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Abstract: This paper presents a novel cooperative trajectory planning approach for semi-autonomous
driving. The machine interacts with the driver at the decision level and the trajectory generation
level. To minimize conflicts between the machine and the human, the trajectory planning problem is
decomposed into a high-level behavior decision-making problem and a low-level trajectory planning
problem. The approach infers the driver’s behavioral semantics according to the driving context and
the driver’s input. The trajectories are generated based on the behavioral semantics and driver’s
input. The feasibility of the proposed approach is validated by real vehicle experiments. The results
prove that the proposed human–machine cooperative trajectory planning approach can successfully
help the driver to avoid collisions while respecting the driver’s behavior.

Keywords: advanced driver assistance system; human–vehicle interaction; shared control; human–
machine cooperate; trajectory planning; semi-autonomous vehicle

1. Introduction

Intelligent driving systems can improve safety and reduce traffic accidents effectively.
The current intelligent assistance systems mainly include lane departure warning systems,
lane-keeping systems, automatic cruise systems, automatic emergency braking systems,
etc. However, the current intelligent driving systems still have many limitations and face
many challenges in environmental understanding, decision, planning, and control. In these
systems, the allocation mechanism of driving authority between human and machine is
relatively simple, and a safe and flexible human–machine cooperative driving ability in a
complex environment is not yet available. Drivers and intelligent driving systems can be
complementary. Drivers have rich experience and common sense in terms of environmental
understanding and cognition. Intelligent driving systems have the ability to continuously
monitor the surrounding environment and can assist one in driving safely to reduce the
driver’s workload. The advanced stage of human–machine co-driving should be that the
driver can get involved in all levels of perception, reasoning, decision making, and control.
The advantages of a human driver and intelligent driving system should be integrated to
achieve harmonization. How to integrate the advantages of drivers and intelligent driving
systems through human–machine co-driving technology has become an important research
topic of intelligent driving technology.

Regarding on the handover of driving authority between driver and vehicle in the
driver assistance systems, the research mainly includes the scope of application of driving
assistance systems [1], the human factors [2], the driving capability of the driver [3], and the
authority interactions between the driving assistance system and driver [4]. The effect of an
authority transition from autonomous driving mode to driver take-over mode varies with
different drivers [5]. It is necessary to analyze the timing to switch the control authority
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between the driver and the driver assistance system [6]. It is necessary to judge whether
the control authority can be transferred safely, whether the driver has the ability to control
the vehicle safely, and whether the vehicle state will be in the controllable state-space after
the control authority is switched. Differently from control authority switching, adjustable
autonomy can set multiple levels of autonomy, and each level can set a different control
ratio [7,8]. The driver and the machine can control the velocity and steer separately or to-
gether. According to the evaluation criteria, a certain level of autonomy can be selected [9].
The disadvantage of this method is that the autonomy level is divided into several fixed
levels, which have poor flexibility. The control of the human and the machine is simply
added, since the human’s input is not fixed, the final effect is unpredictable. Some scholars
proposed to use a new human–machine interaction interface to solve the problem of control
authority interaction. One approach is the haptic shared control, in which both the driver
and the intelligent driving system have authority over vehicle control. The driver is in
the control loop all the time, and can actively respond to any scene. At the same time, the
driver can continuously receive the haptic feedback provided by the intelligent driving
system. Human–machine cooperative longitudinal control can be realized by using the
accelerator pedal and the brake pedal [10,11]; human–machine cooperative lateral control
can be realized by the steering wheel. Haptic shared control can be achieved through force
feedback or stiffness feedback, thereby allowing a smooth transfer of control authority
between the driver and the machine [12]. Sterling J. Anderson [13] used a method based
on model predictive control to design a smooth proportional distribution relationship of
human–machine control authority. When the risk reaches a certain level, the control author-
ity will be gradually transferred from human to machine. Manabu et al. [14] proposed a
weighted summation method to combine the driver’s input with the automation’s desired
input. In this work, the authority weights are static during driving, which does not allow
the driver to gain more control authority in a critical situation that cannot be properly
handled by automation. Most of the above research focused on the problem of vehicle
control when the path is predefined. Few research have discussed the problem of trajectory
planning for semi-autonomous driving.

This paper discusses semi-autonomous driving technology from the perspective of
trajectory planning. A lot of research has been done on trajectory planning for automated
driving. Some approaches focus on computing collision-free trajectories using graph-search
methods, such as A* [15], Hybrid A* [16], D* [17], and state-lattice [18]. A disadvantage
of graph-search methods is that their results are related to the degree of discretization of
sampling points or primitives. If the discretization is not fine enough, the method may not
find a feasible path. Aiming at solving the above problem, incremental search methods
are proposed, such as Expansive Spaces Tree (EST) [19], Rapidly-exploring Random Trees
(RRT) [20], and Stable Sparse Trees (SST) [21]. If there exists a path and given enough
time, the incremental search methods will find a feasible path. The graph-search methods
and the incremental search methods are suitable for generating paths in an unknown
static environment. They usually require too many computing resources, making them
unable to react quickly in dynamic scenarios. The numerical optimization methods are
often used to obtain smooth trajectories by minimizing or maximizing a cost function.
In the artificial potential field methods, obstacles are assigned repulsive forces and the
target zone is assigned attractive forces so that the vehicle can drive towards the goal zone
while keeping away from the obstacles [22]. The trajectory with the deepest gradient can
be chosen as the optimal result. Whereas, the artificial potential field methods face the
problem of falling into local minima. Additionally, it is hard to reflect the non-holonomic
characteristic of the vehicle. In order to overcome the disadvantages, there are some studies
using sampling-based trajectory generation methods, such as polynomial spline [23–25].
The polynomial methods can generate paths with curvature bound constraints, and obtain
suboptimal solutions in the discrete solution space considering the distance to obstacles
and the costs of vehicle movement. One of the advantages of the polynomial methods is
that the computational cost is relatively small, and the convergence can be guaranteed.
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In this paper, we study the situation where the system detects a dangerous situation
and assists the driver in avoiding collisions with detected obstacles. In order to reduce
the system’s intervention during normal driving, the system enters the semi-autonomous
driving mode only when the system detects a dangerous situation. In order to solve the
problem of the fusion of driver’s input and machine’s input at the decision level and
the operational level, a human–machine collaborative trajectory planning algorithm is
proposed that combines the driving behavior and the comprehensive information of the
human, vehicle, and road. We adopted the hierarchical planning approach to construct our
cooperative trajectory planner. The semi-autonomous driving system respects the driver’s
driving behavior at the decision level and driver’s input at the operational level while
planning the trajectory. The framework of the proposed approach is shown in Figure 1.

