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Abstract: Face palsy has adverse effects on the appearance of a person and has negative social and
functional consequences on the patient. Deep learning methods can improve face palsy detection
rate, but their efficiency is limited by insufficient data, class imbalance, and high misclassification
rate. To alleviate the lack of data and improve the performance of deep learning models for palsy
face detection, data augmentation methods can be used. In this paper, we propose a novel Voronoi
decomposition-based random region erasing (VDRRE) image augmentation method consisting of
partitioning images into randomly defined Voronoi cells as an alternative to rectangular based
random erasing method. The proposed method augments the image dataset with new images, which
are used to train the deep neural network. We achieved an accuracy of 99.34% using two-shot learning
with VDRRE augmentation on palsy faces from Youtube Face Palsy (YFP) dataset, while normal
faces are taken from Caltech Face Database. Our model shows an improvement over state-of-the-art
methods in the detection of facial palsy from a small dataset of face images.

Keywords: data augmentation; small data; Voronoi tessellation; few-shot learning; deep learning;
face recognition; face palsy

1. Introduction

Facial palsy, commonly referred to as Bell’s palsy, is a major kind of facial nerve
paralysis that leads to the loss of control of muscles in the affected facial areas [1]. Some
of the symptoms include the deformity of the face and dysfunction of facial expressions
on the affected side of the face. The impact of the disease in face palsy-affected patients
could lead to serious disruption to their everyday living. The progress of the disease often
leads to associated physical, psychological, and social disorders as the ability of the person
to express his/her emotions and effectively communicate is hindered, leading to reduced
quality of life, depression, and social stigmatization [2]. Currently, the detection of facial
palsy depends solely on expert clinicians by performing a visual examination of facial
symmetry and evaluation of facial expression dysfunction. The major challenge in the
diagnosis of facial palsy is the lack of successful measures targeted towards the effective
evaluation of facial nerve function, as it could play a crucial role in understanding the
advancement of the disease [3].

In recent years, several computer vision-based methods for diagnosis and automated
recognition of facial palsy have been proposed, while most methods utilized handcrafted
features and classifiers [4]. A study in [5] introduced the electronic facial paralysis assess-
ment tool, while the authors of [6] applied facial motion analysis to evaluate not just Bell’s
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palsy patients, but also synkinesis (involuntary contraction of muscles). Authors in [7]
proposed multi-resolution local binary patterns (LBPs) to identify the local and global
region patterns of facial palsy. The symmetry of facial movements was assessed using
resistor-average distance (RAD) between the facial features. Support vector machine (SVM)
was used for measuring evaluating facial palsy symptoms. A dataset of 197 videos was
used, on which their proposed model achieved 94% accuracy. Authors in [8] presented
an active shape model (ASM) for the detection of facial landmarks on patient’s faces. The
faces were fragmented into eight regions and facial asymmetry was evaluated based on the
separations between points of interest inside each locale and over comparing regions. SVM
with radial basis function (RBF) kernel was used to predict the face palsy degrees using a
database of images from 62 patients.

Authors in [9] proposed using the limited-orientation modified circular Gabor filters
(LO-MCGFs) on face images of 75 facial palsy patients and 10 normal subjects. The
proposed method was applied for noise removal and enhancing desired spatial frequencies.
Besides, the authors integrated bounded filter support to identify the region of interest
(ROI). The authors of [10] presented a smartphone-based diagnostics system, which applied
an increasing face alignment for recognition of facial landmarks and calculation of face
asymmetry index. The authors used linear discriminant analysis (LDA) and SVM classifiers
on a face palsy dataset obtained from 23 face palsy subjects and 13 normal subjects. A
similar study was presented by [11] that applied laser speckle contrast imaging to register
facial blood flow images of FP patients. Facial blood image and RGB color image are used
to extract 68 facial landmarks and reconstruct the 3D model of a face, which is used to train
k-nearest neighbor (K-NN), SVM, and neural network (NN) classifiers, and accomplished
an accuracy of 97.14% on a dataset of 8000 images. However, the drawback is their strong
dependence on prior expert knowledge, which resulted in limitations in the accuracy of
the classifier.

