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Abstract: By modulating the optical power of the light-emitting diode (LED) in accordance with
the electrical source and using a photodetector to convert the corresponding optical variation back
into electrical signals, visible light communication (VLC) has been developed to achieve lighting
and communications simultaneously, and is now considered one of the promising technologies for
handling the continuing increases in data demands, especially indoors, for next generation wire-
less broadband systems. During the process of electrical-to-optical conversion using LEDs in VLC,
however, signal distortion occurs due to LED nonlinearity, resulting in VLC system performance
degradation. Artificial neural networks (ANNs) are thought to be capable of achieving universal
function approximation, which was the motivation for introducing ANN predistortion to compen-
sate for LED nonlinearity in this paper. Without using additional training sequences, the related
parameters in the proposed ANN predistorter can be adaptively updated, using a feedback replica
of the original electrical source, to track the LED time-variant characteristics due to temperature
variation and aging. Computer simulations and experimental implementation were carried out to
evaluate and validate the performance of the proposed ANN predistorter against existing adaptive
predistorter schemes, such as the normalized least mean square predistorter and the Chebyshev
polynomial predistorter.

Keywords: artificial neural networks; digital predistorter; LED nonlinearity; visible light communications

1. Introduction

Light-emitting diode (LED) solid-state lighting has received considerable attention re-
cently because of its wide applicability and advantages over conventional lighting sources
for monitor backlighting, traffic indicators, and general illumination. Lighting plays a
key role in people’s daily lives. LEDs offer advantages such as low energy consumption,
long lifetimes, small sizes, and easy production, and they are increasingly being used as
replacements for incandescent lamps. LEDs are expected to become a dominant part of
the next generation of lighting sources. Recently, visible light communication (VLC) has
been widely studied and has become a candidate for incorporation in the IEEE 802.15.7r1
standard to achieve lighting and communications simultaneously [1]. Through intensity
modulation (IM), i.e., by modulating the light-emitting power in accordance with the trans-
mitted data, and through direct detection (DD), i.e., by detecting the subtle light intensity
variation of the transmitted optical light, VLC enables the functionality of wireless commu-
nication in a manner that is relatively simple and low in cost. Notably, this communication
function does not increase power and arrangement costs, and many studies have shown
that VLC systems combined with Ethernet or power line communication offer a promising
solution for wireless broadband access in indoor environments [2,3].

Orthogonal frequency-division multiplexing (OFDM) transmission had been consid-
ered for use in VLC systems to achieve a high data transmission rate [4]. Traditionally,
the OFDM modulation and demodulation were realized by the inverse fast Fourier trans-
form (IFFT) and the FFT, respectively. However, the traditional OFDM scheme results in
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complex-valued time-domain signals and cannot be directly applied to VLC transmission.
As such, several studies have investigated optical OFDM schemes aimed at making the
traditional OFDM scheme suitable for VLC systems [5–7]. Basically, the real-valued bipolar
signals can be obtained by using Hermitian symmetry when allocating modulated symbols
to frequency domain subcarriers, after which the IFFT can be applied. By adding a direct
current bias, direct current biased optical OFDM (DCO-OFDM) converts the real-valued
bipolar signals to unipolar ones [5,6]. On the other hand, asymmetric clipping optical
OFDM (ACO-OFDM) is used to impose the anti-symmetric property and directly clip the
negative parts of the real-valued bipolar signals without losing information [7]. Both DCO-
OFDM and ACO-OFDM have attracted considerable attention for use in VLC systems.
However, LED nonlinearity severely degrades the performance of OFDM VLC systems due
to the high peak-to-average power ratio (PAPR) in OFDM signals [8]. Normally, nonlinear
devices are operated with a certain power backoff, which can be defined as the ratio of
maximum saturation output to the average output. Increasing the power backoff reduces
the nonlinear distortion, but cause lower power efficiency. Reducing power backoff is
thus desirable, while the signal nonlinear distortion would seriously sacrifice bit error rate
(BER) performance. Thus, LED nonlinearity not only reduces the power efficiency of such
systems, but also degrades their BER performance. Although PAPR reduction schemes
can decrease the PAPR in OFDM signals, both DCO-OFDM and ACO-OFDM signals still
exhibit a considerable dynamic range and would be distorted by LED nonlinearity [9,10].