Operation Information

Behavioral Semantic Understanding

Interactive Decision Making

Cooperative Trajectory Planning

Human

Behavioral Semantic of Driver

Cooperate at the Operational level
Vehicle

Resovle the Confict Between Human and Machine

Environment

Figure 1. The framework for the human–machine cooperative trajectory planning algorithm.

The main contribution of this paper is that the proposed algorithm can perform trajec-
tory planning in a human–machine collaborative manner while respecting the behavioral
semantics and the input of the driver. The system interacts with the driver at both the
decision level and the trajectory generation level. In addition, the proposed cooperative
trajectory planning algorithm can generate trajectories for each specific driving maneuver.
The computational cost can be reduced by generating fewer trajectories.

The remainder of this paper is organized as follows. Aiming at reducing conflicts
between the driver and the semi-autonomous driving system, the algorithm reasons about
the behavioral semantics of the current situation in Section 2. Then the algorithm makes
collision avoidance decisions according to the behavioral semantic of the driver in Section 3.
In Section 4, the human–machine cooperative trajectory planning algorithm considering
the driver’s input is proposed. Section 5 shows the experiment results. Conclusions are
drawn in Section 6.

2. Behavioral Semantic Understanding

The rider–horse metaphor (or H-metaphor) describes a symbiotic system, in which
the rider controls the horse through a combination of continuous and discrete inputs from
the hand to the rein. The horse can understand human intentions through the reins, and
the rider can understand the horse’s intentions from the environment and the state of
motion [26]. The horse strives to reduce the human’s riding burdens according to the
human’s intentions. Similarly, the intelligent assistance system and the human are two de-
pendent agents in a symbiotic system. The intelligent assistance system should understand
the driver’s behavioral semantic to resolve the conflicts between human and machine, and
strive to fulfil the driver’s intention if the intention is safe.

Driving maneuvering is very much dependent on its context. Each series of actions
that a driver can take corresponds to a maneuver, such as lane-keeping, a lane-change,
a left turn, or a right turn. Most current papers about semi-autonomous driving track
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a given path, and the input of the driver is treated as a disturbance, and the machine
compensates for the driver’s input. In order to achieve flexible interactions between people
and machines, the human–machine co-driving system should have the ability to reason
about vehicle movement trends based on behavioral semantics to identify whether the
driving behavior is safe or not. The driver can inform the intelligent driving system of
lane-changing intentions through the turning signal. Otherwise, the assistance system
can understand the behavioral semantics of the driver according to the driver’s driving
operation, environment, and vehicle status.

In this paper, we propose a method for understanding the driver’s behavior at the seman-
tic level according to the operation command of the driver and the environmental information.
The framework for the behavioral semantic understanding algorithm is shown in Figure 2.

Vehicle InformationEnvironment Information Human Operation Information

Environment Semantic Description

  Virtual Long-Term Trajectories
 of Candidate Driving Behaviors

    Short-Term Trajectory 
Predicted by Motion Model

Similarity Comparison

The Most Likely Behavioral Semantics

Figure 2. The framework for the behavioral semantic understanding algorithm.

There are three main steps for determining the driver’s most likely behavioral semantics.
Firstly, the virtual trajectories corresponding to specific semantic behaviors are gener-

ated. According to the traffic scenario, the vehicle movement is decomposed into lateral
movement and longitudinal movement in the Frenét-Frame.

Secondly, according to the driver’s input, the short-term trajectory is obtained using
the constant turn rate and acceleration (CTRA) kinematics motion model.

Finally, the driver’s most likely behavioral semantics is obtained by computing
the similarity between the virtual trajectories of different behavioral semantics and the
predicted trajectory.

The virtual long-term trajectory of candidate driving behaviors and the short-term
predicted trajectory are shown in Figure 3. The trajectory τlong is long-term trajectory of a
candidate driving behavior. The trajectory τshort is the short-term predicted trajectory.

2.1. The Virtual Long-Term Trajectories of Candidate Driving Maneuvers

In this paper, in order to reason about the behavioral semantics, the long-term trajecto-
ries representing candidate driving maneuvers are generated. An evasive motion model is
used in which the lateral acceleration is assumed to be a sinusoidal function of time.

alat =
2πH
t2
lat

sin
(

2π

tlat

)
(1a)

y(t) =− H
2π

sin
(

2π

tlat
t
)
+

H
tlat

t + y0 (1b)

H =|ytarget − y0| (1c)

where alat is the lateral acceleration in the Frenét-Frame, H is the total lateral distance to
complete lane-change process in the Frenét-Frame, tlat is the total lateral motion time, ystart
is the initial lateral position before the lateral motion, and ytarget is the terminal lateral
position, as shown in Figure 4. Given the maximum lateral acceleration amax ,lat and the
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total lateral distance H, the total lateral motion time tlat moving from y0 to ytarget can
be obtained.

tlat =
√

2πH/amax ,lat (2)

φ

τshort

(a) The case of driving straight forward.

H
△y

τlong
τshort

φ

(b) The case of turning left to avoid collision.

φ
τlong

H
△y

τshort

(c) The case of turning right to avoid collision.

Figure 3. The short-term predicted trajectory and the virtual long-term trajectories of different behaviors.

Figure 4. The position of the host vehicle in the Frenét-Frame.