The increasing ability of deep learning-based methods to automatically learning dis-
criminative features has helped to improve the overall performance of classifiers. Authors
in [12] introduced a deep hierarchical network (DHN) using state-of-the-art YOLO-v3 [13]
architecture for facial palsy detection. A further study by [14] used a deep convolutional
neural network (CNN) for feature extraction and adopted a prediction model based on
unilateral peripheral facial paralysis evaluation. A similar study by authors in [15] adopted
a deep network to acquire palsy-specific features from face images, and a generative ad-
versarial network (GAN) was used for creating a synthetic training dataset. A further
study [16] used a multi-task CNN framework for concurrent facial detection and facial
symmetry analysis. The authors in [17] applied a cascaded encoder strategy based on
a dual-encoder structure to improve recognition of the facial semantic features for the
prediction of grading facial paralysis. Finally, a study [18] suggested 3DPalsyNet, a 3D
CNN architecture built upon the ResNet backbone, for the recognition of mouth motions
during some dynamic tasks, which allows for performing facial palsy stage grading.

Research findings from discussed recent studies using the state-of-the-art-methods
for automatic detection of a facial palsy show that facial asymmetry is the major factor
in the detection of facial palsy [19], which underscores the importance of facial symme-
try/asymmetry and facial beauty studies [15,20]. Another problem related to facial palsy
detection is the lack of a large face image dataset required for training (or retraining)
through transfer learning [21] modern complex deep network models such as VGG-16 [22]
or ResNet [23]. For example, the dataset used in [24] has only 1049 clinical images, while
the YouTube Facial Palsy (YFP) dataset [12] has videos from 21 subjects, which makes the
training of deep networks while avoiding overfitting a difficult task.

The application of data augmentation methods has been successfully applied in face
recognition systems to improve the performance of training models and overall learning
results [25]. Data augmentation increases variation in the dataset in the case of small and
insufficient data [26] and addresses the challenges related to the collection of more data
such as patients’ privacy issues and so on. One of the most widely used approaches is the
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application of geometric and color transformation methods to create an augmented dataset
of images [27]. Examples of the transformation method include affine transformations,
blurring, brightness shift, channel shuffle, contrast shift, elastic transformations, image
blending, reflection, rotation, and scaling [28]. The approaches based on data disruption are
based on increasing the number of images in the dataset by generating images with reduced
informational content. The examples include random cropping and random erasing [29].
These methods can improve the generalization ability of the network, thereby preventing
it from overfitting. Changing the brightness, contrast, saturation, and noise in an image
entails photometric distortion of images. Random scaling, cropping, flipping, and rotating
are used in geometric distortion of images. Random erase, cutout, hide and seek, grid
mask, and mixup image transforms are part of image occlusion. Random erase [29] is an
augmentation technique that substitutes random values for regions of the image or the
mean pixel value of the training set. It is usually applied with a varying percentage of
the erased image and the erased field aspect ratio. It keeps the model from memorizing
and overfitting the training data. Square regions are masked during training in cutout
augmentation [30]. Only the first layer of the neural network hides cutout regions. This
augmentation technique is similar to random erase, but in overlaid occlusion, with a
constant value. In meshcut [31], a mesh mask transforms an image into a mosaic made
with several image parts. In hide and seek [32], we break the picture into a patch grid and
then conceal each patch with a certain probability. In cutmix [33], the image patches are
cut and pasted among training set images, while ground truth labels are also mixed in
accordance with the area of patches. The regions of the picture are hidden in a grid fashion
in the gridmask augmentation [34]. This forces the classifier to learn component portions
of what makes up an individual entity, similar to hide and seek. In YOLOv4, the mosaic
augmentation was introduced [35]. It incorporates four training images into one. This
makes it possible for the model to learn how to classify objects on a smaller than average
scale. It also helps the model to locate various image types in various parts of the frame.

Another solution for small datasets is to apply the principles of one-shot learning [36]
and a few shot-learning [37]. The idea capitalizes on transfer learning, while a network is
retrained to solving new tasks containing only a few (or one, in an extreme case) samples
with supervised information. Such an approach has been successfully applied in face
recognition and identification systems before [38]. Few-shot learning methods can be
classified into three types: metric-based learning, meta-learning, and fine tuning. Metric-
learning approaches [39] address few-shot classification tasks by training an embedding
function for the feature space. Meta-learning methods [40,41] tackle the few-shot learning
problem by training neural networks to learn novel classes. Fine-tuning methods improve
the performance of the neural network by updating its weights. In this paper, however, we
use the data augmentation approach to few learning.