Given this knowledge of LED behavior, the most straightforward approach to mit-
igating the impact of nonlinearity would be to pre-process the DCO-OFDM signal to
suppress the nonlinearity in the LED emitted signal, and to possibly enable receiver side
with low complexity, which is known as transmitter digital predistortion [11–13]. Initially,
the LED characteristics can be learned by using training sequences. Subsequently, the
adaptive predistorter is capable of tracking the LED characteristics due to temperature
variation and aging by using the transmitted data sequences. The use of a lookup-table
(LUT) that implements the inverse function against the nonlinearity of the LED constitutes
the simplest predistorter [11]. The weight required to compensate for distortion from the
nonlinearity of the LED is estimated and stored in the LUT. The transmitted signal is then
predistorted by multiplying the weight in the LUT closest to this signal. Based on the
LUT predistorter, an adaptive algorithm was used in a previous study to dynamically
learn the weights stored in the LUT by training the normalized least mean squares (NLMS)
error between the transmitted signal and the distorted signal as criterion and train with a
stochastic-gradient-based approach [12], and thereafter the NLMS-based predistorter was
capable of tracking changes in LED characteristics. In another study, by focusing on the
fact that the distortion resulting from the LED is nonlinear, a nonlinear transformation of
the input was introduced by a Chebyshev polynomial expansion and the weights were
also trained by a stochastic-gradient-based approach [13].

Fundamentally, using a predistorter to compensate for the LED nonlinear input power
to the output illumination function I(p, Θ) consists of cascading a block that exhibits its
inverse function I−1(v, Θ) in front of the LED, as shown in Figure 1. The major issue
that particularly needs to be addressed is how to accurately approximate and train the
inverse function I−1(v, Θ) when the LED time-variant nonlinearity function I(p, Θ) is
changed due to temperature variation, aging, or other physical changes denoted by a
time-variant state vector Θ(ti) at time instant ti. That is, the LED nonlinearity should be
dynamically learned and compensated for by using its approximated inverse function with
an adaptive predistorter.
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Figure 1. Illustration of the application of an adaptive predistorter to compensate for LED time-variant nonlinearity. 
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As for function approximation, artificial neural networks (ANNs) are considered to
be a powerful tool according to the associated and well-known universal approximation
theory [14]. It was the recognition of this power that motivated the consideration of an
ANN-based predistortion algorithm in the present study. In addition, an adaptive training
method was designed to make the proposed ANN-based predistorter capable of tracking
the LED characteristics due to temperature variation and aging. Meanwhile, although the
existing works reported in the literature were mainly based on simulations without experi-
mental verifications [11–13], in the present study, laboratory experiments utilizing physical
devices were conducted to verify the theoretical analysis of the predistortion algorithm.

The remainder of this paper is organized as follows. Section 2 presents a system model
of adaptive predistorters for OFDM-based VLC. The proposed ANN-based predistortion is
then presented in Section 3. Section 4 describes the simulation results with experimental
verifications. Finally, the conclusions of the study are presented in Section 5.

2. Preliminary Work
2.1. System Model

It is thought that the computational complexity of DCO-OFDM is lower than that
of ACO-OFDM for a fixed symbol rate [15]. However, DCO-OFDM signals would suffer
from more serious LED nonlinearity than would ACO-OFDM signals because DCO-OFDM
converts real-value bipolar signals to polar ones by adding a DC bias, a distinction which
suggested the consideration of adaptive predistortion in the context of DCO-OFDM-based
VLC systems in this study. Figure 2 is a block diagram of a DCO-OFDM VLC system with
an adaptive predistorter. The input of the DCO-OFDM modulation block is represented as
X = [X0, X1, · · · , XN−1], where Xk denotes the M-ary quadrature amplitude modulated
(QAM) complex data signal on the k-th subcarrier and N is the size of the IFFT. Moreover,
Xk in X should have Hermitian symmetry in order to have a real time-domain signal, and
should be followed by adding a DC bias for IM-DD optical wireless systems [6,7]. Using
the IFFT, the time-domain signal corresponding to X is given by x = [x0, x1, · · · , xN−1],
where the n-th sample is given by:

xn =
1
N

N−1

∑
k=0

Xk exp
(

j2πnk
N

)
, (1)

and the bipolar real signal x is converted to a positive DCO-OFDM signal x(DCO) =[
x(DCO)

0 , x(DCO)
1 , · · · , x(DCO)

N−1

]
by adding a DC bias xDC to x. The optimal DC bias is

related to the number of subcarriers and the modulation order, and for the convenience
of using different levels of modulation, a fixed DC bias was adopted in this study. Signal
x(DCO) is then predistorted and digital-to-analog (D/A) converted to a continuous electrical