The vehicle is assumed to move longitudinally with a constant acceleration.

vlon(t) = v(0) + at (3)

Thus, the heading angle during the process of lateral motion can be obtained.

tanϕ(t) = vlat(t)/vlon(t) (4)

In order to generate the virtual lateral trajectories representing the corresponding
behavioral semantics, it is necessary to find the appropriate target lateral position. In
structured roads, the target lateral position can be selected based on the positions of
obstacles and the centerline of the target lane. On an unstructured road, the appropriate
target lateral position can be selected based on the positions of obstacles and the reference
path provided by the global path planner. The minimum distance between the target lateral
position and the boundary of obstacles is4y. According to the relationship between the
heading angle of the vehicle in the Frenét-Frame and the target lateral position, there are
two cases, the details are as follows.

(1) If the heading angle in the Frenét-Frame is consistent with the direction of the target
lateral position, as shown in Figure 3b, the long-term virtual trajectory for the left-side
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evasive maneuver can be obtained by utilizing the evasive motion model. Assuming that
the vehicle follows the evasive motion model in Equation (1) and the current heading
angle is ϕ, the time tϕ required since the vehicle initiates lateral motion can be derived.
If a lateral terminal position ytarget and current lateral terminal position ycurrent in the
Frenét-Frame are determined, y0 and tϕ can be obtained by sampling the y0 and comparing
y(tϕ) with ycurrent.

tϕ =
tlat
2π
· arg cos

(
− tlat

H

(
v tan ϕ− H

tlat

))
(5)

The total lateral motion time tlat,le f t is obtained after y0 is determined. Assuming that
the evasive motion during [tϕ, tlat,le f t] follows the evasive motion model, the remaining
trajectory from the current state to the target lateral position can be obtained as shown in
Figure 3b. The remaining time tarrive,le f t to arrive at the target lateral position is defined
as follows.

tarrive,le f t = tlat,le f t − tϕ (6)

(2) If the heading angle in the Frenét-Frame is inconsistent with the direction of the
target lateral position, the long-term virtual trajectory for the right-side evasive maneuver
can be obtained as shown in Figure 3c. The virtual trajectory is divided into two parts. In
the first part, the vehicle adjusts its heading angle to be parallel to the reference line. The
lateral motion time for the first part is tadj. The vehicle is assumed to move at constant
lateral acceleration alat,adj during [0, tadj]. In the second part, the trajectory obeys the evasive
motion model. The lateral motion time for the second part is tlat,right. The remaining time
tarrive,right to arrive at the right-side target lateral position is as follows.

tadj = vlat/alat,adj (7a)

tarrive,right = tlat,right + tadj (7b)

2.2. Short-Term Motion Trajectory Prediction Based on Motion Model

Schubert R. et al. [27,28] compared different motion models and reached the conclu-
sion that the CTRA model provides better performance than the constant turn rate and
velocity (CTRV), the constant velocity (CV) and the constant acceleration (CA) models for
short-term trajectory prediction. Utilizing the CTRA model, the velocity vx(t) and vy(t)
can be derived based on the velocity and yaw angle [29].

v(t) =a0t + v0 (8a)

vx(t) =v(t) cos(ω0t + ϕ0) (8b)

vy(t) =v(t) sin(ω0t + ϕ0) (8c)

where v(t) is the velocity at time t, a0 is the current acceleration, v0 is the current speed, ω0
is the current yaw rate, and ϕ0 is the current heading angle.

ω0 = κ0v0

κ0 is the current path curvature. Therefore, x(t) and y(t) can be obtained.

x(t) =
a0

w2
0

cos(ω0t + ϕ0) +
v(t)
ω0

sin(ω0t + ϕ0)−
v0

ω0
sin ϕ0 −

a0

ω2
0

cos ϕ0 + x0 (9a)

y(t) =
a0

w2
0

sin(ω0t + ϕ0)−
v(t)
ω0

cos(ω0t + ϕ0) +
v0

ω0
cos ϕ0 −

a0

ω2
0

sin ϕ0 + y0 (9b)

2.3. The Most Likely Behavioral Semantics

This paper compares the similarity of two trajectories by calculating the distance
between them. This paper compares the similarity of two trajectories by calculating the
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distance between them. the nearest N sampling points are used to calculate the results.
The similarity of the trajectories is compared by calculating the weighted average distance.

SPD =
∑N

i=1 wi · Di

∑N
i=1 ωi

(10)

where Di is the distance of two points at the same prediction time, wi is the coefficients. In
order to prevent the uncertainty and interference in the measurement, a larger weight wi
is set for the closer pair of points. A smaller distance between trajectories means that the
trajectories are more similar and the driver is more likely to choose the semantic behavior.
If the distance between the short-term predicted trajectory and the virtual long-term
trajectory is below a threshold, the vehicle is considered to be driving in the corresponding
driving maneuver.

3. Interactive Decision Making

According to the driver’s behavioral semantics, the system needs to determine whether
the vehicle is in a safe driving area. If the state is safe, and there is still a certain safety
margin for the driver, there should be no intervention. Otherwise, if the safety margin is
reduced to a certain degree, the machine will intervene and the system will enter the semi-
autonomous driving mode. The system should respect the driver’s behavioral semantics,
and generate trajectories according to the driver’s current behavioral semantics if there still
exists a safety margin.

3.1. The Driving Envelope for Candidate Driving Behaviors

For the obstacle avoidance scenario as shown in Figure 5, given the minimum lateral
distance to the obstacle, the algorithm judges whether there is a feasible obstacle avoidance
evasive corridor by searching the lateral non-obstacle position on both sides of the obstacle.
If there is a feasible lateral evasive corridor, the lateral position with a suitable distance
from the obstacle is selected as the innermost lateral target position, and the lateral position
with a suitable distance from the boundary of road is selected as the outermost lateral
target position. After the lateral target positions on both sides are selected, different levels
of safety driving envelope for obstacle avoidance behavior are generated to identify the
safety level of the current situation.

In this paper, the driving envelope for each driving maneuver is generated in the
Frenét-Frame, as is shown in Figure 5. The τoutside is the boundary trajectory, which takes
the outermost lateral safe position as the target lateral position.

