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Abstract: The emergence of Automated Guided Vehicle (AGV) has greatly increased the efficiency of
the transportation industry, which put forward the urgent requirement for the accuracy and ease of
use of 2D planar motion robot positioning. Multi-sensor fusion positioning has gradually become
an important technical route to improve overall efficiency when dealing with AGV positioning.
As a sensor directly acquiring depth, the RGB-D camera has received extensive attention in indoor
positioning in recent years, while wheel odometry is the sensor that comes with most two-dimensional
planar motion robots, and its parameters will not change over time. Both the RGB-D camera and the
wheel odometry are commonly used sensors for indoor robot positioning, but the existing research
on the fusion of RGB-D and wheel odometry is limited based on classic filtering algorithms; few
fusion solutions based on optimization algorithm of them are available at present. To ensure the
practicability and greatly improve the accuracy of RGB-D and odometry fusion positioning scheme,
this paper proposed a tightly-coupled positioning scheme of online calibrated RGB-D camera and
wheel odometry based on SE(2) plane constraints. Experiments have proved that the angle accuracy
of the extrinsic parameter in the calibration part is less than 0.5 degrees, and the displacement of the
extrinsic parameter reaches the millimeter level. The field-test positioning accuracy of the positioning
system we proposed having reached centimeter-level on the dataset without pre-calibration, which
is better than ORB-SLAM2 relying solely on RGB-D cameras. The experimental results verify the
excellent performance of the frame in positioning accuracy and ease of use and prove that it can be a
potential promising technical solution in the field of two-dimensional AGV positioning.

Keywords: RGB-D; wheel odometry; extrinsic parameter calibration; fusion positioning

1. Introduction

With the vigorous development of industries such as autonomous driving and smart
home, autonomous mobile robots have obtained increasing attention. In the process of
unmanned vehicles performing tasks, accurate positioning information is a prerequisite for
autonomous movement of robots, like AGV, vessels [1], UAV [2], and so on. In order to
pick up this information, a variety of sensors are needed, whereas the measuring accuracy
of different sensors differs from each other, such as vision [3,4], UWB [5], WiFi [6], and so
on. The cost, usability, reliability, and positioning accuracy of the positioning system are
determined by diverse sensor fusion schemes. It is necessary to make a suitable choice
according to specific application conditions. Thus, selecting various sensors and fusing
them to acquire accurate positioning information are very crucial [7]. According to the
application characteristics of two-dimensional planar motion robots, two factors should
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be considered to solve its positioning problem: on the one hand, when the classic visual-
inertial system is applied to solve the issue of two-dimensional planar motion, it will lead to
unobservable scale information and poor accuracy [8]. On the other hand, the performance
of some positioning methods based on motion sensors like inertial measurement units
greatly depends on the performance of the sensors, which is closely related to the cost
and installation quality of IMU [9] that greatly affects the usability and practicability of
the fusion positioning system. Thus, the fusion of camera and wheel odometry is more
suitable for solving the positioning problem of the planar motion AGV, which is only
disturbed by the noise of the external environment, and the positioning results will not
diverge over time [10]. In addition, most of the two-dimensional planar motion robots are
equipped with wheel encoders, which means that using wheel odometry on mobile robots
is a great choice.

As for access to obtain visual information, the RGB-D camera has become one of the
mainstream sensors for visual positioning. According to the types of maps built, RGB-D
SLAM can be divided into sparse maps and dense maps. Currently, most RGB-D SLAM
algorithms are based on dense map building. KinectFusion [11] is the first real-time 3D
reconstruction system based on the RGB-D camera. It uses ICP to estimate the pose by using
the point cloud generated by depth images, but it requires GPU acceleration to maintain
real-time performance. RTAB-MAP [12] is the most excellent RGB-D SLAM framework.
It is a feature-based loop detection method with a memory management function and is
mainly used for real-time image building based on appearance. The representative SLAM
algorithm based on RGB-D camera sparse mapping is ORBSLAM2, which can realize the
functions of map reuse, loop detection, and relocalization. Its main purpose is precise
positioning. The biggest advantage of RGB-D camera is that it can directly obtain the
depth value, which can be used to restore the scale of the map. Moreover, the function
of real-time dense map building by RGB-D camera provides convenience for the robot’s
subsequent navigation.

