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Abstract: Heart disease is currently the leading cause of death in the world. The electrocardiogram
(ECG) is the recording of the electrical activity generated by the heart. Its low cost and simplicity have
made it an essential test for monitoring heart disease, especially for the identification of arrhythmias.
With the advances in electronic technology, there are nowadays sensors that enable the recording
of the ECG during the daily life of the patient and its wireless transmission to healthcare facilities.
This type of information has a great potential to detect cardiac diseases in their early stages and
to permit early interventions before the patient’s health deteriorates. However, to usefully exploit
the large volume of information obtained from ambulatory ECG, pattern recognition techniques that
are capable of automatically analyzing it are required. Tandem feature extraction techniques have
proven to be useful for the processing of physiological parameters such as the electroencephalogram
(EEG) and speech. However, to the best of our knowledge, they have never been applied to the ECG.
In this paper, the utility of tandem feature extraction for the identification of arrhythmias is studied.
The coefficients of a regression using Hermite functions are used to create a feature vector that
represents the heartbeat. A multiple-layer perceptron (MLP) is trained using these features and
its posterior probability outputs are used to extend the original feature vector. Finally, a Gaussian
mixture model (GMM) is trained on the extended feature vectors, which is then used in a GMM-based
arrhythmia identification system. This approach has been validated using the MIT-BIH Arrhythmia
database. The accuracy of the Gaussian mixture model increased by 15.8% when applied over
the extended feature vectors, compared to its application over the original feature vectors, showing
the potential of tandem feature extraction for ECG analysis and arrhythmia identification.

Keywords: tandem feature extraction; Hermite function; arrhythmia identification; ECG

1. Introduction

Cardiovascular diseases are the main cause of death in the world [1,2]. Approximately
18 million people died from cardiovascular diseases in 2019, representing 33% of all deaths
worldwide. In the near future, it is expected that the proportion of global deaths from
heart disease will increase [3], and this increase will be more pronounced in developing
countries due to changes in diet and lifestyle derived from the greater purchasing power
of their citizens [4].

The electrocardiogram (ECG) is a fundamental test in the clinical routine for the di-
agnosis and monitoring of cardiovascular diseases. Its low cost, simplicity of usage,
non-invasive nature and the simplicity of the instrumentation necessary for its acquisition,
make it an ideal candidate for long-term ambulatory monitoring during the patient daily
life [5,6]. In the ECG, a lead is a measure of the electrical activity of the heart given by
the difference in potential between two points. This difference can be measured between
two electrodes (bipolar lead) or between a virtual point and an electrode (monopolar
lead). Different leads provide different perspectives of the electrical stimulus, and therefore
complementary information.
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The QRS complex is the most distinctive element of the heartbeat in an ECG [7].
It corresponds to the ventricular depolarization, which causes contraction of the right
and left ventricles. Normal QRS complexes last between approximately 60 and 120 ms.
The duration, amplitude and morphology of the QRS complex provide valuable informa-
tion about the state of the heart and are useful in the diagnosis of cardiac arrhythmias,
that is, of conduction abnormalities and other heart disorders (see Figure 1). Nowadays,
there are algorithms that are capable of detecting the position of the QRS complexes with
an acceptable degree of satisfaction, obtaining a sensitivity of about 99.9% [8]. However,
the identification of the heartbeat morphology is still an open problem [9,10].
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Figure 1. Fragment of an ECG showing different types of heartbeats associated with different QRS morphologies. ‘N’ stands
for normal heartbeat, ‘S’ for supraventricular heartbeat, ‘V’ for ventricular heartbeat, and ‘F’ for fusion heartbeat. (Source:
MIT-BIH Arrhythmia Database, recording 208, between 0:17:45 and 0:17:55).

In the last decade, there have been significant advances in electronic technology, in-
cluding miniaturization of components, increased battery life and decreases in production
costs. At the same time, advances in communication technologies have facilitated the wire-
less transmission of information both in local area networks (such as Wi-Fi, Bluetooth and
Zigbee [11]) and over long distances (such as 4G–5G [12]). This has made the ambula-
tory monitoring of patients during their daily live activities technologically possible and
cost effective [13]. However, all this information has a volume too high to be exploited
manually by healthcare staff. A normal patient has approximately 100,000 heartbeats per
day, and each ECG lead recorded is capturing a different electrical representation of those
heartbeats. Hence the need for pattern recognition techniques for the automatic analysis of
ECG that are suitable for using in the context of a wearable telemonitoring platform [6,14].