Based on the limitations of the existing methods for face palsy recognition and identi-
fied knowledge gaps, this paper presents the following contributions:

e A new method for face palsy recognition based on the principles of data augmentation
and few-shot (one-shot and two-shot) learning;

e A novel image augmentation method, called Voronoi decomposition-based random
region erasing (VDRRE), for generating new artificial images with randomly covered
regions of irregular shape and augmenting the original dataset for more efficient
neural network training;

e  Ahybrid face palsy detector that combines the pre-trained SqueezeNet network [42] as
feature extractor and error-correcting output codes (ECOC)-based SVM (ECOC-SVM)
as a classifier.

Other parts of this paper are outlined as follows. Section 2 describes the methodology
and techniques used in this paper. The experimental results are discussed and a compar-
ison with state-of-the-art-methods is presented in Section 3. Finally, Section 4 presents
conclusions and future recommendations.
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2. Methods

For the study, we focus on detecting face palsy from a very small number of training
instances available for a deep network, thereby adopting the one-shot learning approach.
The outline of the methodology is presented in Figure 1 and is divided into five stages,
as highlighted below. A further explanation of all the processes involved is discussed in
other subsections.
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Figure 1. Flow diagram of our proposed methodology. YFP, Youtube Face Palsy.

e  Data collection: The first stage is the original face image dataset consisting of 1555 data
samples (1105 of palsy face dataset and 450 of normal face dataset).

e Data preprocessing: This stage includes the removal of noise and improvement of
image contrast using contrast limited adaptive histogram equalization (CLAHE).

e Few-shot learning: This stage tries to mimic human intelligence using only a few
samples (one or two images, for each class) for supervised training.

e  Face detector: We adopted the improved classical Viola-Jones face detection algorithm,
which depends on the Haar-like rectangle feature expansion [43].

e Augmentation strategy stage: we use the proposed Voronoi decomposition-based
random region erasing (VDRRE) image augmentation method as well as adopted other
data augmentation techniques to improve neural network training and generalization
and solve class imbalance, thus addressing the problem of overfitting.

e C(lassification: We adopted the SqueezeNet architecture, which has comparatively low
computational demands, for feature extraction and ECOC-SVM as a classifier.

2.1. Dataset

The dataset used in our study is the YouTube Facial Palsy (YPF) dataset [12]. The YFP
data consist of 32 videos of 21 patients gathered from YouTube and annotated by medical
specialists. From the YFP dataset, we used 1105 palsy face images, which were already
extracted from the YouTube videos by the authors of the dataset and presented as image
sequences with a rate of 6 fps. All face images are frontal images with a unique shot under
different lighting conditions, facial expressions, and cluttered backgrounds. The faces in
these images have a resolution of 227 x 227 pixels.
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The normal images were taken from Caltech Face [44] Database, which contains
450 face images of 27 unique people under different lighting /expressions/backgrounds.
The size of these images has a resolution of 896 x 592 pixels, which were resized to
227 x 227 pixels to match the resolution of the faces in the YFP dataset. Therefore, the full
dataset consists of 1555 facial images, which includes 1105 palsy images and 450 normal
(non-palsy) images. An example of face palsy images is given in Figure 2.

Figure 2. Examples of face palsy images.

2.2. Few-Shot Learning

Few-shot learning (FSL) is a learning from few or single training items [37]. The
motivation for this model is based on the unique intelligence in humans with the ability to
effectively generalize after only seeing a single example of a specific object. Thus, in this
study, we have integrated the FSL approach to learning information about image features
from a small number (one or two) of labeled image samples for each of the classes.

Few-shot learning concerns the practice of providing a learning model only with a
very small amount of data for training, which is contrary to the common practice of using
a very large amount of data. Formally, the few-shot approach trains a classifier &, which
predicts label y; for input x;. Commonly, one considers the N-way-K-shot learning, in
which the training dataset has KN samples from N classes each with K instances. Few-shot
learning trains a classifier /1 given only a few input—-output sample pairs, where output y;
is the class (label) of the independent variable x;. An extreme case of few-shot learning is
one-shot learning (OSL) [38], in which there is only one instance with class label available
for the training of the classifier.

In few-shot classification, the goal is to reduce prediction error on unlabeled data.
Let dataset d € D contain pairs of features and labels {(x;, y;) }, where each label belongs
to a known set of labels £. Dataset d is divided into two parts: d = (S, B), consisting
of training S and testing B samples. We accept a N-class K-shot problem, where the
training set contains K labelled examples for each of the N classes. To implement it, we do
the following:

1. Take a subset of labels, T C L.

2. Take a training set ST C D and a training set BT C D. Both contain only data with
labels from the subset fromitem 1: L, y € L, V (x, y) € sT BT.