The fusion system of RGB-D and odometry has gradually attracted attention in the
related field in recent years. Most of the attempts for the fusion of RGB-D and odometry
are based on traditional filters like Kalman filter [13] and particle filter [14]. Although these
works prove the advantages of the fusion of RGB-D and odometry, there are still some
problems caused by using filtering algorithm for fusion positioning: compared with
the fusion positioning based on optimization algorithm like vins-mono [15], the fusion
positioning scheme based on filtering algorithm uses the output of wheel odometry to
predict the state of the filter, and uses the visual measurement to update the state, which
leads to the output of the whole fusion system being only related to the state of the adjacent
previous moment, which means that all the historical information is not well used [16,17].
In addition, constraints for two-dimension planar motion robots is also an important
algorithm that has importance for the fusion system but is hard to implement to the fusion
scheme based on a traditional filter [18,19]: As shown in Figure 1, the displacement of
the vertical axis (Z axis) and the rotation around the horizontal axis (X, Y axis) of the
planar motion robot moving in the two-dimensional plane are very slightly, so that there
has a planar motion constraint relationship, which can bring additional constraints to the
fusion positioning scheme based on optimization algorithm to improve the positioning
accuracy further.

In addition to the choice of core fusion algorithm, another unsolved problem of
RGB-D and odometry fusion is that the fusion system needs to be calibrated offline in
advance. The extrinsic parameter calibration method is a hot issue in visual positioning,
and classic extrinsic parameter calibration methods used in the fusion of camera and wheel
odometry [20–22] require external hardware equipment to get virtual feature points, so
their practicality is greatly limited. DRE-SLAM [23] is a representative system based on the
fusion of RGB-D camera and wheel odometry. The fusion system of RGB-D/odometry like
DRE-SLAM is generally aiming at dynamic environments, but the extrinsic parameters
between RGB-D camera and wheel odometry need to be calibrated offline. In addition,
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there is no restriction on the z-axis for the planar motion, which will cause an increasing
disturbance on the z-axis.

Figure 1. An AGV moving in 2D plane and its coordinate system.

For the purpose of improving the performance of fusion positioning system based on
RGB-D/Odometry, and solving the practical problem of positioning in two-dimensional
planar motion robot, this paper proposes a system based on extrinsic parameter calibration
and tightly-coupled optimization of RGB-D camera and wheel odometry, for which extrin-
sic parameters are obtained according to online calibration, and positioning results based
on SE(2) constraints to get better positioning performance. The fusion scheme realizes a
high-accuracy, non-pre-calibration algorithm frame and solution by using the advantages
of RGB-D camera/odometry and the unique characteristics of 2D planar motion robots
like AGV. The main contributions of this work are:

• A complete set of RGB-D and odometry fusion positioning technology scheme based
on optimization algorithm with SE(2) planar constraints is proposed, which has better
accuracy performance comparing with the fusion algorithm based on filter algorithm
or the classic RGB-D SLAM frame.

• Online calibration based on RGB-D depth information is supported, whose perfor-
mance is better than the classic online calibration method. There is no need to calibrate
the extrinsic parameters in advance offline, and the algorithm can be run directly in
the case of unknown external parameters. Moreover, thanks to the depth information
of RGB-D camera, no additional calibration scale information is needed.

The remainder of the full text is structured as follows: section 2 briefly introduces the
relevant mathematical expressions used in this article. Section 3 illustrates the optimization
algorithm based on SE(2) plane constraints and online extrinsic parameter calibration
algorithm proposed in this article along with the tightly-coupled positioning architecture.
Section 4 describes the experimental setup and the achieved results of the algorithm;
Section 5 is the summary.