1.1. Related Work

Significant research has been conducted on the usage of pattern recognition techniques
in ECG analysis that aim to automatically detect different types of arrhythmias over ECG
recordings. The most widely used pattern recognition approaches for years are based on
two different stages: feature extraction and classification. The feature extraction stage aims
to extract robust (and commonly hand-crafted) features that effectively represent the ECG
signal and the classification stage employs those features to carry out heartbeat classifica-
tion. Topological features derived from persistent homology [15] such as mean, standard
deviation, skewness and kurtosis for persistence, birth time, death time, persistence entropy,
number of dimensions, sums of persistence, number of layers in the landscapes, number of
valleys per layer, and mean, standard deviation, skewness and kurtosis for the number of
peaks per layer, along with other feature types such as demographic data and RR intervals
have been employed in [16]. Some other works present time-frequency-based features
such as the wavelet transform [17–19], wavelet packet entropy [20] and frequency-based
features such as fast Fourier transform [19]. Fusion of different feature sets (morphological
features based on discrete wavelet transform (DWT), statistical variational features and
temporal features) have also been explored [21].

Regarding the classification stage, discriminative models that aim to differentiate
between the heartbeat classes are widely used (e.g., support vector machine (SVM) [17]
and random forest [16,20]). More advanced discriminative models such as convolutional
neural networks have been investigated in [18], and fusion of different classifiers (SVM
and nearest neighbour) were also considered in [21].
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However, in the recent years, the traditional approaches based on those two stages are
being replaced by deep neural network-based approaches. These approaches do not need
the feature extraction stage, since they are able to carry out classification from the raw ECG
signal [22–26]. Transformer models based on attention and encoder-decoder architectures
have also been employed [19,27]. However, all these approaches present an important
drawback when considered to be used as part of a daily live monitoring solution: they
cannot be fully-integrated on a wearable device due to their computational requirements.

1.2. Motivation and Organization of this Paper

The approaches presented in the literature for ECG analysis (and hence for arrhythmia
detection) are commonly based on hand-crafted features. For ECG analysis, Hermite
functions have shown to be a compact and robust representation in the presence of noise
for feature extraction in ECG signal classification systems [28–30]. On the other hand,
the tandem approach for feature extraction was firstly presented in early 2000 [31] for
speech recognition tasks. This aims to augment the original hand-crafted features with
discriminatively-trained features. These features were originally based on a multiple-layer
perceptron (MLP) although linear discriminant analysis (LDA) has also been explored
later for some other signals different to speech. To do so, the MLP is employed to obtain a
posterior probability for each class to be identified. The resulting set of posterior probabili-
ties in the output layer of the MLP is added to the original features to create the so-called
tandem approach. For LDA-based features, the projections of the LDA are employed.
For speech signals, the tandem approach does typically incorporate logarithm and PCA
decorrelation-based transformations to match the speech signal characteristics. This tan-
dem approach has been shown to significantly improve pattern recognition performance
with MLP-based features in speech recognition [32–34], speaker verification [35], language
identification [35–37] and fiber optic recognition [38,39]; both MLP and LDA-based features
proved useful in electroencephalogram (EEG) recognition [40], with the best result obtained
from the MLP-based features.

Based on the power of Hermite functions for ECG signal representation as hand-
crafted features [28–30], this work explores whether the tandem approach could be useful
for the classification of heartbeat morphology. To do so, the proposal uses an augmented
feature extraction strategy, which incorporates new features based on the posterior proba-
bilities output by an MLP to the Hermite-based features. Then, the augmented features
are fed to a Gaussian mixture model (GMM)-based classification system which carries
out the final classification of the heartbeats. It must be noted that the work presented
in [30] also employs Hermite functions for ECG signal representation and MLP for classifi-
cation. However, our work differs from [30] since we propose the use of the MLP within
the feature extraction and we base our classification system in Gaussian mixture modelling.
The work presented in [41], which employs multiscale principal component analysis for
signal preprocessing, statistical features (i.e., mean, average power, standard deviation
and mean value ratio) related to the coefficients of the DWT for feature extraction and
decision trees for classification also differs from our approach since the signal preprocess-
ing, feature extraction and classification stages are all different. Therefore it can be said
that, to the best of our knowledge, this is the first work that employs a tandem approach
for feature extraction in arrhythmia identification from ECG. Moreover, due to the low
complexity of the GMM approach employed for classification in this work, the system is
able to be fully-integrated in a (low-cost) wearable device.