3. Thesetof ST is fed to the input of the classifier model.
The final optimization uses many training sets B to compute the loss function

and update the model parameters through backpropagation, just like in the case of
supervised learning.

2.3. Image Pre-Processing

For image pre-processing, we ensured that all the images were well aligned using
the face detection method described in Section 2.4. We converted all colored face images
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into grayscale to eliminate unwanted color cast using contrast limited adaptive histogram
equalization (CLAHE). CLAHE [45] was used to clip the histogram at a predefined value
and limiting contrast amplification, and thus eliminating shadows, light variations, and
removing noise. This study further applied an improved CLAHE method that replaces the
clip-redistributed histogram with the so-called neighborhood conditional histogram [46].
Using this method, we have optimized the local contrast and enhanced the face images
based on the edge information as presented by the algorithm in Figure 3.

Start:
Process:

End

Input: Image X
Output: Enhanced image Y

Step 1: Split the image X into multiple equal-sized non-overlapped sub-blocks
Step 2: ¥ sub-block, select the neighbourhood conditional histogram H; ;

Step 3: Derive the global mapping function T; and the original local mapping

Step 4: Calculate the updated local mapping function Ti’fj based on T¢ and T;;
Step 5: Achieve improved CLAHE result Y, and T} s

Step 6: Map X with T¢ to get the global enhanced result Yy

Step 7: Improve the local contrast combining Y; and Y

Step 8: Output Y

function T;; based on H; j;

Figure 3. Algorithm of image enhancement.

The typical results of applying histogram equalization for the normalization of image
contrast are shown in Figure 4.

Figure 4. Example of contrast enhancement: (A) original image with a face and (B) contrast-enhanced image.

2.4. Face Detection

We performed detection of the human faces in a specific image intending to identify
and segment the human face from the background. Here, we adopted the improved
Viola—Jones face detection method, which depends on the Haar-like rectangular feature
expansion [43]. This detection algorithm integrated 2D convolution separation and image
re-sampling techniques [47]. The classical Viola—Jones algorithm uses classifier boosting to
merge shape and edge, template matching, and face feature models together. Initially, the
Haar-like feature matrix is applied to scale facial features, and further feature evaluation is
performed on the integral image. Instead of the orthogonal Haar-like rectangle features,
the improved method uses a 45°-rotatable rectangle feature. The features were used for
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calculating the integral image value, and the pixel sum of all regions was obtained by
image traversal. To effectively sample the face from the rest of the images, a cascade of
weak classifiers was used. AdaBoost [48] was applied to develop stronger classifiers and
to form a cascade classifier for removing non-face images and enhancing accuracy. This
allows to eliminate of all redundant features and weak classifiers are cascaded to develop a
powerful single classifier while window sliding over the entire image. An example of face
detection using the 45°-rotated features is shown in Figure 5.

Bi-adjacent

I'ri-adjacent
matrix - I ~ '

A

Figure 5. An example of face detection with rotated Haar-like rectangular features: (A) 45°-rotatable rectangle features, (B)

original image with a face, and (C) face detection result.

2.5. Data Augmentation

In this study, we considered image augmentation methods for generating artifi-
cial/synthetic data samples. The one-shot learning (OSL) samples for each class were
augmented using the following image transform approaches: geometric transformation
(rotation, cropping, reflection, translation, flipping), color transformation (histeq, enhanced
histeq, adapthisteq, contrast adjustment, sharpening), and additionally noise was removed
using blur filter, Gaussian filter, and edge-aware noise reduction.

For image augmentation, we have elaborated a random partition erasing image
augmentation. The idea is based on random image cropping and patching proposed in [49]
and random erasing proposed in [29], which used the rectangular blocks to occlude the
image in random locations with noise (i.e., random pixel color values drawn from the
uniform distribution). Here, we propose a novel image augmentation method, called
Voronoi decomposition-based random region erasing (VDRRE). The method is based on a
partition of a 2D plane into regions close to each of a given set of points. The coordinates of
these points are generated using random numbers drawn from a uniform distribution as
follows. First, we randomly select a number N of points in the image. Then, we create a
partition, i.e., Voronoi tessellation [50], of an image into Voronoi regions close to each of a
given set of objects as follows.