Trajectory τ1 keeps a safe distance from the front obstacle. Taking the innermost lateral
safe position as the target lateral position, τ1 is the trajectory that longitudinally moves
at a constant speed, and laterally follows the evasive motion model. If the τ1 for the left
and the right evasive maneuvers exist and do not collide with τoutside, then the evasive
maneuvers are safe for the driver. The driver can avoid a collision from both the left-side
and the right-side without braking. Warnings should not be provided in this situation.

Trajectory τ2 is a critical trajectory with a constant longitudinal speed that will not
collide with the obstacle. Taking the innermost lateral safe position as the target lateral
position, τ2 is the trajectory that longitudinally moves at a constant speed, and laterally
follows the evasive motion model. If the trajectories τ2 for one side cannot be generated
because the safe distance for τ2 is not satisfied, or the τoutside of that side collides with τ2,
the vehicle can perform evasive behavior from that side by steering combined with braking.
Then the vehicle’s evasive behavior for that side is in the level one warning zone.

Trajectory τ3 is a critical trajectory with a defined maximum deceleration that will
not collide with the obstacle. Taking the innermost lateral safe position as the target
lateral position, τ3 is the trajectory that longitudinally decelerates at maximum constant
deceleration alonmax, and laterally follows the evasive motion model. If the trajectories τ3
for one side cannot be generated because of the safe distance for τ3 not being satisfied, or
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the τoutside of that side collides with τ3, then the vehicle’s evasive behavior for that side is
not safe. Then the vehicle’s evasive behavior for that side is in the level two warning zone.

τoutside τ1 τ2 τ3

Figure 5. The driving envelope of different safety levels.

3.2. Timing for Intervention

Based on the driving envelope of candidate driving maneuvers and the understanding
of behavioral semantics, the system can judge the safety level of the driver’s maneuver
at the decision level. The system can provide corresponding assistance to the driver. It is
important to find the proper timing for providing assistance. If the system intervenes too
early, it will interfere with the normal driving experience. If the intervention is too late, the
system may miss the opportunity to avoid obstacles safely. It is necessary to ensure the
existence of feasible obstacle avoidance trajectories during the intervention process. At the
same time, it is necessary to minimize unnecessary interference with the driver.

In this paper, we determine the timing for intervention by calculating the probability
of violating the driving envelope. There is a certain degree of uncertainty in the driver’s
operation. When using the CTRA model, the uncertainty can be represented by a prob-
ability model, and the possible positions of each time step can be obtained. In [30], the
vehicle was assumed to move according to a predefined motion model that considers
uncertainty. The intervention timing was determined by the collision probability with
traffic participants. In this paper, intervention timing is determined by calculating the
probability of violating the safe driving envelope. When the probability of violating the
safe driving envelope reaches a threshold, the system can provide a safety warning and
intervention. This proposed method can guarantee that the collision avoidance trajectories
exist when the system provides assistance.

The state of the vehicle is defined as X = [x, y, θ, v, a, ω]T , where (x, y) stands for the
vehicle position, θ stands for the yaw angle, v stands for the vehicle velocity, a represents
the acceleration, and ω represents the yaw rate. The state vector of the vehicle at k + 1(k =
0, 1, 2, ...) is X(k + 1). The nonlinear motion model is described in Equation (11).

X(k + 1) =



x(k + 1)
y(k + 1)
θ(k + 1)
v(k + 1)

a
ω

 = X(k) +



∆x(k)
∆y(k)

ωT
aT
0
0

+ W(k) (11)

where T is the sampling period. The process noise vector W(k) corresponds to a zero-mean
white Gaussian noise, representing noises in acceleration and yaw rate. The relationship
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between the noise vector and the covariance matrix is E[WWT ] = Q. The covariance matrix
Q = diag(0; 0; 0; 0; σ2

a ; σ2
ω). ∆x(k) and ∆y(k) are defined as follows.

∆x(k)=
1

ω2 [(v(k)ω+aωT) sin(θ(k) + ωT)+a cos(θ(k)+ωT)−v(k)ω sin θ(k)−a cos θ(k)]

∆y(k)=
1

ω2 [(−v(k)ω−aωT) cos(θ(k)+ωT)+a sin(θ(k)+ωT)+v(k)ω cos θ(k)−a sin θ(k)]

Given the vehicle state and the covariance within a predefined prediction horizon,
we randomly generate N particles for each future time step. For example, the prediction
results at the future time steps of 0.5 s, 1 s, 1.5 s, and 2 s are shown in Figure 6.

Figure 6. Trajectory prediction considering uncertainty.

For each particle, we check if the particle is outside of the driving envelope of different
safety levels, as shown in Figure 7. The more particles outside the driving envelope, the
greater the probability of violating the driving envelope. The probability of violating the
driving envelope is defined as follows.

poutside =
Noutside

N
(12)

where Noutside denotes the number of particles outside of the driving envelope.
In order to reduce the computational cost of computing the probability of violating

the driving envelope, we compute the predicted position (xT , yT) at the predefined time T
without considering the uncertainty at first. If the position (xT , yT) is near enough to the
boundary of driving envelope, then we generate the particles and compute the probability.

If the probability of violating the driving envelope of a specific safety level reaches
a certain threshold, the system can provide the corresponding assistance to the driving,
such as warning or intervention. For example, the generated particles at the future time
step of 1.5 s are shown in Figure 7. If the poutside of outside the trajectory τ2 is beyond a
threshold, the system can provide a safety warning. If the poutside of outside the trajectory
τ3 is beyond a threshold, the system can provide intervention.

τoutside τ1 τ2 τ3

Figure 7. The probability of violating the driving envelope.

3.3. Evaluation of Driving Behaviors

For obstacle avoidance behavior, the safety of driving behaviors can be obtained
according to the driving envelope. If the current driving behavior is unsafe, the algorithm
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can choose a safe driving behavior through behavioral decision-making. Besides, a cost
function is designed to evaluate the quality of driving behaviors. The collision avoidance
scenario is shown in Figure 8.

φ

τright

△y

△yτleft

Figure 8. The evasive behaviors for the both sides.

The designed cost function for evaluating the evasive maneuver is as follows. In this
cost function, the evasive behavior of steering combined with braking is considered.