2. Preparation

First of all, the symbols used throughout this paper are briefly defined. The system
consists of multiple coordinate systems, and the right-hand rule is chosen:

{W}: World coordinate system;
{O}: Wheel odometry coordinate system;
{C}: Camera coordinate system.
Throughout this manuscript, we use TA

B to express the pose transformation from the
coordinate system {B} to the coordinate system {A}. Considering the time parameters, At



Electronics 2021, 10, 970 4 of 16

represents the coordinate system {A} at time t. RA
B and pA

B represent rotation and trans-
lation, respectively. qA

B = [qA
Bw

, qA
Bx

, qA
By

, qA
Bz
]T is a unit quaternion that can also represent

rotation from {B} to {A}. The multiplication of quaternions can be expressed as

q1 ⊗ q2 = L(q1)q2 = q1R(q2) (1)

where

L(q) =


qw −qz qy qx
qz qw −qx qy
−qy qx qw qz
−qx −qy −qz qw

 (2)

R(q) =


qw qz −qy qx
−qz qw qx qy
qy −qx qw qz
−qx −qy −qz qw

 (3)

The pose between two coordinates can be expressed as Lie group SE(3) and Lie
algebra se(3) [24]

SE(3) =
{

T =

[
R p
0T 1

]
∈ R4×4|R ∈ SO(3), p ∈ R3

}
(4)

se(3) =
{

ξ =

[
ρ
φ

]
∈ R6, ρ ∈ R3, φ ∈ so(3), ξ∧ =

[
φ∧ ρ

0T 0

]
∈ R4×4

}
(5)

where SO(3) is special orthogonal group and SE(3) is special Euclidean groups, and
the group is an algebraic structure of a set plus an operation. As indicated by se(3), it has
six dimensions, which can be specifically expressed as ξ = [w1, w2, w3, v1, v2, v3]

T . The first
three ρ = [w1, w2, w3]

T represent the angle of rotation around the x-, y-, and z-axis, and the
latter three φ = [v1, v2, v3]

T represent the displacement in the x-, y-, and z-axis plane. In
addition, the relationship between SE(3) and se(3) can be expressed as

T = exp(ξ∧) = Exp(ξ) (6)

ξ = log(T∨) = Log(T) (7)

In the ideal case, the motion of a planar robot is effective only on three dimensions
se(2) = [w3, v1, v2]

T [25]. However, the wheeled robots may suffer from rough terrains,
load changes, and shaking. The transformation between se(2) and se(3) can be expressed
by the following formula:

se(3) = f (se(2)) = [0, 0, w3, v1, v2, 0]T (8)

se(2) = f−1(se(3)) = [w3, v1, v2]
T (9)

3. Fusion Algorithm
3.1. Overview of Algorithm Framework

The framework of the entire fusion algorithm is shown in Figure 2. The first part is
measurement preprocessing, the data of wheel odometry and RGB-D camera are taken as
input and processed, and their results are sent to the core fusion algorithm part. The core
fusion algorithm part is mainly divided into two parts: one is initialization, the other
is tightly-coupled optimization. Initialization is only performed at the beginning of the
program. After obtaining extrinsic parameters, it is used as the input for tightly-coupled
positioning and optimized together with the robot pose.
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Figure 2. Algorithm framework of the proposed fusion positioning system.

The brief introduction of each part is as follows:
Measurement preprocessing: This process first collects data from RGB-D and wheel

odometry. The preprocessing of image data is to extract feature points [26] and use optical
flow algorithm [27] for tracking, while that of wheel odometry data are to carry out pre-
integration and covariance transmission on the collected angle and speed information [28].
Because this part adopts the existing conventional algorithm, it will not be introduced in
more detail later considering the space limitation:

Initialization: The first step in this process is to know the relative poses of the wheel
odometry and the RGB-D camera between two consecutive images. The relative pose of the
wheel odometry has been obtained through the data preprocessing part. In addition, since
the image has depth information, we can recover the real scale map and use PnP [27] to
recover the image pose. Afterwards, the extrinsic parameters are calibrated using analytical
solutions and optimized forms according to the relative poses of the two.

Tightly-coupled optimization: This process maintains a sliding window that contains
quantitative keyframes. Whenever a new keyframe comes, the oldest keyframe in the
sliding window will be eliminated. The goal of optimization in the window is the pose of
the keyframe and the extrinsic parameters and the inverse depth of the feature points. This
paper uses the nonlinear least-squares method to optimize four objective functions, prior
errors, reprojection errors, odometry errors [15,28], and plane SE(2) errors.

The core fusion algorithm is the main innovation of this paper, which introduces
the depth of the RGB-D camera for online extrinsic parameter calibration and uses SE(2)
planar constraints for tightly-coupled positioning, and these parts are highlighted in the
algorithm framework diagram. The following is a detailed introduction to the two parts of
core fusion algorithm.