Assuming P = {pjy, p2, ..., pn} is a set of generators. For any region of X in the
plane, d(X, p,) represents the distance from X to the generator point p,. For all possible
locations of X in S, we set to the nearest generator p,, € P with a definite distance metric d.
However, if it is close to two generators in P, then the distance becomes an edge; otherwise,
if it is close to more than two generators, the location becomes a vertex. For any point p in
the space, let dist(p, X;) denote the Euclidean distance from the point p to the primitive
region X;. We can define the bisector of X; and X; by Equation (1) and the dominance
region of X; over X; by Equation (2):

b(X;, X;) = {p|dist(p, X;) = dist(p, X;) }, 1)

Dom(X;, X;) = {p|dist(p, X;) < dist(p, X;)}, )
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For a primitive X;, we can define the Voronoi region for X; as follows:
V(X;) = N jzDom(X;, X;), ®)

This set of points, V;(S), is the Voronoi polygon associated with p;. Formally, V;(S) is
described as follows:

Vi(S) = {xin Rz‘ d(x, p;) < d(x, q); all gin S}, 4)

This assignment results in an image decomposition, called Voronoi tessellation, that
divides an image into several Voronoi cells bounded by image boundaries. Finally, a
randomly selected Voronoi cell is filled with random pixel color values drawn from a
uniform distribution to complete the occluding and produce a new image.

The method improves over the random erasing [29] method, as Voronoi tessellation
generates more complex shapes of polygons beyond the simple rectangular shapes used.
The method has only one hyperparameter to evaluate, i.e., the number of regions to erase
as depicted in Figure 6 (the number of regions for partitioning is defined as six). Using this
novel image augmentation method, we have created more images to enrich the training
dataset based on different levels of occlusion, thus we were able to develop a more robust
classification model while minimizing the possibility of overfitting.

Voronoi
decomposition-
based random
region erasing

Figure 6. (A) An example image and its Voronoi decomposition and (B) example images generated using the proposed

random region erasing method.

2.6. Feature Extraction

Convolutional neural networks (CNNSs) are commonly used to automatically ex-
tract discriminative features from images. Usually, pretrained neural networks such as
AlexNet [51], VGG-16 [22], or ResNet [23] are used. A common approach is to remove fully
connected layers from a pretrained network while retaining the remaining network, which
has a series of convolution and pooling layers, as a fixed feature extractor [52]. Although, a
recent study [53] has demonstrated that a shallow CNN constructed from just a few initial
convolutional layers of a deep pretrained CNN can be very effective as well.

This study has applied a deep CNN to extract features from the YFP images. We
adopted a lightweight pre-trained CNN, known as SqueezeNet [42], which has less than
1.5 million weights and performance close to AlexNet. The SqueezeNet architecture,
depicted in Figure 7, was pre-trained on the ImageNet dataset [51], which has several
millions of different images divided into 1000 classes.
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Figure 7. SqueezeNet architecture. (A) Full view and (B) fire unit with squeeze and expand layers.

We selected SqueezeNet over AlexNet and other alternatives (such as ResNet, VGG,
Inception, and so on) because SqueezeNet has almost the same number of accumulated
operations as AlexNet and could work with smaller file sizes of less 0.5 MB and with
a smaller size of input images without any need for resizing, albeit the image size of
224 x 224 is still the ideal case. The main functional block of the SqueezeNet network is the
fire unit, which is made of a squeeze layer (SL), expand layer (EL), and some pooling layers
(PL). SL reduces the size of the feature map, while EL expands it again. To achieve a high
level of abstraction, we increased the number of filters using the stride of two convolutional
layers, and increased the depth and minimize the size of features. Our proposed solution
can mitigate the problem of overfitting through transfer learning from a CNN pre-trained
on an initially large generic dataset of images, rather than training it with random initial
weights, as suggested in [54].

2.7. Classification

For classification, we adopted the multiclass, error-correcting output codes (ECOC)-
based support vector machine (SVM) model (ECOC-SVM). The ECOC algorithm optimizes
misclassification costs using class prior probabilities. This model creates @ binary
SVM models using the 1-vs-1 coding design, where K is the count of unique class labels (for
face palsy detection problem, the severity grade of palsy can be evaluated using five levels
(grades) from I—mild to V—total paralysis [55]). The ECOC model can enhance overall
performance when compared with other multiclass models [56]; however, if needed, it can
be easily reduced to the binary classifier. We used SVM because it performs optimally in
cases where there is a distinct margin of separation among classes. It has also been shown
to perform well in highly dimensional data, particularly when the number of dimensions
exceeds the sample size [57].