Electronics 2021, 10, 948 4 of 14

waveform x(t). The LED, serving as an optical modulator, transforms x(t) into an optical
signal, and the resulting signal is transmitted through the optical channel. Usually, the
VLC channel is a line-of-sight (LOS) channel and the dominant shot noise is modeled as
additive white Gaussian noise (AWGN) [16]. The received light intensity r(t) is perceived
by utilizing a PD in the receiver. The analog signal is analog-to-digital (A/D) converted and

down-sampled to be
^
x
(DCO)

and processed by the demodulation block to attain estimates

of X, which is denoted as
^
X.
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Figure 2. Illustration of DCO-OFDM VLC system with adaptive predistorter.

2.2. Adaptive Predistortion

The LED is a nonlinear device, and its behavior can be modeled using the measured
input and output characteristics of the adopted LED. To compensate for the LED nonlin-
earity, a predistortion block is applied to x(DCO), as shown in Figure 2. In the transmitter,
a PD is used to build a feedback signal y(t) to serve as a reference signal for the sake of
adaptively adjusting the predistorter to make it capable of tracking the LED characteristics
due to temperature variation and aging.

Generally, an error signal e(DCO), the difference between x(DCO) and αy(DCO), where α
is a scaling factor, has been used to update parameters in adaptive predistorters, and an
NLMS-based algorithm has been proposed to update LUTs [12]. Assuming that at time
instant t, the i-th signal x(DCO)

i in x(DCO) would be in the range of the k-th partition cell in

the LUT, and it would be predistorted by the representation value of that cell w(t)
k , then the

k-th representation value could be updated as follows:

w(t+1)
k = w(t)

k + µke(DCO)
i x(DCO)

i , (2)

where e(DCO)
i = x(DCO)

i − αy(DCO) and µk denotes the step size for the NLMS algorithm [12].
Meanwhile, Chebyshev polynomials have been used to approximate the inverse of the
LED nonlinearity as compared to just using a predistortion factor in the NLMS-based
predistorter [13]. In the Chebyshev polynomial-based predistorter, the k-th representation
value was updated as follows:

w(t+1)
k = w(t)

k + µke(DCO)
i Tj

(
x(DCO)

i

)
, (3)
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where Tj denotes the j-th Chebyshev polynomial of the first kind.

3. The Proposed ANN-Based Predistorter

A schematic diagram of the proposed artificial neural network (ANN)-based predis-
torter, which has the structure of a multilayer perceptron, is shown in Figure 3, in which
NI , NH,j, and NO denote the neuron in the input layer, the j-th neuron in the hidden
layer, and the neuron in the output layer, respectively. ANNs were invented to serve as
powerful computing systems and were inspired by the constitution of biological brains.
As shown in Figure 3a, the proposed ANN-based predistorter constitutes the input layer,
one hidden layer, and the output layer. Several neurons, the basic units in an ANN,
could be included in each layer. As shown in Figure 3b, a specified neuron j would be
connected with K inputs m =

[
m1 m2 · · · mK

]
by links with adjustable weights

w =
[

w1j w2j · · · wKj
]
, and a bias term bj. An activation function f (·) is used to

introduce nonlinearity into the output of a neuron when a set of inputs and a bias term
are given. Thus, the output of the j-th neuron in the hidden layer, zNH,j , is represented
as follows:

zNH,j = f (NH,j)
(

w(NH,j)u + b(NH,j)
)

, (4)

where u is the input to NI , and w(NH,j), b(NH,j), and f (NH,j)(·) represent the weight, the bias
value, and the activation function of NH,j, respectively. Furthermore, the output of the
neuron in the output layer, zNO , is represented as follows:

zNO = f (NO)

(
J

∑
j=1

w(NO)
j zNH,j + b(NO)

)
, (5)

where w(NO)
j , b(NO), and f (NO)(·) are the weight associated with the j-th input, the bias

value, and the activation function of NO, respectively.
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Figure 3. Illustration of the proposed ANN predistorter: (a) The structure of an artificial neural network; (b) the structure of
a specified neuron j.

The output of the proposed ANN predistorter, zNO , is a cascade of nonlinear transfor-
mation of (4) and (5). When a set of training data u is applied to this ANN predistorter, its
corresponding output zNO can be mathematically expressed as:

zNO = F(u,ϕ), (6)

where F stands for the cascade function of all nonlinear transforms of the neurons in each
layer and ϕ denotes the weights and bias values in the neural network. The optimal values
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in ϕ are usually learned on a training set, with known desired outputs. To start the training
process, ϕ was initially chosen at random.