J = ω1t2
arrive + ω2a2

req,ev (13)

where tarrive is the time to arrive at the safe target lateral position next to the obstacle, which
is defined in Equations (6) and (7), and areq,ev is the minimum required deceleration to
ensure that no collision occurs.

The designed cost function for stopping to avoid collision is as follows.

Jbrake = ω0a2
req,br (14)

where areq,br is the minimum required deceleration to ensure that no collision occurs.

areq,br =
v2

m
2d

(15)

4. Human–Machine Cooperative Trajectory Planning

There are three main objectives for human–machine cooperative trajectory planning.
The first one is that the behavior of the machine should satisfy the driver’s intentions
as much as possible. The second one is ensuring the least modifications to the driver’s
intentions, and only intervening when necessary. Third, driving comfort and safety need
to be ensured.

Most of the existing semi-autonomous driving systems use the model predictive
control algorithm, which needs precise vehicle model parameters, including tire param-
eters, body mass, friction coefficient, etc. In [31], data-driven adaptive dynamic pro-
gramming and an iterative learning scheme were adopted for learning the control law of
semi-autonomous driving for lane keeping. In references [32,33], the authors put forward
a Takagi–Sugeno fuzzy model-based shared control method for lane-keeping assistance
systems. In reference [34], the system intervened when the vehicle deviated from the refer-
ence path by a certain distance, or the steering angle deviated from the reference steering
angle to a certain degree. Given a predefined path, the output was obtained by solving
the control optimization problem. In this paper, semi-autonomous driving is realized from
the perspective of trajectory planning. The vehicle does not need to follow a predefined
target path. The system can analyze the safety of candidate driving maneuvers using
the proposed method in Section 3, and plan a safe trajectory. The trajectory is generated
according to the driver’s behavioral semantics at the decision level, and according to the
driver’s input at the operational level.

In [35,36], an approach that provides a flexible way to allocate authority for semi-
autonomous driving is proposed. The paper focuses on the situations wherein the vehicle is
always in the semi-autonomous driving mode: the driver performs the evasive maneuver
to avoid collisions when the obstacles are undetected by the system. At the trajectory
generation level, the machine generates trajectories using polynomials and evaluates the
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trajectories according to the driver’s input. Compared with the previous literature about
semi-autonomous driving, this paper does not set a fixed path for the vehicle to follow,
and the weight of the human–machine control authority is not fixed. Differently from
the semi-autonomous driving approach proposed in [35,36], in this paper, we study the
situations where the obstacles are detected by the system, and the system assists the driver
to avoid collisions. The conditions for initiating the intervention are introduced in Section 3.
The system enters the semi-autonomous driving mode only when the system detects a
dangerous situation, so that the frequency of interventions can be reduced during normal
driving situations. In addition, this paper considers more constraints than the method
proposed in [35,36].

In this paper, the trajectory planning problem is decomposed into high-level behav-
ioral decision-making problems and low-level trajectory planning problems within the safe
boundaries. The trajectory algorithm in this paper generates safe motion boundaries for
different behaviors and decomposes the trajectory planning problem into sub-problems of
trajectory planning within the safety boundaries corresponding to different behaviors.

4.1. Generation of Candidate Trajectories

The polynomial methods can generate trajectories with curvature-bound constraints,
and obtain a suboptimal solution in the discrete solution space considering the distance
to obstacles and the costs of vehicle movement [37,38]. In this paper, we generate the
candidate trajectories according to the driver’s behavioral semantics if they are judged
safe. The fifth-order polynomial in the Frenét-Frame is used to represent the lateral and
longitudinal motion.

d(t) =c5t5 + c4t4 + c3t3 + c2t2 + c1t + c0 (16a)

s(t) =a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0 (16b)

The coefficients of the quintic polynomial are calculated based on the initial and the
terminal states, including the values of position, velocity, and acceleration. Assuming
that the initial lateral state is

[
d0 ḋ0 d̈0

]
, and the terminal lateral state is

[
dT ḋT d̈T

]
, the

following matrix can be obtained.

t5
0 t4

0 t3
0 t2

0 t1
0 1

t5
T t4

T t3
T t2

T t1
T 1

5t4
0 4t3

0 3t2
0 2t1

0 1 0
5t4

T 4t3
T 3t2

T 2t1
T 1 0

20t3
0 12t2

0 6t1
0 2 0 0

20t3
T 12t2

T 6t1
T 2 0 0

 ·


c5
c4
c3
c2
c1
c0

 =



d0
d1
ḋ0
ḋ1
d̈0
d̈1

 (17)

By substituting t0 = 0 and the time T into the equation, the coefficients can be obtained
as follows.  c2

c1
c0

 =

 d̈0/2
ḋ0
d0


 c5

c4
c3

 =

 T5 T4 T3

5T4 4T3 3T2

20T3 12T2 6T

−1 dT −
(
c2T2 + c1T + c0

)
ḋT − (2c2T + c1)

d̈T − 2c2


After reaching the target lateral position, the lateral velocity and lateral acceleration are

both zero. The terminal state is [dT 0 0]. In order to ensure that the lateral movement is safe
and comfortable, the lateral acceleration needs to be within a certain range. |d̈| 6 alatmax.
The lateral motion components of the trajectory can be generated by sampling the time.
Similarly, the coefficients for longitudinal motion can be obtained.
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In order to keep most of the trajectories within the safety boundary to reduce the
time for collision checking, the evasive motion model in Section 2.1 is used to guide the
selection of parameters for generating trajectories. The time tarrive to arrive at the target
lateral position from the current lateral position can be obtained using the evasive motion
model, as introduced in Equations (6) and (7). The time tbound for the longitudinal motion
to reach the boundary of the driving envelope can be obtained, as shown in Figure 9. The
approximate total time T is in the following range.

T ∈ [tarrive − E , tbound + tarrive + E ] (18)

where E is a constant for adjusting the total time T.

tarrive τevasive

tbound

Figure 9. The total time T for trajectory generation.

