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Abstract: Three-dimensional object detection based on the LiDAR point cloud plays an important
role in autonomous driving. The point cloud distribution of the object varies greatly at different
distances, observation angles, and occlusion levels. Besides, different types of LiDARs have different
settings of projection angles, thus producing an entirely different point cloud distribution. Pre-trained
models on the dataset with annotations may degrade on other datasets. In this paper, we propose
a method for object detection using an unsupervised adaptive network, which does not require
additional annotation data of the target domain. Our object detection adaptive network consists of
a general object detection network, a global feature adaptation network, and a special subcategory
instance adaptation network. We divide the source domain data into different subcategories and use
a multi-label discriminator to assign labels dynamically to the target domain data. We evaluated
our approach on the KITTI object benchmark and proved that the proposed unsupervised adaptive
method could achieve a remarkable improvement in the adaptation capabilities.

Keywords: autonomous driving; 3D object detection; multi-label GAN; subcategory adaptation

1. Introduction

LiDAR-based 3D object detection is an important module for autonomous driving.
Thanks to the great success of deep learning techniques and a large amount of annotated
data, the detection performance has improved significantly in the past few years. However,
in practice, we always find that a pre-trained object detection model may perform well
on the original dataset, but the performance may degrade dramatically on other datasets.
After analyzing the reasons for performance degradation, we attribute it to the different
distribution of the point cloud in the source domain and the target domain.

For autonomous driving, the 3D point cloud is often generated by emitting and receiv-
ing laser rays to the environment from the center of the multi-channel LiDAR. Therefore,
the point cloud distribution changes dramatically as the ranging distance increases. Besides,
different types of LiDARs have different settings of projection angles, thus producing an
entirely different point cloud distribution.

In this paper, we focus on the unsupervised domain adaptation algorithm that has the
potential to overcome the dataset bias problem. This kind of algorithm aims to model the
difference between the source domain and the target domain, and the models trained in
the source domain implicitly take this difference into account, thus having the potential to
perform well in the target domain.

In the task of object detection, the domain adaptation methods could be simply
classified as global data adaptation methods and local instance adaptation methods. For the
global data adaptation method, the goal is to minimize the whole gap between the source
domain and the target domain, so the scene-level difference can be modeled. In contrast,
local instance adaptation methods take the instance representation into account and help
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to reduce the local instance difference. In practice, these two types of approaches are
usually combined for a more robust result. In Reference [1], the authors revealed the
relationship between global and instance adaptation and trained two additional domain
classifiers to enhance the performance of Faster RCNN. In Reference [2], the authors believe
that the difference at the scene level may be too large for a perfect match; therefore, it
proposes to combine the weak global alignment with the strong local alignment for object
detection adaptation.

Recently, generative adversarial learning is also introduced to design domain adap-
tation algorithms. This kind of algorithm tries to minimize domain discrepancy through
discriminators. This kind of algorithm has achieved great success for detecting objects
in 2D image [3]. However, compared with 2D images, the objects in the 3D point cloud
are characterized not only by their 3D position but also by the scale and 3D orientation.
Therefore, a simple generative adversarial network (GAN) that confuses whether the object
belongs to the source domain or the target domain may not be adequate. As previously
mentioned, the point cloud in 3D varies a lot at different ranges or different observation
angles; therefore, the objects should be better grouped into different subcategories. It is well
known that the use of category labels can significantly improve the quality of the generated
samples. LabelGAN [4] expands the generated samples with an additional category label.
The generator of CatGAN [5] directly optimizes the entropy of the different sub-categories,
so each generated sample will have a high degree of confidence for certain categories.

In this paper, we propose a novel unsupervised domain adaptation method for 3D
object detection. The proposed approach combines global adaptation with local multiple
subcategory adaptation. This algorithm aims to improve the object detection performance
in the target domain without any additional labeled data. The proposed approach is a
generic approach that could be used in conjunction with any deep learning-based object
detection networks [6]. To enhance the performance, the 3D objects are divided into subcat-
egories based on observation angle and object orientation. A multi-label discriminator is
designed to classify these samples. The designed multi-label network can minimize the
domain discrepancy at the instance level. Additionally, a global adaptation network is also
designed to normalize the structure of the point cloud.

We evaluate our adaptation model on the KITTI benchmark [7]. Experimental re-
sults indicate that the proposed approach could obtain a remarkable improvement in the
adaptation capabilities.