The rest of the paper is organized as follows: Section 2 presents the database used
in this work. The novel tandem feature extraction for ECG arrhythmia identification is
presented in Section 3. The experimental procedure is presented in Section 4. Section 5
presents the experiments and results, which are discussed in Section 6. Finally, Section 7
concludes the paper.



Electronics 2021, 10, 976 4 of 15

2. Database

To validate the technique presented in this work, the most referenced database in the lit-
erature of arrhythmia identification will be used: the MIT-BIH Arrhythmia Database [42].
The wide variety of patients, the different types of heartbeats and the large number of
annotations have fostered the use of this database [28,43–47]. This database contains 48
electrocardiogram recordings obtained from 47 different patients. Each recording consists
of two leads among the following: MLII, V1, V2, V3, V4 and V5. The recordings are
digitized at a sampling rate of 360 Hz with a resolution of 11 bits. The database should
not be considered a representative sample of the population as the records were carefully
selected to try to cover the widest variety of cardiac disorders as possible. Each heartbeat
was reviewed by at least two cardiologists, being approximately 68% of them considered
as normal and the other 32% were divided into 16 types of abnormal heartbeats.

After the publication of the MIT-BIH Arrhythmia Database, the Association for the Ad-
vancement of Medical Instrumentation (AAMI) proposed guidelines for evaluating the per-
formance of arrhythmia identification algorithms and this recommended to use a division
of heartbeats into five types: normal (N), supraventricular (S), ventricular (V), fusion (F)
and indeterminate (Q) heartbeats [48]. This classification has become a de facto standard,
and it will be used here to evaluate the results of our novel approach. The original labels of
the MIT-BIH Arrhythmia Database were mapped to the five heartbeat labels recommended
by AAMI, as in [28]. This mapping is presented in Table 1.

Table 1. Mapping between MIT-BIH heartbeat classes and AAMI heartbeat classes. ‘N’ stands for
normal heartbeat, ‘S’ for supraventricular heartbeat, ‘V’ for ventricular heartbeat, ‘F’ for fusion
heartbeat and ‘Q’ for indeterminate heartbeat.

AAMI Heartbeat Class MIT-BIH Heartbeat Class

N
Normal heartbeat

Left bundle branch block heartbeat
Right bundle branch block heartbeat

S

Aberrated atrial premature heartbeat
Supraventricular premature heartbeat

Atrial premature heartbeat
Nodal (junctional) premature heartbeat

Nodal (junctional) escape heartbeat
Atrial escape heartbeat

V
Ventricular flutter wave

Ventricular escape heartbeat
Premature ventricular contraction

F Fusion of ventricular and normal heartbeats

Q
Paced heartbeat

Unclassifiable heartbeat

3. Tandem Feature Extraction for Arrhythmia Identification

The tandem feature approach has been tested on the ECG arrhythmia identification
system presented in Figure 2, which is based on four different stages: (1) signal preprocess-
ing, where the ECG signals are initially denoised, (2) raw feature extraction, in which a
raw set of discriminant features is extracted from the denoised ECG signals, (3) augmented
feature extraction, in which the raw feature vector is enhanced with the MLP-based features
to create the so-called tandem feature vectors, and (4) pattern classification, which involves
two different stages itself: training, which trains the Gaussian mixture model for each
AAMI heartbeat class from the training tandem feature vectors, and testing, which classifies
each heartbeat into one of the predefined AAMI heartbeat classes from the testing tandem
feature vectors (see Table 1). These stages are explained in more detail next.
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Figure 2. Architecture of the ECG arrhythmia identification system with the modules that convey the main contribution of
this paper in bold font.