3.2. Initialization Algorithm

Classical parameter calibration initialization methods often use analytical solutions to
solve the extrinsic parameters and scale between the camera and the wheel odometry [29].
However, fusion positioning systems that use the classic calibration method often require
the additional calculation of scale information, which is more likely to cause errors. Fur-
thermore, the classic calibration methods require the fusion system to carry out a series
of offline calibration processing according to the established operation process before
application, which increases the inconvenience of the system. Therefore, the fusion scheme
we proposed reduces the solution of scale and adds the process of nonlinear optimization,
which can realize the online extrinsic parameter calibration between the RGB-D camera
and the wheel odometry.

The extrinsic calibration parameters are defined as follows:

To
c = (qo

c , po
c) = (qo

cx , qo
cy , qo

cz , qo
cw , po

cx , po
cy , po

cz), (10)
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where qo
c and po

c represent the rotation and translation from camera to wheel odometry.
Although there are eight extrinsic parameters, The displacement of the extrinsic parameters
in the z-axis direction po

cz has no effect on the system during the experiment [28], so the
error of the z-axis does not need to be taken into consideration.

The initialization algorithm to support online extrinsic parameter calibration in this
system is divided into three steps, as Figure 3. Different from the system that requires
scale information to complete extrinsic parameter calibration, the initialization algorithm
in this paper directly collects the feature points extracted from the acquired image as
calibration information. Then, it combines the depth information obtained by RGB-D
to back-project the feature points to get real three-dimensional landmarks. PnP and
triangulation [27] are finally used to solve the relative pose, which avoids solving scale
and realizes the online extrinsic parameter calibration of the scale without the calibration
board. Therefore, the scale information does not need to be solved according to this, which
reduces the variables that need to be calculated. Eventually, the initial calibration extrinsic
parameters are obtained and fine-tuned through nonlinear optimization in the sliding
window optimization part. The calculation part of the analytical solution is shown below.

Figure 3. Hand-eye calibration equation diagram and extrinsic parameters analytical solution steps.

As the Figure 4 shows, the hand-eye calibration problem can be expressed as

Tok+1
ok To

c = To
cTck+1

ck (11)

where Tok+1
ok is the relative pose between time k and k + 1 in the wheel odometry coordinate,

and Tck+1
ck is the relative pose between time k and k + 1 in the camera coordinate. The above

expression can also be written in terms of rotation quaternion and displacement:

qok+1
ok qo

c = qo
cqck+1

ck (12)

(Rok+1
ok − I)po

c = Ro
cpck+1

ck − pok+1
ok , (13)

where I is the identity matrix, qok+1
ok and pok+1

ok the relative rotation and translation of the
wheel odometry between time k and k + 1, qck+1

ck and pck+1
ck the relative rotation and transla-

tion of the camera between the time k and k + 1. The calculation process of the extrinsic
parameters is similar to [29]. The solution process is shown in Figure 3.

First of all, we solve the pitch and roll angle of the rotation extrinsic parameters, and
the formula is as Equation (14):

q∗yx = arg min
qyx

∥∥Mqyx
∥∥, M =

L(q
om+1
om )−R(qcm+1

cm )
...

L(qo1
o0)−R(q

c1
c0)

, m ∈ [0, n], (14)

where qo
c = qz(γ)qy(β)qx(α), qz(γ), qy(β) and qx(α) correspond to yaw, pitch, and roll

quaternion, respectively, and qyx = qy(β)qx(α). γ, β, α are yaw, pitch, and roll angles .
The size of n is the same as the number of keyframes for the sliding window in backend
optimization. In addition, then, we solve the other parameters:

m∗ = arg min
m
‖Gm + w‖, (15)
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where

G =

Jm Km
...

...
J0 K0

, m =


po

cx
po

cy

cos γ
sin γ

w =

pm
...

p0

, m ∈ [0, n], (16)

and [
cos φk − 1 − sin φk

sin φk cos φk − 1

]
︸ ︷︷ ︸

Jk

[
po

cx
po

cy

]
−

[
pk1 −pk2
pk2 pk1

]
︸ ︷︷ ︸

Kk

[
cos γ
sin γ

]
+

[
pok+1

ok x

pok+1
oky

]
︸ ︷︷ ︸

pk

= 0, (17)

Figure 4. Pose conversion diagram.