This paper is structured as follows: In Section 2, we review the related work. Section 3
shows the entire framework of our method and introduces the global adaptation network
and subcategory instance adaptation network. In Section 4, the implementation details of
our method are introduced. The qualitative and quantitative experiments on the KITTI
benchmark are introduced in Section 5. Section 6 shows the ablation study of our method,
and then the conclusions are given in Section 7.

2. Related Work
2.1. 3D Object Detection

3D object detection based on the LiDAR point cloud has always been a central task for
autonomous driving. Depending on the representation approach for the LiDAR point cloud,
existing approaches could be categorized into three categories: 3D voxel-based approach,
2D projected view-based approach, and point-based approach. A typical representation
of point cloud is to discretize the 3D space into voxels, and a 3D convolutional neural
network(CNN) could then be directly applied to the voxel. However, the 3D convolution [8]
is considered to be a computationally expensive approach. To reduce the computational
cost, the resolution of voxels has to be set to a relatively large value. To remedy this,
Wang et al. [6] propose a cascaded network that subdivides the initial voxel into smaller
voxels to increase the resolution. Sparse convolution [9,10] is another technique that has been
used to accelerate the processing speed. It utilizes the sparsity of the point cloud, and only
performed the convolution at locations where the data exists. To avoid the 3D convolution,
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some approaches are directly performed on the original point cloud [11–13] to extract point-
wise features. The 3D point cloud could also be projected to the 2D image view [14,15],
but some information might get lost after the projection. This paper aims to design a domain
adaptation method that is applicable for all the different object detection approaches.

2.2. Unsupervised Domain Adaptation

Learning-based methods usually assume that the data characteristics on the training
set and the testing set should be approximately the same; therefore, the model trained on
the training set can be directly applied to the testing set. However, in practice, we some-
times find that the distribution of labeled training data and testing data are not the same.
To tackle this problem, domain adaptation [16,17] approaches have been designed. They try
to minimize the gap [18,19] between the source domain and the target domain, in hopes that
the model trained in the source domain is still valid in the target domain. A typical method
is to introduce an additional discrepancy loss in the training step to generate domain
invariance features [20–22]. This approach is also known as the direct domain alignment
approach. Other than the direct domain alignment, an indirect method called domain ad-
versarial learning [23–27] has attracted increasing attention recently. In domain adversarial
learning, a discriminator is trained to distinguish features of the source domain from the
target domain, and a generator (backbone network) is simultaneously trained to fool the
discriminator. This adversarial process helps to generate domain invariance features.

Although there has been a lot of research on domain adaptation for object detection, it
is still a challenging task. Most of the previous works focus on image-based object detection.
Adaptive Faster RCNN [1] combines global and local instance feature alignment and uses
a gradient reversal layer [28] to train the adversarial network. Strong-weak Distribution
Alignment [2] put the alignment focus on globally similar data and promote the consistency
of local structural information. To deal with 3D point cloud, Rist et al. [29] proposed a
cross-sensor domain adaptation method and demonstrated that the dense 3D voxels can
better model sensor invariance features. SqueezeSegv2 [30] utilizes a simulation engine
to generate labeled synthetic data. A model is then trained on the synthetic data and
transferred to the real world. In Reference [31], the authors believe that the sparse point
cloud is sampled from a dense surface. Therefore, a network is first trained to perform the
surface completion. The recovered 3D surfaces serve as an intermediate representation for
domain adaption.

3. Unsupervised Subcategory Domain Adaptive Network
3.1. Network Overview

The architecture of the proposed subcategory adaptive network is illustrated in
Figure 1. Our network consists of three modules, namely the object detection network,
global feature adaptation network, and subcategory instance adaptation network.
SCNET [6] is a 3D object detection network that considers both performance and effi-
ciency. It is highly flexible and can be extended to other tasks. So, we choose SCNET as
the object detection network. It is also the baseline model in this work. SCNET is a single-
stage network consisting of a backbone network for global feature extraction and a region
proposal network (RPN) for object classification. The global feature adaptation network
is a generative adversarial network with a global domain discriminator. The subcategory
instance adaptation network contains a multi-label discriminator.

In the training phase, data from the source domain and target domain simultaneously
input to the object detection backbone network and share parameters. Only data from the
source domain contains annotations. These annotations are utilized to tune the network
parameters. The global feature adaptation network shares global features with the backbone
network. To minimize domain shift, we use the gradient reverse layer (GRL) [28] to align
the global features between the source and target domain. The global features then input
to RPN for region extraction. To encourage domain adaptation at the subcategory level,
a subcategory instance adaptation network is used to perform domain adaptation and local
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instance classification after region extraction. Especially, the multi-label discriminator is
used to classify instances into different subcategories.