3.1. Signal Preprocessing

Signal preprocessing aims to filter noise in the signal to allow the feature extraction
step to be based on the morphological properties of the heartbeat, without being affected by
issues such as baseline drift or high frequency noise. Two filters were applied on the ECG
recordings. First, an eight-level Daubechies-based wavelet transform with extremal phase
filters of width 4 was applied for baseline drift removal. The result of this filter is used
to reconstruct a time series with the baseline drift of the ECG recording, and this drift is
subtracted from the original recording. Afterwards, a low-pass Butterworth filter with
a cut-off frequency of 40 Hz was applied to eliminate high frequency noise as well as
the power line hum. The filtered ECG signals comprise the output of this module and are
the input to the raw feature extraction stage.

3.2. Raw Feature Extraction

From the denoised ECG signals, the raw feature extraction aims to obtain the most
discriminant information from the various types of heartbeats present in the database.
To do so, the Hermite functions were used in this work for raw signal representation.
The orthogonal Hermite functions have a shape reminiscent of QRS morphology and
include a width parameter that enables an efficient modelling of QRS complexes of different
amplitudes. This makes it possible to obtain accurate heartbeat representations with few
coefficients. The heartbeat is represented by a feature vector with the coefficients that permit
its reconstruction from the combination of the Hermite functions. This representation has
been shown to be compact and robust in the presence of noise [28].

From the ECG signals, a 200 ms window was extracted for each heartbeat by consid-
ering the samples before and after the actual heartbeat position labelled in the database.
Hermite functions tend to zero both in −∞ and ∞. To make Hermite functions converge
at window edges, a 100 ms zero segment was added at both sides of the QRS complex
so that the resulting window has length a of 400 ms. This window can be represented as
Equation (1):

x[l] =
Nh−1

∑
n=0

cn(σ)φn[l, σ] + e[l], (1)

where l refers the window sample, Nh is the number of Hermite functions, cn(σ) represents
the coefficients of the linear combination, φn[l, σ] is the n-Hermite discrete function that is
obtained by sampling the corresponding Hermite continuous function (i.e., φn(t, σ)), e[l] is
the approximation error between the actual window x[l] and the Hermite representation,
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σ is a dilation parameter that relates the width of the Hermite function with the width of
the QRS complex and l varies according to Equation (2):

l = −
⌊

W · Fs
2

⌋
,−
⌊

W · Fs
2

⌋
+ 1, ...,

⌊
W · Fs

2

⌋
, (2)

where W is the window size, Fs is the sampling frequency and bc represents the floor function.
The Hermite functions φn[l, σ] are defined as Equation (3):

φn[l, σ] =
1√

σ2nn !
√

π
e
−(l·Ts)2

2σ2 Hn(α), (3)

where Ts is the sampling period (i.e., the inverse of the sampling frequency Fs) and α is
defined as Equation (4):

α =
l · Ts

σ
. (4)

The Hermite polynomial Hn(α) in Equation (3) is defined recursively as Equation (5):

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), (5)

where H0(x) = 1 and H1(x) = 2x.
This Hermite representation enables the representation of the heartbeat contained in

each signal window from the Nh coefficients of the linear combination (referred to as cn(σ))
from the Hermite functions, and from σ.

For a given value of σ, the Hermite functions form an orthogonal basis, as shown in
Equation (6): ∫ ∞

−∞
φn(l)φm(l) = δnm. (6)

It must be noted that Equation (6) holds if the discrete Hermite function φn[l, σ] is
close enough to zero on both the edges and outside the analysis window. For the edges of
each analysis window, φn[l, σ] is at most 1/10 of its maximum value within the window,
as defined in Equation (7):

|φn[−l0, σ]| = |φn[l0, σ]| < 1
10

max
l∈[−l0,l0]

|φn[l0, σ]|, (7)

where−l0 and l0 refer to the first and last window samples, respectively. Moreover, we also
impose that the value of φn[l, σ] is smaller outside the analysis window than in the edge of
the analysis window, as shown in Equation (8):

|φn[l, σ]| ≤ |φn[l0, σ]|, ∀|l| > l0. (8)

For a certain value of σ, the linear combination coefficients cn(σ) are computed by
minimizing the summed squared error given by Equation (9):

∑
l
(e[l])2 = ∑

l

(
x[l]−

Nh−1

∑
n=0

cn(σ)φn[l, σ]

)2

, (9)

in which the squared error is approximated following cn(σ) = x[l] · φn[l, σ]. For a prede-
fined window size and for a fixed number of Hermite functions, it is possible to calculate
theoretical limits for the value of σ. Through an incremental iterative process, different
values of σ are tested, starting at 0 and going up to the theoretical maximum, until the one
that minimizes the error is found. The average values of σ for N ∈ [1, 30] are from 14 ms
to 21 ms.