In Equation (17), φk represents the angle of rotation qok+1
ok around the z-axis. pk1 and

pk2 represent the first two terms of R(q∗yx)p
ck+1
ck . In addition, the γ is the yaw angle of

the rotation extrinsic parameters and po
cx , po

cy are the first two dimensions of the extrinsic

translation. pok+1
okx

and pok+1
oky

denote the first two elements of the vector pok+1
ok . Finally, we can

refine the results though the nonlinear optimization as Equation (18):

qo
c
∗, po

c
∗ = argminqo

c ,po
c

m

∑
k=0

((
Rok+1

ok − I
)

po
c − Ro

cpck+1
ck + pok+1

ok

)
, (18)

In summary, the initial extrinsic parameters can be found in the form of analytical
solutions, which means that the calibration process is completed online.

3.3. Tightly-Coupled Optimization Based on SE (2) Plane Constraints

For a robot moving in a two-dimensional plane, its posture mainly depends on the dis-
placement in the x- and y-planes and the angle of rotation around the z-axis. Nevertheless,
the optimization goal in the actual process is three-dimensional rotation and displacement.
Taking the features of planar motion into account, this paper proposes the SE(2) constraints
on SE(3), which reduce the displacement of the posture in the z-axis direction and the
disturbance of the angle around the x- and y-axes. As one of the optimization objectives,
SE(2) constraints along with other optimization objectives constitute the tightly-coupled
optimization between the RGB-D camera and the wheel odometry, thus improving the
positioning accuracy and robustness by introducing constraint conditions compared to the
directly-coupled scheme of RGB-D and odometry. The specific process of tightly-coupled
optimization is as follows.

The variables that need to be optimized in this process are

Ø = [x1, x2, . . . , xn, Ro
c , po

c , λ1, λ2, . . . , λm], (19)
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xk =
[
Rw

ok
, pw

ok

]
= Tw

ok
, (20)

In Equation (20), xk is the pose state of the wheel odometry under the k-th keyframe,
including the position of the wheel odometry in the world coordinate system pw

ok
and the

rotation of the wheel odometry relative to the world coordinate system Rw
ok

.We use the Tw
ok

as robot pose. n represents the number of keyframes in the window, while m represents
the number of feature points observed in the window. λk is the inverse depth of the feature
point k in the camera coordinate system of the first observed keyframe. In this process, four
objective items need to be optimized. As shown in Figure 5,

Ø∗ = arg min
Ø
{
∣∣|rp
∣∣|2 + ρ(||rc||2) + ||ro||2 + ||rs||2}, (21)

Figure 5. The factor graph of sliding window variable optimization.

The constraint relationship shown in Figure 5, where rp is a prior constraint, rc is the
camera reprojection error constraint, ro the odometry constraint, and rs the plane-based
SE(2) constraint. ρ is the robust kernel [30], and we used the Huber kernel in this article

ρ(r) =

{
1, r ≥ 1
2
√

r− 1, r < 1
(22)

The specific forms of rp and rc are similar to [15], whereas ro is based on the charac-
teristics of planar motion. The processing of each items in the optimization function is
introduced as follows:

rc is the camera reprojection error constraint, expressed as Equation (23):

rc = Pl
j −

P̂l
j

||P̂l
j||

, (23)

Pl
j =

[
ul

j, vl
j, 1
]
, (24)

P̂l
j = Rc

o

(
R

oj
w

(
Rw

oi

(
Ro

c
1
λl

Pl
i + po

c

)
+ pw

oi
− pw

oj

)
− po

c

)
, (25)

where Pl
i and Pl

j are the normalized coordinates that is observed in the frame i and frame j.

ul
jand vl

j are the coordinates of landmark l in the image j. By the chain rule, the Jacobian
can be derived as [15].

ro is the odometry constraint, which can be modeled as

ro =
(

Tw−1
ok

Tw
ok+1

)
Tok+1

ok , (26)

It connects two consecutive keyframes Tw
ok+1

and Tw
ok

in the sliding window, and Tok+1
ok

is the pre-integration between the two consecutive keyframes.
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We used SE(3) to express the pose. It has six dimensions, and sometimes the three
dimensions can express the planar motion but the z-axis is affected when the car is bumping,
and the value is not zero. Another reason is that, when the plane robot is moving in a plane,
there may be a disturbance in the z-axis, so the SE(2) plane constraints are added. First of
all, the pose is projected to SE(2) and then restored, bringing to SE(3) [19]