A set of input values and expected values matching them should be provided to
execute the training process. As shown in Figure 1, the aim of the predistorter was to
pre-emphasize the input signal x(DCO) in order to maintain this pre-emphasized signal
as a replica of x(DCO) after the distortion by the LED nonlinearity. This indicates that the
predistortion function is an inverse of the LED nonlinearity, which suggests the use of
the captured outputs of the LED, y(DCO), as the inputs to the predistorter and that its
corresponding outputs are x(DCO). That is:

F
(

αy(DCO),ϕ
)
= x(DCO). (7)

Based on (7), the optimal values in ϕ were trained in the present study by using a
Levenberg–Marquardt (LM) backpropagation algorithm. The LM algorithm was derived
from Newton’s method for the data fitting of a nonlinear function and was developed for
the ANN based on the advantage that its training speed is 10 to 100 times faster than that
of the usual gradient descent backpropagation method [17,18].

The main contributions of the proposed ANN predistorter in comparison with the
methods in previous literatures are summarized as follows. First, the nonlinear ANN was
studied to establish function approximation to the inverse function of the nonlinear charac-
teristic curve of LED. Based on universal approximation theorem, ANN can approximate
any continuous function and thus it can prevent the predistorter from quantization error as
in [11,12]. Moreover, based on the relationship between the inputs and the corresponding
outputs of the LED device, to adopt a real nonlinear characteristic curve of LED truly
represents a more realistic LED nonlinear effect to the DCO-OFDM VLC transmission.
Second, in the study, laboratory experiments utilizing physical devices were conducted to
verify the theoretical analysis of the predistortion algorithm. In view of most literatures
related to LED linearization only presenting their results using computer simulations,
the experimental results based on the self-built DCO-OFDM VLC testbed presented in
this study would make a constructive contribution for the design of the DCO-OFDM
VLC transmission.

4. Simulations and Measured Results

The relationship between the dissipated power and the luminous flux is used in
the paper to describe the nonlinear behavior of an LED. A phosphor-based white LED
(Crescent D01-A1-A33) was measured by using an integrating sphere (ISUZU SLM-12), and
its dissipated power versus the output luminous flux is shown in Table 1. To implement a
unified performance simulator, a normalized LED transfer function, as plotted in Figure 4,
was used in the following performance evaluation of different considered predistortion
algorithms. A Rapp-like model was adopted to fitting the normalized LED transfer function
as follows [19]:

Φnorm(pd,norm) =
h(pd,norm)(

1 +
(

h(pd,norm)
pd,max

)2k
)1/2k , (8)

where pd,max is the maximum normalized dissipated power through the LED, h(pd,norm) is
the function describing the measured characteristics between the normalized dissipated
power pd,norm and the normalized luminous flux Φnorm, and k is the knee factor which
controls the smoothness of the transition from the linear region to the saturation region. As
shown in Figure 4, the Rapp-like model with knee factor k = 3.0 had a better fitting to the
measured data of the considered LED and was adopted in the performance simulations of
the LED nonlinearity predistorter detailed below.
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Table 1. The measurements of the LED (Crescent D01-A1-A33).

Dissipated Power Pd (mW) Luminous Flux Φ (lm)

0.83 0
19.77 0
127.6 7474
291.5 17,314
497.4 19,434

Electronics 2021, 10, x FOR PEER REVIEW 7 of 14 
 

 
Figure 4. The characteristic function of the adopted LED. 

Table 1. The measurements of the LED (Crescent D01-A1-A33). 