Then, a raw feature vector xr f is stored for each heartbeat, which consists of the Nh nu-
merical values of the cn(σ) Hermite representation of the corresponding heartbeat plus the σ
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value. This process is carried out per each ECG lead available; since our system employs
two different ECG leads, Nr = 2(̇Nh + 1)-dimensional raw feature vectors xr f comprise
the output of this module and are given to the augmented feature extraction module.

3.3. Augmented Feature Extraction

This module takes the raw feature vectors xr f as input and produces tandem feature
vectors xt f as output. An MLP is employed to add the feature-level augmented information
to each heartbeat in the ECG arrhythmia identification system. The MLP consists of three
layers, as shown in Figure 3: an input layer with Nr raw feature vector values, a hidden
layer, whose number of units was selected based on preliminary experiments, and an
output layer, which employs the softmax activation function, with a number of units equal
to the number of heartbeat classes (five in our case).

Figure 3. Architecture of the MLP employed in the augmented feature extraction module. Nr is
the number of features that are used to represent each heartbeat in the raw feature extraction and Nc

is the number of AAMI heartbeat classes to recognize.

The MLP models are trained by the MLP training module in Figure 2. The standard
back-propagation algorithm [49] is employed to learn the MLP weights (i.e., connections
between the units of the input and hidden layers and connections between the units of
the hidden and output layers, as shown in Figure 3) so that the classification error in
the training data is minimized. Henceforth, the set of weights learned are used then to
obtain the posterior probability vectors.

The augmented feature extraction consists of two different stages, which are applied
to each of the Nr-dimensional raw feature vectors xr f , as presented next.
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3.3.1. Posterior Probability Vector Computation

From the raw feature vectors xr f and employing the weights computed during MLP
training, the MLP calculates a posterior probability for each class to be recognized. This
process is similar to the use of the MLP for classification in which each raw feature vector
is assigned the class with the highest posterior probability. However, instead of making
a class decision for each raw feature vector, the MLP generates one posterior probability
per class, as shown in Figure 3. These posterior probability values are then used as new
features, hence building a set of Nc-dimensional posterior probability vectors, being Nc
the number of different AAMI heartbeat classes.

3.3.2. Tandem Feature Vector Construction

This stage concatenates the original Nr-dimensional raw feature vectors xr f (those
generated by the raw feature extraction module) and the Nc-dimensional posterior prob-
ability vectors computed by the MLP. Therefore, (Nr + Nc)-dimensional tandem feature
vectors xt f are built, which are then used in the pattern classification system.

The ICSI QuickNet toolkit [50], which was originally developed for the tandem ap-
proach in speech recognition tasks, provides different tools for developing signal processing
systems based on MLP strategies. Here, we have used the ICSI QuickNet toolkit with
the default parameter values for MLP training, posterior probability vector computation
and tandem feature vector construction.

3.4. Pattern Classification

Gaussian mixture modelling has a widespread usage within pattern classification
tasks (e.g., speech recognition [51], image recognition [52], video recognition [53], etc.).
For ECG arrhythmia identification, GMMs are a suitable tool because: (1) GMMs can be
trained from a limited amount of data [54], as it occurs for some heartbeat types present in
the MIT-BIH Arrhythmia Database; (2) GMMs provide a simple strategy for classification,
making it suitable for embedding the ECG arrhythmia identification system in a wearable
device that aims to continuously monitor heart activity; and (3) GMMs can represent a large
class of sample distributions (e.g., those corresponding to the training and testing data).

Therefore, for the GMM λk, being k one of the five heartbeat classes, the probability
that a certain feature vector xt f belongs to the class represented by that model λk can be
obtained. We will denote this probability as p(xt f |λk).

3.4.1. Training

From a subset of the heartbeats for a certain class k, which comprises the training
subset, the training stage estimates the parameters (i.e., mean and covariance values) of
each GMM λk from the tandem feature vectors of that subset. To do so, the Expectation-
Maximization algorithm [55], which makes use of a maximum likelihood criterion, is
employed. This training stage is needed just once, so that the classification stage employs
the set of trained GMMs. For the sake of simplicity, a single component for each GMM has
been used to train each model.