4.2. Evaluation of Candidate Trajectories

The driver’s driving intentions need to be respected for semi-autonomous driving.
In this paper, the trajectories are planned on the basis of understanding the driver’s
behavioral semantics to obtain the corresponding human–machine cooperative driving
trajectory.A cost function is designed to evaluate the trajectory so that the path keeps a safe
distance from obstacles while keeping close to the predicted vehicle trajectory under the
current steering angle. After obtaining a series of candidate trajectories, the trajectory with
the lowest cost is selected. Finally, a trajectory is obtained which avoids collisions with
obstacles while respecting the semantics of driving behavior.

In [35,36], the machine predicted the driver’s target lateral position; the trajectories
were evaluated according to the deviation between the chosen target lateral position and the
predicted target lateral position. However, when the driver makes mistakes, the predicted
target lateral position according to the driver’s input may not be safe. Since the penalty
for avoiding obstacles is not added in the proposed method, the system will not assist
the driver in avoiding collisions with detected obstacles using the proposed trajectory
evaluation cost function. In this paper, we assume that the obstacles are detected. In this
paper, we only generate and evaluate trajectories for the safe target lateral positions. The
way of considering the driver’s input is also different. The path which is more similar to
the predicted path according to the driver’s input is given a smaller penalty so that sudden
changes of the steering wheel will be reduced during the intervention process, and the
chosen trajectory will be closer to the driver’s intention.

4.2.1. The Cost of the Road Boundary

The motivation for the road boundary cost is to prevent vehicles from crossing the
road boundary. Drivers are usually expected to drive near the centerline of the lane. The
driver may deviate from the centerline of the lane in the process of driving. In order to
prevent frequent interventions in a safe situation, the lateral position of the target is allowed
to deviate from the centerline of the road by a certain distance. The following cost function
is designed for the road boundary.

Jrb =

{
crb
(
ltarget − lcenter

)2 |ltarget − lcenter| > 4lthresh
0 |ltarget − lcenter| 6 4lthresh

(19)
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where ltarget indicates the target lateral position of the trajectory and lcenter is the lateral
position of the centerline. An example of the cost of the road boundary is shown in
Figure 10.

Figure 10. The cost of the road boundary.

4.2.2. The Cost of Longitudinal Motion Smoothness

Vehicle motion is affected by tire friction, road conditions, vehicle inertia, engine
power, etc., so longitudinal acceleration and deceleration are limited. Sudden changes
in acceleration can lead to tire wear and fuel waste, and cause an uncomfortable driving
experience. In order to make the velocity and acceleration change smoothly, and make the
longitudinal velocity of each point be close to the reference velocity, the cost of longitudinal
motion was designed to be as follows.

Js =
1
N

N

∑
k=1
{cjs(

...
s (k))2 + cvs

(
ṡ(k)− ṡ f (k)

)2
} (20)

where
...
s (t) represents the acceleration of longitudinal motion, ṡ(t) represents the longi-

tudinal velocity of each point, ṡ f (t) represents the reference longitudinal velocity of each
point, and cjs and cvs are the weighting coefficients.

4.2.3. The Cost of Lateral Motion Smoothness

Excessive lateral acceleration can cause sudden changes in steering, which can cause
an uncomfortable experience. The acceleration and speed of the lateral movement of the
vehicle should change smoothly. The cost of lateral motion is designed as follows.

Jd =
1
N

cd

N

∑
k=1

(
...
d (k))2 (21)

where
...
d(t) represents lateral jerk and cd is the weighting coefficient for lateral motion smooth-

ness.

4.2.4. The Cost of Stability

In order to prevent the vehicle from swinging, the cost of stability is added. The higher
the similarity between the selected path for this frame and the previous frame, the more
stable the path will be. In order to avoid an excessive difference between the selected paths
in two adjacent frames, a cost is added for evaluating the similarity between the candidate
paths and the path selected in the previous frame.

Jprev = − 1
Ic

cprev

Ic

∑
i=1
{
(
αprev

)i−1dist
(

pk,i, τprev

)2
} (22)

where αprev ∈ (0, 1) is the attenuation coefficient that increases with the path length,
which is used to reduce the influence of farther waypoints on the stability cost; cprev is
the weighting coefficient. As the distance between the waypoint and the current vehicle



Electronics 2021, 10, 946 14 of 23

position increases, the influence of the waypoint is smaller. Ic is the number of waypoints
considered, pk,i is the ith waypoint on the candidate trajectory τk, τprev is the selected
trajectory in the previous frame, and dist

(
pk,i, τpre

)
represents the distance from pk,i to τprev.

Frequent changes in the selected target lateral position will affect the stability of the
vehicle. A penalty for the selected target lateral position is designed to improve the stability.
The distance between the selected target lateral position and the current lateral position
should not be too large.

Jtarget = cdi f (ypre,lat − ytarget,lat)
2 + ctarglaty2

target,lat (23)

where |ypre,lat − ytarget,lat| is the distance between the target lateral position in this frame
and the previous frame; ytarget,lat is the selected lateral position in this frame; cdi f and
ctarglat are weighting coefficients for lateral target position.

4.2.5. The Cost of Similarity to Driving Intentions

The motivation of this cost is to fuse the driver’s input in trajectory planning. If the
vehicle is in semi-autonomous driving mode, the driver and the machine have control
authority at the same time. In order to make the final trajectory closer to the driving
intention at the operation level, a trajectory closer to the predicted trajectory based on
the driver’s input will be assigned a smaller penalty. The candidate trajectories and the
trajectory predicted according to the driver’s operation are shown in Figure 11. The
similarity cost reflects the similarity of the candidate trajectories to the trajectory predicted
according to the driver’s operation.

Jintention = − 1
Ic

cintention

Ic

∑
i=1
{(αintention)

i−1dist
(

pk,i, τpred

)2
} (24)

where αintention ∈ (0, 1) is the attenuation coefficient which increases with the path length,
Ic is the number of waypoints considered, pk,i is the ith waypoint on the candidate trajectory
τk, τpred is the predicted trajectory of the vehicle based on the driver’s manipulation, and
dist

(
pk,i, τpre

)
represents the distance from pk,i to τpred.

Short-term predicted trajectory
Candidate trajectories 

Figure 11. The candidate trajectories and the short-term predicted trajectory.