Figure 1. An overview of our subcategory domain adaptive network: We perform model adaptation from two aspects,
the global features and subcategory instance features. Both are trained by generative adversarial rules. Different domain
data extract features through the same backbone network and an region proposal network (RPN) is used to extract instance
features. The instance discriminator is designed as a multi-label generative adversarial network (GAN) network for
subcategory classification.

3.2. Global Feature Adaptation

A patch-based domain discriminator [32] is imposed to classify source domain and
target domain. Specifically, the patch-based classifier makes a prediction for each data
patch to eliminate the overall domain distribution mismatch. To reduce the difference
between the two domains further, we reverse the gradient of the source domain and target
domain to the backbone network through gradient reverse layer synchronously.

The global feature adaptation loss is expressed as

Lglobal = −∑
i
[yi log pi + (1− yi) log(1− pi)], (1)

where yi ∈ [0, 1] represents the label of patch i. yi = 0 indicates the source domain, and
yi = 1 represents the target domain. pi is the prediction of domain classifier.

As an end-to-end network structure, we optimize the parameters of the domain
discriminator to minimize the global feature classification loss and optimize the parameters
of the backbone feature extraction network to maximize the loss. By optimizing the global
loss, we obtain the domain invariant global features.

3.3. Subcategory Instance Adaptation

Subcategory Division. The structure of the 3D object in the LiDAR point cloud is
diverse due to the difference in positions and orientation angles. Therefore, dividing all 3D
objects into one category will lose the shape information within the category. As shown
in Figure 2, due to the self-occlusion, objects with the same orientation angle might have
completely different point cloud distribution. For the same observation angle, as shown in
Figure 3, although the same part of the object can be observed, and the distribution of local
point is the same, the whole point cloud is different in angle.
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Figure 2. Point cloud distribution with the same orientation angle. In different locations, the distribu-
tion of point cloud is completely different.

Figure 3. Point cloud distribution with the same observation angle. The local point cloud distribution
is the same, but the rotation angle is different.

Because 3D point cloud describes the actual scale of the object, the distribution of
the same object at different distances is consistent. As the distance increases, the point
cloud density will gradually decrease. Objects with similar poses at different distances
should have similar characteristics. The dense object can obtain more stable and complete
representations. In the source domain, we choose complete objects without occlusion as
the basic samples.

To minimize the intra-class difference, we classified each sample into different subcat-
egories according to the observation angle and the object’s orientation angle.

The detail is shown in Figure 4. For these two angles, we divided them into N and M
parts in the range of [−π, π]. Thus, the number of categories is N ×M.

Subcategory Instance Adaptation Network. To provide clear gradient guidance for
the generator, the multi-label GAN trains the discriminator using the category labels on
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the source instance. The discriminator not only divides the source instance into the source
domain with high confidence but also divides the instance into a subcategory. For the
target domain instance, it is uncertain which existing category it is classified into, so the
goal of the generator is to generate samples with higher confidence to classify it into a
certain category and fool the discriminator. We divided all of the data into K + 1 categories
and K + 1 is the label of the target domain instance. The loss function is defined as follows:

LG = E(x,y)∼G[H(v(y), D(x))], (2)

LD = E(x,y)∼Sdata
[H(v(y), D(x)]+

Ex∼G[H(v(K + 1), D(x))],
(3)

where Di(x) is the probability that x belongs to class i. D(x) = [D1(x), D2(x), . . . , DK+1(x)],
v(y) = [v1(y), v2(y), . . . , vK(y)], vi(y) = 1 if i = y else vi(y) = 0; H is the cross entropy.

For the discriminator, labeled source data should be correctly classified into one of the
K categories, while the unlabeled target data should be correctly classified as belonging
to the K + 1 category. For the generator, the target data should be classified into one of
the K categories. AM-GAN [33] proposed a dynamic label method to evaluate the label
of unsupervised data. As shown in Figure 5, all K + 1 categories can be treated equally.
The discriminator shares the same features and simultaneously discriminates subcategories
and domains. This method makes the category auxiliary classifier on the source domain
participate in the adversarial training.

Figure 4. Orientation angle and observation angle are selected as the factors for classification.
The orientation angle is divided into N parts, and the observation angle is divided into M parts.
The total number of categories is N ×M.