2.8. Performance Metrics

Considering class imbalance challenges with the dataset, evaluating just one metric
such as accuracy might not be sufficient to investigate the overall performance of the
model. We measure the performance of our model using four evaluation metrics: accuracy,
precision, recall, and F1-score, which are expressed as follows:

e  Accuracy is the measure of correctness of predicted classes:

(TP + TN)

A = 100% - ,
couracy (TP+ TN + EP + FN)

©)
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e  Precision is the proportion of predicted positive class that comes from the correctly
real positive (palsy) class:
TP

Precision = 100% - m, (6)

e  Recall is the proportion of real positive class (palsy class) that are correctly predicted:

TP
R =100% + ———— 7
ecall 00% (TP + EN)’ (7)

e  Fl-score is the weighted harmonic average of precision and recall:

Precision x Recall
F1— Score = 2 ) 8
core i (Precision + Recall) ®

2.9. Experimental Settings

The proposed method was implemented on MATLAB R2019a (Mathworks, USA)
running on Windows 10 64 bits Intel Core i5 CPU and 8 GB RAM. First, the dataset images
were processed using the improved CLAHE method to improve contrast and reduce
noisiness. Then, the improved classical Viola-Jones face detection algorithm was applied to
detect faces in the images. The accuracy of the feature detection stage was 100%, which was
verified manually by checking each image. The high accuracy of face detection is explained
as follows: each image in a dataset contains a single person with a frontal upright face in
front of the camera, which makes the face detection task relatively easy. For further stages,
we use the detected face segments in each segment to reduce the impact of the background
on the training and classification results.

The experiments performed in this study are categorized into three scenarios; the
first experiment was conducted using the original images from the YFP dataset, and the
results were used as a baseline to compare against our proposed method. For the second
experiment, we adopted the one-shot learning approach, and we randomly selected a single
image for each class as a training sample. This one-shot sample data were augmented
using the proposed VDRRE method to create 210 new samples for each class (a total
of 420 images). The experiment was repeated 10 times, and the average of performance
measures was calculated and used for evaluation. For the third experiment, we adopted the
FSL approach. We randomly selected two images for each class as a training sample. These
two-shot sample data were augmented using the proposed VDRRE image augmentation
method to create 175 new samples for each class (a total of 700 images). The experiment
was also repeated 10 times, and the average of performance measures was calculated and
used for evaluation. The generated (one-shot and two-shot) images were used for training
the SqueezeNet model, while images from the original dataset were used for testing. We
ensured that there was no overlap between any of the datasets and testing was conducted
on the original dataset only.

For training the SqueezeNet network, we used a learning rate of 0.00001, the stochastic
gradient descent momentum (SGDM) optimizer, a fixed mini-batch of size 16, while the
maximum set of epoch numbers was set to 50. For exponential decay rates, moment
estimates, and epsilon parameters, we used the values of 0.9, 0.999, and 108 respectively.
We used early stopping of training [58] to avoid overfitting. We stopped the training as
soon as the validation loss began to rise, meaning that the generalization ability of the
model started to decrease. The parameters of the trained model right before the validation
loss starts to increase were saved and used for testing.

Finally, we used the activations from the final convolutional layer (which has 1000 weights)
as features to train the ECOC-SVM classifier. Note that our methodology assumes that,
in the general case, palsy images with palsy severity score can be used, thus we use
the multiclass ECOC-SVM classifier. In this case, as we used the YFP dataset with bi-
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nary labeled—'normal” and ‘palsy’—images, it is equivalent to a SVM classifier with a
linear kernel.

3. Experimental Results

As suggested by authors in [12] and for comparability, we split the dataset randomly
into five subject-independent subsets, and performed five-fold cross-validation. Here, 80%
of the dataset was used for training and 20% for testing. The experiments were repeated
ten times each and we computed various performance (accuracy, recall, precision, and
F1-score) metrics, which are reproduced in detail in Table 1, while the average values with
95% confidence limits are given in Table 2.

Table 1. Classification performance for baseline (without augmentation) as well as one shot and two
shot learning scenarios.