ζ = f−1
(

Log
(

Tw
ok

))
, (27)

T̄w
ok
= Exp( f (ζ)), (28)

T̄w
ok

is the constraint term, and the form of rs is

rs =
(

T̄w
ok

)−1
Tw

ok
, (29)

The value of the covariance matrix of this constraint can be expressed as

Ω = diag
(

δ, δ,
1

σ2
w

,
1
σ2

v
,

1
σ2

v
, δ

)
, (30)

where δ represents a particularly small value close to 0, and σ2
w, σ2

v are the covariance of
angular velocity and linear velocity. Finally, the derivative of rs is

rsExp
(

δξ
ok
ōk

)
=
(

T̄w
ok

)−1
Tw

ok
Exp

(
δξok

)
, (31)

⇒ (T̄w
ok
)−1Tw

ok
Exp

(
δξ

ok
ōk

)
=
(

T̄w
ok

)−1
Tw

ok
Exp

(
δξok

)
, (32)

⇒ δξ
ok
ōk
= δξok

, (33)

Thus, the Jacobian matrix at time k is

J k|k = I, (34)

Thus far, the items in the optimization function have been processed, and we have
completed the tightly coupled fusion algorithm.

4. Simulation and Real-Site Experiment Results

In order to fully verify the comprehensive performance of the fusion positioning
system proposed in this paper, several simulation and real-site experiments were conducted.
Simulations are performed by using the dataset from DRE-SLAM Datasets, which not only
contains the data of RGB-D camera and wheel odometry, but also contains the truth value of
positioning. Real-site experiments were carried out in the garden in Aerospace Information
Research Institute (Beijing) with a real 2D navigation AGV.

4.1. Simulations and Comparisons

To prove the effectiveness of our approach, three parts of experiments are designed
and conducted to testify the accuracy of extrinsic parameter calibration and the positioning
accuracy, respectively:

1. Calibration accuracy test of extrinsic parameters;
2. Positioning accuracy comparison of the fusion positioning system with and without

the plane SE(2) constraints;
3. Positioning accuracy comparison of the fusion positioning system we proposed and

RGB-D ORB-SLAM2.

The method in this paper is built under the framework of ROS [31] and solved by
Ceres [32]. The simulations run on a laptop with a CPU configuration of Intel Core i7-8565U,
1.8 GHz, and 8 GB memory.
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4.1.1. Calibration Accuracy Test of Extrinsic Parameters

The displacement of the extrinsic parameters in the z-axis direction has no effect on
the system during the experiment, so the error of the z-axis does not need to be taken into
consideration and will be directly set to zero. In this process, the true value results of the
extrinsic parameters in DRE-SLAM datasets are

Ttruth =


0.0 0.276 0.961 0.124
−1.0 0.0 0.0 −0.1
0.0 −0.961 0.276 0.0
0.0 0.0 0.0 1.0

 (35)

In order to make the errors in the experimental results more clearly, we convert
the rotation matrix into the form of Euler angles, as Ttruth(roll = −1.2911◦, pitch = 0◦,
yaw = −1.5708◦, tx = 0.124m, ty = −0.1m). The results of the extrinsic parameters from
the analytic solution that is used in the initialization are as follows:

Tinitial =


−0.0262 −0.1225 0.9921 0.096
−0.9987 0.0459 −0.0207 0.201
−0.043 −0.9914 −0.1236 0.0

0 0 0 1

 (36)

The results after the optimization are

T f inal =


0.012 −0.074 0.997 0.126
−0.9999 0.0025 0.012 −0.105
−0.0034 −0.997 −0.074 0.0

0.0 0.0 0.0 1.0

 (37)

The extrinsic parameters matrix can be transformed into Euler angles. The initial result
is Tinitial(roll = −1.6948◦, pitch = 0.043◦, yaw = −1.5971◦, tx = 0.096m, ty = 0.201m) and
the final result is T f inal(roll = −1.645◦, pitch = 0.0034◦, yaw = −1.5588◦, tx = 0.126m,
ty = −0.105m). It can be seen from the final results that the maximum error of the
angle is the roll angle with a degree of 0.35, and the position error does not exceed 1 cm.
The experiment results show the better performance compared to the other online extrinsic
calibration methods like [22], for which the maximum error of rotation in the extrinsic
parameters is 3.1 degrees of roll Angle and 3 cm for translation.