Dissipated Power 𝑷𝒅 (mW) Luminous Flux 𝜱 (lm) 
0.83 0 

19.77 0 
127.6 7474 
291.5 17,314 
497.4 19,434 

In the conducted computer simulations, 10  independent DCO-OFDM symbols 
were randomly generated with the parameters summarized in Table 2. To find the proper 
settings of the number of ANN training symbols 𝑁  and the number of neurons in the 
hidden layer of the ANN predistorter 𝐽, the BER versus the combination of the number 
of ANN training symbols and the number of hidden nodes are shown in Figure 5. Gener-
ally, as can be seen in Figure 5, the BER of the DCO-OFDM with the proposed ANN pre-
distorter was decreased as the number of ANN training symbols was increased. The re-
ceived scaling DCO-OFDM symbol 𝛼𝐲( ) was used to train the proposed ANN pre-
distorter. When the setting of 𝑁 = 1, it showed a limitation in effectively training the 
parameters in 𝛗 because the distribution of the time-domain samples in one DCO-OFDM 
symbol might have been quite non-uniform in the domain of the desired predistorter func-
tion. When the value of 𝑁  was increased, more time-domain samples in the 𝑁  
DCO-OFDM symbols were available, and these samples might have had a wider and uni-
form distribution within the domain of the desired predistorter function. As can be seen 
in Figure 5, the adaptation of 𝑁 = 5 seems to have been enough to effectively train 
the parameters in 𝛗 of the predistorter function. Moreover, the simulation results pre-
sented in Figure 5 indicated that the proposed ANN predistorter composed of a single 
hidden layer with 4 neurons was able to achieve a stable BER performance. Meanwhile, 
increasing the number of neurons in the hidden layer to more than 4 only seemed to in-
crease the complexity of the network; thus, the number of neurons in the hidden layer 𝐽 
was set at 4. 

Figure 4. The characteristic function of the adopted LED.

In the conducted computer simulations, 105 independent DCO-OFDM symbols were
randomly generated with the parameters summarized in Table 2. To find the proper settings
of the number of ANN training symbols Ntrain and the number of neurons in the hidden
layer of the ANN predistorter J, the BER versus the combination of the number of ANN
training symbols and the number of hidden nodes are shown in Figure 5. Generally, as can
be seen in Figure 5, the BER of the DCO-OFDM with the proposed ANN predistorter was
decreased as the number of ANN training symbols was increased. The received scaling
DCO-OFDM symbol αy(DCO) was used to train the proposed ANN predistorter. When
the setting of Ntrain = 1, it showed a limitation in effectively training the parameters
in ϕ because the distribution of the time-domain samples in one DCO-OFDM symbol
might have been quite non-uniform in the domain of the desired predistorter function.
When the value of Ntrain was increased, more time-domain samples in the Ntrain DCO-
OFDM symbols were available, and these samples might have had a wider and uniform
distribution within the domain of the desired predistorter function. As can be seen in
Figure 5, the adaptation of Ntrain = 5 seems to have been enough to effectively train the
parameters in ϕ of the predistorter function. Moreover, the simulation results presented
in Figure 5 indicated that the proposed ANN predistorter composed of a single hidden
layer with 4 neurons was able to achieve a stable BER performance. Meanwhile, increasing
the number of neurons in the hidden layer to more than 4 only seemed to increase the
complexity of the network; thus, the number of neurons in the hidden layer J was set at 4.
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Table 2. Summary of simulation parameters.

Parameters Value

Subcarriers number, N 128
QAM Modulation order, M {16, 64}

DC bias in DCO-OFDM, xDC (dB) 13
Number of ANN training symbols, Ntrain {1, 2, 3, 4, 5, 6}
Number of neurons in the hidden layer, J {3, 4, 5, 6}

Number of hidden layers, Nh {1, 2, 3}
Knee factor in Rapp model, k 3.0Electronics 2021, 10, x FOR PEER REVIEW 8 of 14 
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Figure 5. Illustration of the proposed ANN predistorter: (a) 16 QAM DCO-OFDM with Eb/N0 = 25 dB; (b) 64 QAM
DCO-OFDM with Eb/N0 = 30 dB.

The convergence of the proposed ANN predistorter with different numbers of neurons
in the hidden layer is shown in Figure 6. Consistent with the findings of Figure 5, the
ANN with a 4-neuron hidden layer achieved the minimum mean-square error. The impacts
of increasing the number of hidden layers are shown in Figures 7 and 8. Intuitively, the
adoption of more layers in an ANN seemed to result in better achievable BER. However, the
proposed ANN predistorter did not benefit from an increase in the number of hidden layers.
This was mainly because the feedback replica of the original electrical source through PD,
used as training set for the ANN, was noisy. The ANN became increasingly complicated
with each increase in the number of hidden layers, and thus it could not be well trained
using this noisy training set. In addition, the inverse function to the characteristic function
of the adopted LED is expected to be simple and monotonic. As such, using more hidden
layers might cause the ANN to be particularly sensitive to the noise, rather than the desired
signal, resulting in overfitting.