Metri Statisti without with Augmentation
etrics tatistics Augmentation One-Shot Two Shot
Mean 78.62 99.07 99.34
Accuracy (%) Min 63.59 97.35 98.87
y Max 91.16 99.7 99.80
STD 7.89 0.72 0.34
Mean 81.06 98.85 99.35
Precision (%) Min 72.61 95.45 98.66
recision {7 Max 90.31 99.77 99.66
STD 6.29 1.40 0.33
Mean 91.85 99.71 99.74
) Min 78.28 99.09 99.43
Recall (%) Max 99.32 100 100
STD 7.57 0.36 0.25
Mean 85.91 99.28 99.54
. Min 75.34 97.67 99.21
Fl-Score (%) Max 94.03 99.77 99.83
STD 528 0.66 0.23

Table 2. Performance of the hybrid classifier for palsy recognition with respect to the use of the pro-
posed image augmentation method. Best results are shown in bold. VDRRE, Voronoi decomposition-
based random region erasing.

Average Performance with 95% Confidence Limits
Accuracy (%) Recall (%) Precision (%) F1-Score (%)
Without augmentation 78.62 £ 5.65 91.85 £ 5.41 81.06 £ 4.50 85.59 £+ 3.78
With random erase 9291+ 112  9614+083 9396+ 187  9504+142
augmentation
With VDRRE
augmentation 99.07 £ 0.60 99.72 £ 0.28 98.85 +1.15 99.28 £+ 0.55
(one-shot learning)
With VDRRE
augmentation 99.35 + 0.24 99.74 + 0.17 99.35 + 0.24 99.54 £ 0.16
(two-shot learning)

Methods

Figure 8 shows the confusion matrices for all three experiments. The confusion
matrices show aggregated results from multiple cross-validation folds. Note that, for
the one-shot and two-shot learning experiments with image augmentation, the rate of
misclassification is low, which indicates good performance.
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No augmentation

normal 180 180 50.0%
A palsy 52 5.9%
77.6% 82.2%
22.4% 17.8%
normal palsy
Augmentation & one-shot learning
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normal palsy

Predicted Class

Figure 8. Confusion matrix showing the performance of our model on (A) original dataset, (B) using
augmentation and one-shot learning, and (C) using augmentation and two-shot learning.

The best performance was obtained using two-shot learning with the proposed VDRRE
method using the hybrid SqueezeNet/ECOC-SVM classifier, achieving 99.34% accuracy,
99.74% recall, 99.35% precision, and 99.54% F1-score. The results for the corresponding case
with one-shot learning were only slightly worse, achieving 99.07% accuracy, 99.72% recall,
98.85% precision, and 99.28% F1-score. However, both one-shot and two-shot learning
with VDRRE augmentation achieved much better results than the baseline (classification
on original dataset images without any data augmentation), which achieved only 78.62%
accuracy, 91.85% recall, 81.06% precision, and 85.59% F1-score.

To effectively visualize the ability of the SqueezeNet network to extract efficient
features, we used the t-distributed stochastic neighbor embedding (t-SNE), which uses
principal component analysis (PCA) for feature dimension reduction. t-SNE [59] is a
nonlinear dimensionality decreasing method that allows for the visualization of high-
dimensional data into a 2D map as shown in Figure 9. The results depicted in Figure 9
clearly show that the 2D embeddings of palsy face images make a cluster, which is well
separated from the 2D embedding of normal face images.

To further compare models in three scenarios (original images without augmentation,
one-shot learning with augmentation, and two-shot learning with augmentation), we used
the receiver operating characteristic (ROC) curve, which is reproduced in Figure 10.
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Figure 9. Data visualization using mapping into two dimensions using t-distributed stochastic
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Figure 10. Receiver operating characteristic (ROC) curve showing the area under curve (AUC) curve
for the original data as well as one-shot and two-shot learning based on the proposed Voronoi

decomposition-based random region erasing (VDRRE) method.

The ROC curves were used to calculate the area under curve (AUC) metric, which is
equal to 0.7967 (95% CI = [0.7944, 0.7989]), 0.9958 (95% CI = [0.9957, 0.9959]), and 0.9956
(95% CI =[0.9955, 0.9957]), for original images with no augmentation as well as one-shot
learning and two-shot learning scenarios, respectively. Here, the confidence intervals (Cls)
were calculated by performing bootstrapping on the classifier performance matrix values
while assuming their normal distribution. These results show that, in both the one-shot
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and two-shot scenario, the proposed VDRRE method allows to achieve significantly better
performance over the “no augmentation” case.