4.1.2. Positioning Accuracy Comparison

To compare this paper with the state-of-the-art visual estimation methods, we also
conducted tests of the open-source framework ORB-SLAM2 on the same datasets. RGB-D
ORBSLAM2 uses sparse feature points and nonlinear optimization to improve position-
ing accuracy. Our method also uses sparse feature points, and the goal is to improve
positioning accuracy.

Evo [33] tool was used to compare and visualize the results. Corresponding poses are
directly compared between estimates, and references gave a pose relation. The absolute
pose error of evo is often used as trajectory error. Then, statistics for the whole trajectory
are calculated. Thus, we used it as the criterion. The calculation formula can be expressed
as RESE (Root Mean Squard Error)

RMSE =
1
n

n

∑
k=1

√
(pestimator

k,i − ptruth
k,i )2, i ∈ (x, y, z) (38)

where n is the total number of poses. The RMSE is used to evaluate the absolute error in
evo, and our results can be expressed as follows.
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4.1.3. Comparison of Results with SE(2) Plane Constraints

In the process of optimization, an error term based on SE(2) constraints is proposed.
The error is mainly based on planar motion robots, which have a slight disturbance in
the z-axis but do not bring a bigger drift. As shown in Figure 6, the results illustrate a
displacement comparison on each axis with and without SE(2) constraints of a random
motion of AGV, where the gray dashed line represents the true value of displacement,
the green line represents the result without SE(2) constraints, and the red line represents
the result with SE(2) constraints. It can be seen that the displacement in a period of random
motion mapped on the z-axis is very small, but the classic fusion algorithm without SE(2)
constraints obviously cannot take advantage of the motion feature, resulting in a large
deviation of the calculation results. The fusion algorithm with SE(2) constraints improves
the positioning accuracy, which is of great support to improve the performance of the final
fusion positioning system. In addition, we can also see from the zoomed-in area that the
SE(2) constraint greatly improves the accuracy of the z-axis direction and thus improves
the overall positioning progress.

Figure 6. Comparison of results mapped on three axes with and without plane constraints.

4.1.4. Comprehensive Comparison of Positioning Accuracy

In order to comprehensively verify the positioning performance of the proposed
system, a comparison experiment was conducted to compare the positioning accuracy
of the classic ORB-SLAM framework with RGB-D camera [34] and the proposed fusion
positioning system (with and without SE(2) constraints) based on DRE-SLAM dataset. EVO
tool is used to perform accuracy conversion.

Figure 7 shows a segment of positioning results, where the gray dashed line is the
ground truth, the blue line is the result of ORB-SLAM2 positioning with RGB-D camera,
the green line and red line are the results of the proposed fusion positioning system
with and without SE(2) constraints, respectively. The right view of the image is the
enlarged left view of Figure 7, where it can be seen clearly that the random jitter of the
proposed fusion positioning system is smaller and the positioning accuracy is much better
than that of the ORB-SLAM2 framework, no matter whether the system has or does not
have the SE(2) constraint. The introduction of the SE(2) constraint further improves the
positioning accuracy.

To reflect the improvement of positioning accuracy of the system, the average posi-
tioning accuracy (RMSE) results of different fusion frameworks are shown and compared
in Tables 1 and 2. It can be seen from the table that, compared with ORB-SLAM2, the accu-
racy of the proposed fusion positioning system has been improved by 22.46% on average.
After the SE(2) constraints are added, the positioning accuracy is improved by 17.86%
further on average. Compared with the fusion scheme of RGB-D and odometry based on
traditional filtering algorithms, the fusion scheme we proposed can improve the average
positioning accuracy by more than two times without offline calibration. In addition,
the scheme in this paper achieves centimeter-level accuracy, which means that it can meet
the requirements of most two-dimensional AGV applications.
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Figure 7. Positioning results of ORBSLAM2 and the proposed fusion positioning system.

Table 1. Positioning accuracy comparison between ORBSLAM2 and ours (unit: m).