3.4.2. Classification

Once the models have been trained, classification is conducted on a fully independent
data subset, the so-called testing subset. The classification stage finds the class represented
by the model ĉ with the maximum posterior probability. Hence, for a given input tandem
feature vector xt f the Bayes’ rule is applied as Equation (10):

ĉ = argmax
k

p(xt f |λk)p(λk)

p(xt f )
= argmax

k
{p(xt f |λk)}, (10)

where we have considered a uniform prior probability for each class.
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4. Experimental Procedure
4.1. Evaluation Metrics

The main metric used to test the system was the classification accuracy, which was
computed as Equation (11):

Accuracy(%) =
100 ∗ Correct

N
, (11)

where Correct is the number of correctly classified testing heartbeats and N represents
the total number of testing heartbeats.

We also presented the confusion matrix showing the number of testing heartbeats
for a given class that were classified as any of the considered AAMI classes, along with
the sensitivity and specificity values for each class, which were defined as Equations (12)
and (13), respectively:

Sensitivity(%) =
TPk

TPk + FNk
, (12)

where TPk is the number of true positive testing heartbeats for class k (i.e., heartbeats of
class k that are correctly classified by the system) and FNk is the number of false negative
testing heartbeats for class k (i.e., heartbeats of class k that are incorrectly classified by
the system). It must be noted that sensitivity metric coincided with the intra-class accuracy.
The specificity was calculated as:

Speci f icity(%) =
TNk

TNk + FPk
, (13)

where TNk is the number of true negative testing heartbeats for class k (i.e., heartbeats
of all the classes except k that are classified by the system as any class except k) and FPk
is the number of false positive testing heartbeats for class k (i.e., heartbeats that were
incorrectly classified by the system as belonging to class k).

4.2. System Configuration

Regarding feature extraction, Nh = 30 Hermite functions were used since they showed
to optimally represent the vast majority of the heartbeats according to both the Bayesian
Information Criterion (BIC) and the Akaike Information Criterion (AIC) [28]. This meant
that we used a Nr = 62-dimensional raw feature vectors, since two leads were used,
and each lead provides 30 Hermite coefficients and the σ parameter. Then, the feature
vector was augmented to Nr + Nc = 67-dimensional tandem feature vectors by adding
the five posterior probabilities calculated by the MLP, according to the AAMI heartbeat
classes. The MLP training and posterior probability computation employed a hidden layer
with 100 units.

4.3. Evaluation Strategy

Experiments were carried out following the training/testing data division presented
in [56] (see Table 2). It must be noted that the work presented in [56] did not employ
the paced recordings in the MIT-BIH Arrhythmia database. Since our work does employ
those recordings (no recording from the database was excluded), we assigned two of these
recordings to the training data (102 and 217) and the other two (104 and 107) to the testing
data. Both the training and testing data sets were made up of 24 different recordings.
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Table 2. Training/testing MIT-BIH Arrhythmia database division.

Data Set Recording ID

Training
101, 106, 107, 108, 109, 112, 114, 115,
116, 118, 119, 122, 124, 201, 203, 205,
207, 208, 209, 215, 217, 220, 223, 230

Testing
100, 102, 103, 105, 111, 113, 117, 121,
123, 200, 202, 210, 212, 213, 214, 217,
219, 221, 222, 228, 231, 232, 233, 234

The number of heartbeats that belonged to each AAMI class for both training and
testing data can be found in Table 3. The training data were employed both for GMM and
MLP training and the testing data were employed for GMM testing.

It must be noted that, although the same training data were employed to train the MLP
used in the augmented feature extraction and to train the GMMs (from the training aug-
mented feature vectors), this did not introduce any over-fitting issues given that the final
validation was carried out on the testing data, which were not used in the training of
the GMMs nor in the MLP.

Table 3. Number of heartbeats for each AAMI class for training and testing data.