For statistical analysis of the results, we used a two-sample t-test for equal means,
which returns a decision on the null hypothesis that the data in both compared samples
come from normal distributions with equal means, but unknown variances. The tests
were performed at the 5% significance level. The results, presented in Figure 11, show that
there is a significant (p < 0.001) difference between the one-shot learning scenario with
VDRRE augmentation and the baseline (without any augmentation), as well as between
the two-shot learning scenario with VDRRE augmentation and the baseline. However, the
difference between the performance of the one-shot learning scenario and the two-shot
learning scenario was not significant (i.e., equal means hypothesis is not rejected).
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Figure 11. Results of two-sample t-test for the original dataset as well as one-shot and two-shot

scenarios: (A) accuracy; (B) recall; (C) precision, and (D) Fl-score. Here *-p < 0.05, **-p < 0.01,
***-p < 0.001, n.s.—not significant.

Comparison with Related Work and Discussion

To validate our results, we compared them with the experimental results of rele-
vant studies using the same YFP dataset, as summarized in Table 3, which shows the
results of current studies from [12,60]. The comparison shows that our results outper-
form the existing studies with a clear improvement in accuracy, precision, and recall. The
improvement in the performance is due to the use of the proposed novel VDRRE image

augmentation method, which allowed to increase the number of images available for neural
network training.
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Table 3. Comparison of results with related work. Best values are shown in bold. CNN, deep convo-
lutional neural network; LSTM, long short-term memory; GAN, generative adversarial network.

Methodology Performance Metrics
References
Classifier Data Augmentation Accuracy (%) Precision (%) Recall (%)
Deep Hierarchical
Network NA 91.2 - - [12]
. GAN, translation and
Parallel Hierarchy ! .
CNN + LSTM rotatlon_ 94.81 95.6 94.8 [59]
transformation
Geometric and' color 99.07 98.85 99.72
Our proposed model transformation Our paper
VDRRE (proposed) 99.34 99.43 99.35
No augmentation 89.25 95.43 89.13

Despite the good results achieved owing to the proposed image augmentation method,
the following limitations of using a small dataset remain: (1) small datasets have smaller
variability in representing the severity of the facial palsy disease; (2) the danger of overfit-
ting (which results in a poor generalization of the deep network models) remains. However,
from Figure 7, one can note that overfitting is not noticeable when image augmentation
is applied as there is no large difference between training loss and validation loss. The
validity of our results can be influenced by the binary setting of the experiment (i.e., normal
vs. palsy), which does not discriminate between severity levels of facial palsy. This means
that the variability within the ‘palsy’ class may be larger than between the ‘palsy” and

‘normal’ classes. However, our methodology is generic and allows for using other facial

palsy datasets with severity level class labels owing to the multiclass classifier ECOC-SVM
used in the last stage of the workflow, which allows for seamless substitution of the datasets.
In our future work, we will use the proposed methodology for the prediction of a palsy
severity grade as well.

4. Conclusions

This paper introduced a classification workflow based on deep learning for facial
palsy detection and classification. Our proposed methodology introduced a novel image
augmentation method that extended the random erasing augmentation with irregular
regions constructed using Voronoi tessellation. Then, we used an automatic deep feature
extraction based on the SqueezeNet deep neural network, followed by the multi-class
classifier at the final stage of the workflow. As a result, the proposed methodology can
be applied for facial palsy assessment using various facial palsy datasets, including the
multi-class ones, which have face images labeled with palsy severity grades.

To validate the efficiency of our model, we adopted the human intelligence-inspired
model based on few-shot learning to train our system to recognize palsy face images from
a few examples. We proposed the VDRRE image augmentation method for generating
new training samples for one-shot and two-shot learning scenarios. We used our newly
generated image datasets to train the proposed hybrid classifier and used the images
from the original YFP and Caltech datasets to test. Our study showed the effectiveness
of the proposed approach for facial palsy detection, achieving a statistically significant
(p < 0.001) improvement over the performance of the baseline classification scenario as well
as demonstrating a higher performance than the results of other authors achieved using
the same YFP dataset.

The future recommendation is to explore other advanced data augmentation meth-
ods to generate synthetic datasets and develop a robust classifier with low computa-
tional complexity through combining transfer learning models for the early detection of
face palsy with low severity grades. We also will explore the robustness of our method
using different face palsy datasets and performing a cross-dataset validation of our
proposed method.
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