Datasets
Number ORB-SLAM2 RGB-D+Odom

(with SE2)
Improvement

(ORBSLAM2/RGB-D+Odom)

O-HD1 0.119 0.086 27.7%
O-HD2 X 0.094 X
O-HD3 0.128 0.069 46.1%
O-LD1 0.108 0.065 39.8%
O-LD2 0.146 0.101 30.8%
O-LD3 0.201 0.139 30.8%

Table 2. Positioning accuracy comparison between with SE(2) and without SE(2) (unit: m).

Datasets
Number

RGB-D+Odom
(without SE2)

RGB-D+Odom
(with SE2)

Improvements
(without SE2/with SE2)

O-HD1 0.092 0.086 6.5%
O-HD2 0.120 0.094 21.7%
O-HD3 0.112 0.069 38.4%
O-LD1 0.113 0.065 42.5%
O-LD2 0.115 0.101 9.6%
O-LD3 0.154 0.139 9.7%

4.2. Experiments

In order to verify the accuracy and practicability of the algorithm, we deployed and
verified the algorithm on a real robot, as is shown in Figure 8. The platform for the
experiment is a differential robot called the Autolabor Pro1, which has a wheeled encoder
with an accuracy of 400 lines. The front of the robot is mounted with a Kinect V2, which
is an RGB-D camera. The ground truth of the robot is collected by a GNSS RTK with
positioning accuracy that can reach 2 cm. We use ROS to collect the topics of each sensor
and store them in a bag. Our algorithm can be run in real-time under the recorded bag,
and the total processing time for each frame is no more than 60 ms.

In order to better collect truth data, we conducted experiments in a relatively empty
place, as shown in Figure 9. During the experiment, we made the robot make a circle
around the flower bed. Figure 10 shows the trajectory between the results of our algorithm
and the ground truth. Both the horizontal axis and the vertical axis show the position.
The black dashed line is the RTK result, and the red line is the results of our algorithm. It is
seen that the trajectories are close.
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Figure 8. Experimental platform.

Figure 9. The experiment environment.

Figure 10. (a) Proposed fusion positioning system and RTK trajectory; (b) The zoomed area of error.

The relative position error is used to evaluate the positioning result between the
algorithm and the RTK result, and the formula is shown as follows:

RPEtrans =
1
4

4

∑
k=1

√
∑

i=x,y,z
(pestimator

k,i − ptruth
k,i )2 (39)

In order to better measure the error, we draw the RPE result between our positioning
results and the truth value. As shown in Figure 11, the vertical axis shows the RPE error,
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and the horizontal axis shows the number of comparisons. It can be seen that the maximum
error is no more than 0.1 m.

Figure 11. The RPE between fusion positioning system and RTK.

Whereas many positioning methods using RGB-D cameras are based on dense maps,
our method uses sparse maps and can be used outdoors. Therefore, we make a comparison
with the positioning method of the RGB-D camera and wheel odometry based on sparse
feature points. The method in [13] fuse the RGB-D camera and wheel odometry based
on the filter method and use their robots to acquire the results. The average error of our
positioning results was 0.0297 m, which is better than the RMSE of 0.153 m in [13].

5. Conclusions

This paper proposes a tightly-coupled positioning system of online calibrated RGB-D
camera and wheel odometry based on SE(2) plane constraints. Compared with the existing
fusion positioning systems of RGB-D and odometry, the system we proposed innovatively
introduces SE(2) plane constraints into the tightly-coupled optimization framework, which
leads to the great positioning accuracy, and uses the depth information obtained from
RGB-D camera to realize the online calibration, which leads to the better usability. Ex-
periment results proved that the angle and position calibration accuracy reaches the 0.5
degree millimeter level with online calibration, respectively, and the positioning accuracy
of the fusion positioning system achieves the centimeter level, which means that, when
ORBSLAM2 is not supported, our algorithm still provides service. The fusion positioning
system proposed in this paper not only satisfies the need for online extrinsic parameter
calibration between the RGB-D camera and the wheel odometry but also greatly improves
the positioning accuracy. To make the fusion system of the RGB-D camera and the wheel
odometry a promising candidate in the future two-dimensional AGV positioning appli-
cations, loop closing will be introduced into the framework to achieve better positioning
accuracy in large scenes in later work.
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