4.2.6. The Cost of Non-Crossable Obstacles

The cost of obstacles can keep the vehicle away from the obstacles, which cannot
be crossed, such as pedestrians and parked vehicles. Collision with such non-crossable
obstacles should be avoided.

Jstai =
1
N

cstai

N

∑
k=1

exp
(
−cshaped2

stai

)
(25)

where cshape is a coefficient that influences the shape of the potential field of a non-crossable
obstacle; dstai is the distance from the waypoint to the static obstacle. The distance to the
non-crossable obstacle can be obtained from the dist map. The three-dimensional graphical
representation of the function defined in Equation (25) is illustrated in Figure 12.
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Figure 12. The cost of a non-crossable obstacle.

4.2.7. The Total Cost

To select the optimal trajectory among the candidate trajectories, the above evalua-
tion indicators are weighted and summed, and the cost of each candidate trajectory can
be obtained as follows.

Jtraj,k = Jrb + Js + Jd + Jrev + Jtarget + Jintention + Jstai (26)

The choice of coefficients is a multi-objective optimization problem. In this paper, we
tune the feasible choice for the coefficients until the balance of multiple goals is reached.
For example, if there is a significant jump in the target lateral position, we increase the
coefficient of stability cost to obtain a more stable path. If the trajectory is too close to the
obstacle, we adjust the obstacle-related coefficient cstai and cshape to keep the vehicle far
away from the obstacles. At last, the trajectory τk∗ with the lowest cost is selected from the
candidate trajectories set for the specific behavior.

k∗ = arg min
k

(Jk) (27)

5. Experiments and Discussions

The experimental platform modified by the Red Flag EHS3 was used to test the
proposed algorithm. A human drove the vehicle at about 20 km/h, and a dummy was
placed in front of the vehicle. The experimental scenario is shown in Figure 13. The semi-
autonomous system judged the behavioral semantics of the driver, and provided warnings
and interventions when it was necessary.

Figure 13. The experimental scenario.

In order to resolve the conflict between the driver and the machine, the system needed
to reason about the behavioral semantics of the driver. The long-term virtual trajectories
of the candidate evasive maneuvers and the short-term predicted trajectory are shown in
Figure 14.
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(a) The trajectories at 3.3 s. (b) The trajectories at 4.3 s.

Figure 14. The short-term predicted trajectory and the long-term virtual trajectories.

The map in Figure 14 was generated based on the Lidar point cloud. As shown in
Figure 14a, the dummy was about 25 m ahead. The gray parts in the pictures represent
obstacles; the black part represents the non-obstacle area. A reference path is provided to
clarify the direction of the road, shown as the blue line. The driver had three candidate
maneuvers according to the environment, namely, a left evasive maneuver, a braking
maneuver, a right evasive maneuver. The yellow lines represent the long-term virtual
trajectories of evasive maneuver from the left-side and right-side of the dummy. The light
green line represents the short-term predicted trajectory based on the CTRA motion model
according to the current vehicle state.

The similarities between the short-term predicted trajectory and the three candidate
maneuvers can be reflected by the distances between them, which are shown in Figure 15.
As is shown in Figure 15, after 3 s, the distance of the left evasive maneuver was smaller,
which is in line with the actual left-side evasive maneuver.

Left evasive maneuver
Brake
Right evasive maneuver

Figure 15. The distances between the trajectories predicted by the motion model and the trajectories
of the candidate maneuvers.

The costs for the left evasive maneuver and the right evasive maneuver are shown
in Figure 16. After 5 s, the steering wheel was continuously turned to the left, the cost of
avoiding obstacles on the left side gradually decreased, and the cost of avoiding obstacles
on the right side gradually increased.
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Left evasive maneuver
Right evasive maneuver

1
0

5

10

15

20

0 2 3 4 5 6 7

Figure 16. Costs of candidate evasive maneuvers.

The driving envelopes of different safety levels are shown in Figure 17. The red lines
represent the critical trajectory with the deceleration of −2 m/s2 that will not collide with
the obstacle, corresponding to the boundary trajectory τ3 in Figure 5. The yellow lines
represent the boundary trajectory which takes the outermost lateral safe position as the
target lateral position, corresponding to the boundary trajectory τoutside in Figure 5. The
orange lines represent the critical trajectory with constant longitudinal speed that will not
collide with the obstacle, corresponding to the boundary trajectory τ2 in Figure 5.

(a) The driving envelope at 2.8 s. (b) The driving envelope at 3.2 s. (c) The driving envelope at 3.6 s. (d) The driving envelope at 4.2 s.

Figure 17. The driving envelopes of different safety levels.

The system can judge the safety of evasive maneuver from the left corridor using the
method proposed in Section 3. As is shown in Figure 17a, the boundary trajectory τ2 of
safety level 2 for both sides existed; the evasive behavior for both sides could be achieved
by steering. As is shown in Figure 17b, the boundary trajectory τ2 of safety level 2 for the
right side did not exist; the boundary trajectory τ3 of safety level 3 for the right side existed;
the right evasive behavior could be achieved by steering combined with braking, and for
the left side, the collision could be avoided just by steering. At 3.2 s, as shown in Figure 15,
the distance between the predicted path using CTRA model and the evasive path from
the left side was smaller than that of the right side. The probability of driving from the
left side was higher than that from the right side. When the probability of violating the
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boundary of left safety level 2 reached the predetermined threshold, the system provided
a safety warning to the driver. As is shown in Figure 17c, the boundary trajectory τ2 of
safety level 2 for both sides did not exist; the boundary trajectory τ3 of safety level 3 for
both sides existed; the vehicle needed to slow down and steer to avoid collisions from both
sides. As shown in Figure 17d, the boundary trajectory τ3 of safety level 3 for the right
evasive behavior did not exist; it was not safe to choose the right side to avoid the collision
at the deceleration of −2 m/s2. The boundary trajectory τ3 of safety level 3 for the left
evasive behavior existed; it was safe to choose the left side to avoid the collision by braking
combined with steering.

