs on axial view MRI in order to help radiologists in performing
lumbar disc stenosis. Our dataset includes a clinical lumbar intervertebral disc MRI study
of 1500 patients with symptomatic lower back pain. We have proposed an image synthesis
approach using the CycleGAN model. We have presented data including a lumbar inter-
vertebral disc generation technique using an adversarial network and random sampling,
and have demonstrated it on lumbar disc localization and classification. We began with an
incompletely labeled dataset and generated newly labeled images by randomly sampling
labeled lumbar intervertebral discs and generating lumbar intervertebral disc images with
backgrounds. We used these generated examples to train a supervised intervertebral discs
detection system. This model outperformed existing state-of-the-art detection detectors
when doing testing on our test set. The performance of the developed system is close to
that of a model on fully labeled samples. Even though the implementation of the new loss
function can effectively reduce the occurrence of unknown cells, given the result of the
CycleGAN model, few new intervertebral discs that can affect the accuracy of the results
can still be generated.

The advantages of the proposed technique with respect to other lumbar herniated
detection and classification approaches can be summarized in two points. The first one
is the parallelism of the generation and detection of lumbar intervertebral discs using the
CycleGAN model performing at 97.2% IoU, which represents the highest result compared
to previous methods. The lumbar intervertebral discs of generation and detection using
the proposed method can easily and rapidly generate and localize intervertebral discs
from axial view MRI compared to conventional lumbar disc detection methods and U-net
convolutional networks, which require a lot of computation time as well as a large amount
of data, which is sometimes not easily available. Additionally, we have worked on a
challenging database by adding normal and herniated intervertebral discs. Compared to
most intervertebral disc detection and classification methods using deep convolutional
neural networks, the proposed method has the highest detection rate values, which can
reach 97.2%, even in a noisy context. We conclude that our method is more reliable than
many other methods and can provide high detection and classification rates. Moreover,
the capacity of treating a huge number of axial view MRIs is a real advantage of this
approach. In future works, we will propose the use of a pix2pix that represents a type of
conditional GAN to improve the detection and classification rates and lumbar intervertebral
disc localization for each case. For future work, we will use an optimizer that merges
the speediness of the capacity of generalization and Adam on new data. A possible
improvement to the suggested system is the incorporation of AdaBound to significantly
improve the detection rate, and more magnetic resonance images to train the network for
higher accuracy.
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