Data Set N S V F Q Total

Training 46,177 976 4426 415 3894 55,888
Testing 44,209 2050 3282 388 4149 54,078

5. Results
5.1. MLP-Based Experiments

An initial set of experiments was carried out to show the potential effectiveness of
using the MLP-based features in the classification stage. These experiments employed
the Nr-dimensional raw feature vectors as input for the MLP and carries out an MLP-
based classification on testing data. For classification, the class with the highest posterior
probability was assigned to each heartbeat so that the performance could be evaluated.
Results are presented in Table 4 and they showed that the sensitivity (i.e., intra-class) MLP
performance was, in general, above chance (i.e., higher than 20%). The only exception
was the S class, for which there were limited training data and it integrated the highest
number of heartbeat morphological classes (see Table 1). This may have dramatically
reduced the performance for that class due to both data scarcity and blurred model.
The other class results obtained with the MLP classification provided optimism towards
the utility of the MLP-based features in our GMM-based classification system to improve
its performance.

Table 4. MLP-based classification from the raw feature extraction for testing data.

N S V F Q

Sensitivity 67.2% 14.0% 79.1% 53.4% 50.3%
Specificity 35.6% 96.2% 98.5% 99.6% 96.0%
Accuracy 64.5%

5.2. ECG Arrhythmia Identification System

The results for the raw feature extraction, which was considered as the baseline in this
work, and the augmented feature extraction, are presented in Table 5. It must be noted
that the raw feature extraction experiments employed the raw feature vectors for both
GMM training (using the training recordings of Table 2) and classification (using the testing
recordings of Table 2), hence matching the feature type as in the augmented feature
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extraction approach. Results showed that the augmented feature extraction approach
significantly outperformed the performance obtained with the raw feature extraction,
with a 15.8% improvement in the accuracy.

Table 5. ECG arrhythmia identification results with the raw feature extraction alone (Raw) and the augmented feature
extraction module (Tandem) with the best statistically significant results for each metric in bold font. Confidence bands
for a 95% interval confidence are also presented. ‘Feat. extr.’ stands for feature extraction, ‘Se.’ for sensitivity, ‘Spe.’ for
specificity and ‘Acc.’ for accuracy.

Feat. Extr. Metric N S V F Q

Raw
Se. 63.1 ± 0.4% 22.5 ± 1.8% 94.5 ± 0.8% 1.3 ± 1.1% 3.2 ± 0.5%

Spe. 30.7 ± 0.4% 96.9 ± 0.8% 99.6 ± 0.2% 99.2 ± 0.9% 92.5 ± 0.8%

Acc. 58.4 ± 0.4%

Tandem
Se. 78.6 ± 0.4% 9.9 ± 1.3% 91.7 ± 0.9% 26.0 ± 4.4% 50.0 ± 1.5%

Spe. 44.6 ± 0.5% 96.3 ± 0.8% 99.4 ± 0.3% 99.5 ± 0.7% 96.0 ± 0.6%

Acc. 74.2 ± 0.4%

The confusion matrix for the raw feature extraction is presented in Table 6 and that of
the augmented feature extraction is presented in Table 7.

Table 6. Confusion matrix of the ECG arrhythmia identification system with the raw feature extrac-
tion. The number of heartbeats that are classified as any of the considered classes is shown in each
cell. The values between brackets represent the number of heartbeats that belong to the real class.
Sensitivity and specificity percentage values are also provided for each class.

Recognized Class

N S V F Q

R
ea

lc
la

ss

N [44,209] 27,891 2817 7109 6381 11

S [2050] 475 462 976 137 0

V [3282] 145 5 3101 23 8

F [388] 261 1 121 5 0

Q [4149] 1761 34 2222 1 131

Sensitivity [54,078] 63.1% 22.5% 94.5% 1.3% 3.2%
Specificity [54,078] 30.7% 96.9% 99.6% 99.2% 92.5%

Table 7. Confusion matrix of the ECG arrhythmia identification system with the augmented feature
extraction. The number of heartbeats that are classified as any of the considered classes is shown in
each cell. The values between brackets represent the number of heartbeats that belong to the real
class. Sensitivity and specificity percentage values are also provided for each class.