The BERs of several LED predistortion algorithms, including the NLMS [12], the
Chebyshev polynomial [13], and the proposed ANN predistortion, plotted against the
electrical energy per bit to single-sided noise power spectral density Eb/N0 for the cases
of 16 QAM (M = 16) and 64 QAM (M = 64) are shown in Figures 9 and 10, respectively.
In the cases of both 16 QAM and 64 QAM, it was evident that the BERs reached by the
proposed ANN predistortion were lower than those reached by using the NLMS and
the Chebyshev polynomial. The NLMS had the worst performance since the NLMS only
used a one-dimensional LUT to approximate the predistorter function. In contrast, the
Chebyshev polynomial method achieved a better performance than the NLMS method
because the Chebyshev polynomial method adds polynomial expansion compensation
terms onto the predistortion factors stored in the LUT. Meanwhile, the proposed ANN
method, using a cascade of nonlinear functions to approximate the nonlinear predistorter
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function, was capable of revealing the LED nonlinearity and could adaptively learn it
through the training set, i.e., through the scaling feedback signal αy(DCO).
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Notably, there were noise components contained in αy(DCO), and this resulted in
almost no performance difference among the NLMS, the Chebyshev polynomial, and
the proposed ANN predistortion when the system was under a low Eb/N0 scenario. In
contrast, in the scenario of moderate Eb/N0, the quality of αy(DCO) was better, and thus
the proposed ANN predistortion was apparently able to manifest its superiority over the
NLMS and Chebyshev polynomial methods in that scenario.

The effectiveness of the ANN predistorter in a DCO-OFDM VLC system was also
validated in this study through experimental verification. The system setup of the self-
built DCO-OFDM VLC testbed is shown in Figure 11. A pseudo-random binary sequence
was programmed, modulated, and predistorted using the considered predistortion algo-
rithms in the computer. To conduct the D/A conversion, the computer was connected
to an arbitrary waveform generator (AWG) (Tektronix AFG3151C) under the constraint
of modulation bandwidth of the LED. Through the bias tee (Tektronix PSPL5575A), the
generated waveform signal was superimposed onto the bias current to drive the adopted
LED (Crescent D01-A1-A33). On the basis of the measured data of the LED in Table 1, the
bias current was set to 60 mA and the mean of the generated waveform signal was set to
5 volts, and these settings caused the operation point of the LED to be 300 mW in order to
introduce the nonlinearity effect into the LED emitting optical signal.
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Figure 11. Experimental setup of the DCO-OFDM VLC testbed.

A PD (THORLABS PDA10A-EC), with a 150 MHz bandwidth, 1 mm2 active area,
and 5× 10−3 V/A transimpedance gain, was utilized to direct detect the light intensity.
To conduct the A/D conversion, the PD output was captured by using a mixed signal
oscilloscope (MSO) (PicoScope 3205D), and then followed by a process of downsampling.
Finally, the sampled signal was further subjected to packet synchronization, demodulation,
and BER analysis. Figure 12 shows constellation diagrams of 16 QAM and 64 QAM
modulation under the condition that the distance between the LED and the PD was 40 cm.
Obviously, the constellation diagrams with the ANN predistorter are much clearer than
those with either the NLMS or Chebyshev polynomial predistorters. This observation was
also validated by the error vector magnitude (EVM) results, which are shown in the titles
of each subfigure.

Moreover, the BERs of the considered LED predistortion algorithms plotted against
the distances between the LED and the PD for the cases of 16 QAM (M = 16) and 64 QAM
(M = 64) are shown in Figures 13 and 14, respectively. As can be seen in Figure 13, the
experimental results verified that the BER of the 16 QAM modulated OFDM system with
the proposed ANN predistorter was significantly superior to those with the NLMS and the
Chebyshev polynomial predistorters. As for the case of the 64 QAM-modulated OFDM
signals shown in Figure 14, the BER of the system with the proposed ANN predistorter
still outperformed those with the NLMS and the Chebyshev polynomial predistorters. In
summary, the experimental results validated the view that the proposed ANN predistorter
was capable of adequately compensating for LED nonlinearity, and hence achieving better
system performance compared to the NLMS and the Chebyshev polynomial predistorters.
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5. Conclusions

Nonlinearity inherited in the LED severely degrades the performance of OFDM VLC
systems due to the high PAPR in OFDM signals. In this paper, we proposed the use of an
ANN predistorter to pre-emphasize the DCO-OFDM VLC signal. The nonlinearity effects
of the LED could be adequately compensated for with the capability of universal function
approximation of the ANN. As observed from both computer simulations and experimental
verification, the ANN predistorter achieved considerable performance improvement over
the existing NLMS and Chebyshev polynomial predistortion methods in terms of the BER
and EVM of the received signal constellation.
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