Considering the prediction results of the driver’s behavioral semantics, the system
can infer that the driver is driving from the left side of the obstacle. When the probability
of violating the left level 3 driving envelope reached the predefined threshold, the system
started to intervene. At 4.5 s, the generated candidate trajectories from the left side of the
obstacle are shown in Figure 18a. The final selected trajectory for the left side considering
the input of the driver is shown in Figure 18b.

(a) The trajectory bundle at 4.5 s. (b) The selected trajectory at 4.5 s.

Figure 18. The trajectory bundle and the selected trajectory for the left-side evasive maneuver.

The proposed human–machine cooperative trajectory generation method can generate
the trajectories according to the driver’s behavioral semantics. If the driver’s behavior
semantics are not considered, and the trajectories are generated in the entire available state
space, the computational burden will increase. The candidate and selected trajectories
for the both candidate driving maneuvers are shown in Figure 19. Since the number of
the generated trajectories was more than that of the trajectories according to the driver’s
behavioral semantics, the computational time was longer. The code was implemented in
C++ using an Intel I7-3520 CPU running at 3.4 GHz. The average total time for generating
the trajectories for the both sides for the situation in Figure 19 was about 46 ms. The
average total time for generating the trajectories for only the left side for the situation
in Figure 19 was about 25 ms. The driving envelope introduced in Section 3 was used
to judge the safety level of the driver’s behavioral semantics. If the state was safe, the
system did not intervene. The system can generate trajectories only after a safety warning
is issued and the driver does not take any corrective measures, thereby further reducing
the computational burden.
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(a) The trajectory bundle. (b) The selected trajectories for the
both sides.

Figure 19. The trajectory bundle and the selected trajectories for the both sides.

The experimental results are shown in Figure 20. The machine issued a warning at
3.2 s, when the vehicle speed was 19.5 km/h. After the warning was issued, if the driver
did not take corrective action, the steering angle was insufficient for collision avoidance.
The machine started a steering intervention and speed intervention at 4.3 s. The machine
ended its intervention at 9.3 s, at which time the vehicle reached a safe state, and the
heading angle of the vehicle was consistent with the direction of the reference path.
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Figure 20. The experimental results.
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The interface of the human–machine cooperative trajectory planning program is
shown in Figure 21. The interface when the system provides safety warning is shown
in Figure 21a, the interface when the semi-autonomous system intervenes is shown in
Figure 21b.

Seven drivers were invited to take the same evasive tests. The subjects were between
26 and 45 years old. The dummy was about 40 m ahead, and the vehicle’s speed was about
20 km/h. The initial lateral positions and heading angles were slightly different for each
test. The experimental results of evasive action from the left side are shown in Figure 22.
The experimental results of evasive action from the right side are shown in Figure 23. In
order to make the picture clearer, the time axis of each set of data was shifted. The timings
of providing warnings for each test were shifted to the same time.

(a) The interface when the system provides safety warning. (b) The interface when the system enters co-driving mode.

Figure 21. The interface of the trajectory planning program.
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Figure 22. The experimental results of different drivers for steering from the left side.
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Figure 23. The experimental results of different drivers for steering from the right side.

In Figures 22 and 23, the blue vertical dashed line indicates the moment when the
warning was issued; the red vertical dashed line indicates the moment when the inter-
vention was provided; the green vertical dashed line indicates the moment when the
intervention was over. The experiment results show that when the vehicle is close to an
obstacle and the steering angle is insufficient, the system can provide safety warnings and
interventions to successfully help the driver avoid a collision with an obstacle.

The proposed method generates trajectories based on the driver’s behavioral seman-
tics. The stability of the proposed method can be guaranteed at the decision level. Once
the driver’s behavioral semantics are determined, the system can judge the safety level of
the corresponding driving behavior, and generate safe trajectories for the driving behavior.
If the vehicle drives straightly toward the obstacle, the system will evaluate the candidate’s
driving behaviors using the method in Sections 3.2 and 3.3. A safe driving behavior will be
selected as the final decision result. The system tends to plan trajectories according to the
driver’s behavioral semantics. If the driver’s behavioral semantics are not safe, the system
can choose another safe driving behavior.

The proposed algorithm can provide safety warnings and interventions when the ob-
stacle is correctly detected and the situation is judged as dangerous. The system intervenes
by adding torque to the steering wheel and applying braking force to the brake pedal. If the
sensor fails to detect the obstacle, the semi-autonomous driving system will not provide
assistance to the driver. If the sensors detect false obstacles, and initiate interventions, the
driver can exit the semi-autonomous driving mode. In the test vehicle, the driver could exit
the semi-autonomous driving mode by pressing a button. If the driver’s toque on the steer-
ing wheel reaches a predefined threshold, the system can also exit the semi-autonomous
driving mode.

Since the driver is in the loop, the driver may change the input during the human–
machine interaction period. When the system detects that the driver’s toque is greater
than zero, then the trajectory should be regenerated for each time period. Otherwise, if the
driver’s torque is zero, the system will check whether the previously generated trajectory is
safe. If the previous trajectory is safe, the vehicle can follow the previous planned trajectory.

6. Conclusions

In this paper, a novel human–machine cooperative trajectory planning algorithm
for semi-autonomous driving was proposed. The proposed algorithm comprehensively
considers the safe motion boundary constraints, driving behavioral semantics, vehicle
safety limits, comfort, etc. The trajectory planning algorithm is able to obtain a trajectory
that avoids collisions with dynamic obstacles while respecting the driver’s behavioral
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semantics at the decision level. A designed cost function is used to select a path that is
close to the predicted vehicle trajectory according to the control input of the driver at the
operation level. The feasibility of the proposed algorithm was validated by real vehicle
experiments. The experimental results show that the proposed semi-autonomous system
can issue safety warnings to the driver, and provide steering and speed interventions to
successfully help the driver avoid collisions.

In this paper, the safety-related parameters in the experiments were set to be the
same for different drivers. Each driver’s driving ability and driving habits were different.
The maximum lateral acceleration, maximum deceleration, and reaction time vary for
each driver, which will influence the timing for providing safety warnings and trajectory
planning. In the future, we will continue to study the methods to extract the personal
features to improve the performance of the system.
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