Recognized Class

N S V F Q

R
ea

lc
la

ss

N [44,209] 34,733 3231 5234 967 44

S [2050] 1366 203 432 49 0

V [3282] 183 11 3008 21 59

F [388] 175 2 110 101 0

Q [4149] 505 55 1514 1 2074

Sensitivity [54,078] 78.6% 9.9% 91.7% 26.0% 50.0%
Specificity [54,078] 44.6% 96.3% 99.4% 99.5% 96%
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6. Discussion

The results of Table 5 show a 15.8% improvement in the accuracy of the augmented
feature extraction when compared with the raw feature extraction. This clearly indicates
that the MLP is able to produce robust features that are suitable for GMM-based classifica-
tion by providing complementary information to that of present in the raw feature vector.
This supports our hypothesis that the usage of tandem feature extraction can be useful for
ECG analysis, in the same way that it has proven its usefulness in the analysis of other
physiological signals such as EEG and speech [32,40].

However, when we also consider the intra-class contribution (see Tables 5–7), we can
see that not all heartbeat types improve their performance with the incorporation of
the tandem features. Although for the ‘N’, ‘F’ and ‘Q’ classes the augmented feature set
improves the corresponding intra-class accuracy, for the ‘S’ and ‘V’ classes, the opposite
occurs. We consider that this may be due to the fact that the ‘S’ class is the one that integrates
a large variety of heartbeat morphology types (see Table 1), which may produce a less
robust MLP-based features and a more blurred GMM. This is confirmed by the fact that this
class obtained the worst intra-class accuracy in the MLP-based experiments (see Table 4).
Furthermore, we must consider the fact that the tandem feature vector includes only
features extracted from the QRS morphology. The QRS is the most significant feature of
the heartbeat and the most relevant for the identification of arrhythmias, with the possible
exception of the ‘S’ heartbeats. These heartbeats originate in the upper chambers of
the heart and usually present a similar propagation through the ventricles as normal ones,
whereas the QRS only captures information related to propagation through the ventricles.
Therefore, it is often not possible to distinguish between ‘S’ and ‘N’ heartbeats using only
the QRS morphology. This is consistent with the results in Table 7, which show that most ‘S’
heartbeats have been classified as ‘N’ heartbeats, probably because their QRS morphology
was similar to that of an ‘N’ heartbeat. Given the extreme difficulty of reliably identifying
and extracting the electrical information of the propagation of the heartbeat through
the atria (the P wave), this is often palliated through the incorporation of information
related to the distance between each heartbeat and the previous ones [28,30,56]. It is likely
that having incorporated this type of information into the tandem feature vector, better
performance could be obtained for this heartbeat type.

In Tables 6 and 7, it can be clearly seen that the classes for which limited training
data are available due to the lower prevalence of those heartbeat types (i.e., ‘S’, ‘F’ and
‘Q’) obtain the worst performance, and they are mainly confused with the class for which
more training data are available (i.e., ‘N’). Something similar happens with the MLP results
(see Table 4).

It should be noted that the classification of most of the ‘F’ heartbeats as ‘N’/‘V’
heartbeats is expected, since the former type of heartbeat happens when supraventricular
and ventricular impulses concur, hence producing a hybrid complex. In addition, the ‘Q’
heartbeat in the raw feature extraction (see Table 6) is confused with the ‘V’ heartbeat,
which could be due to the complexity of both paced and unclassifiable heartbeats when
using a less robust feature extraction approach.

7. Conclusions and Future Work

This paper has evaluated whether the tandem feature extraction approach is useful
for ECG arrhythmia identification. To do so, tandem features have been integrated within
a tandem feature extraction approach for a GMM-based arrhythmia identification system.
While the use of tandem feature extraction is common in other application domains and
it has previously been used in the analysis of other physiological signals such as EEG
and speech, to the best of our knowledge it has never been applied to ECG analysis for
arrhythmia identification. Our approach consists of adding the posterior probabilities from
an MLP as features to the feature vector representing each of the heartbeats. To represent
the morphology of each heartbeat we have used the coefficients of a regression based
on Hermite functions. Our results have shown that the augmented feature extraction
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significantly outperforms the results of the Hermite representation (15.8% improvement in
accuracy), and the heartbeat types for which more training data are available benefit more
from this approach.

This result suggests that our approach could benefit from the use of data augmentation
techniques to handle class imbalance [57,58]. The introduction of features related to
the distance between heartbeats should also be considered to be able to better distinguish
the ‘S’ heartbeats. Finally, the use of other types of classifiers, such as those derived from
deep learning techniques, could improve the performance of the arrhythmia identification
system, although at the cost of higher computational requirements.
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