Based on the premise that each sample can correspond to a label, we assign a target
class to each sample according to the currently estimated probability by the multi-label
discriminator. The feature extracted by the discriminator can be then used for domain
classification and category classification. Therefore, unlabeled data will automatically
select the most probable category from the K categories with the highest probability.
The difference between GAN and subcategories GAN can be seen in Figure 6.

y(x) , argmax
i∈1,...,K

Di(x). (4)

Although the input of the multi-label GAN discriminator comes from the source data
and the target data, we hope to optimize the performance of the target domain based on
the source domain network. So, we cut off the gradient propagates through the source
domain data to prevent the network from degrading the source domain features to align
the cross-domain features.
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Figure 5. Multi-label GAN. When training discriminator, the Source data is divided into K categories,
and the target data is classified as the K+1. And, for the generator, the target is classified into one of
the K categories.

Figure 6. GAN uses the domain label to divide the data into two categories. The multi-label GAN
uses the source domain labels to divided the data into N subcategories, while the target domain data
uses corresponding dynamic labels to reduce the difference with the source domain subcategories.

3.4. Loss

Let Ldet denotes the loss of object detection network, which contains three different
kinds of loss. The classification loss is used to evaluate the accuracy of the predicted
category probability. The regression loss is used to learn the scale and posture of the
object, and the direction loss can identify the direction of the object to enhance detection
performance. The training loss of object detection network can be represented as:

Ldet = β1Lreg + β2Ldir + β3Lcls, (5)

where β1, β2, β3 are set to 2.0, 0.2, 1.0 according to SCNET.
The final training loss is defined as:

L = Ldet + λ(Lglobal + Linstance), (6)

where λ is the loss weight to balance the detection loss and adaptation loss. The Linstance is
equal to the LG. During inference, two adaptive networks can be removed, and only the
object detection network with adapted weights is used.
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4. Implementation

In this section, we introduce the implementation details of the network. We perform
unsupervised domain adaptation in our experiments. The data consists of two parts: the
source domain data with annotations and the target domain data without annotations.

SCNET [6] is chosen as the object detection framework. The structure of this network
can be briefly divided into two steps: rasterization of unsorted point cloud and a regular
backbone network for prediction and regression. SCNET adds an extra subdivision encod-
ing network to enhance resolution. The original SCNET is trained on the source domain as
the baseline without any adaptive operation. The results with different adaptive modules
are reported in our experiments.

The network is trained with Stochastic Gradient Descent (SGD). The initial learning
rate is 0.0002, and the decay weight is set to 0.8. The hyper-parameters are the same as
the original SCNET. The trade-off parameter λ is set as 0.1. All experiments are run on a
computer equipped with GTX 1080Ti GPU and Intel i7 CPU@3GHZ.

In the KITTI dataset, we select point cloud data within the range of [−3, 1]× [−40, 40]×
[0, 70.4] meters on the Z, Y, and X axes. The orientation angle is divided into 8 parts and
the observation angle is also divided into 4 parts. Thus, the number of subcategories is 32.

In the initial training stage, the training of the discriminator should be emphasized.
As the training continues, the training of the generator should gradually increase and
eventually reach a balance with the discriminator. The parameter α in the GRL is used to
adjust this balance. It is calculated as:

α =
0.2

1 + exp(−10 · p) , (7)

where p is defined as the ratio of the current iteration number to the total iteration number.
So, α is a dynamic value that gradually changes from 0 to 0.2.

We evaluate the car detection performance using the KITTI evaluation protocols,
where the IOU threshold is set to 0.7. The average precision (AP) is used to evaluate the
performance. The same threshold is applied in both the bird’s eye view (BEV) and the
3D view.

5. Experiments

The KITTI Object benchmark contains 7481 training data. Following Reference [34], it
is divided into a training subset of 3712 samples and a validation subset of 3769 samples.
There are three different difficulty levels: easy, moderate, and hard. The difficulty levels
account for different sizes, occlusions, and truncation, which are key factors influencing the
detection results. We evaluate the performance both in the bird’s eyes view and 3D view.

Due to the scanning characteristics of the LiDAR, object samples in the near range
are quite different from those far-away objects. Therefore, we treat the near range as the
source domain and the far-away range as the target domain. The range threshold is set to
35.2 m. The annotations in the far-away range are removed to evaluate the unsupervised
adaptation capability of the proposed approach.

As shown in Table 1, we train our baseline object detection network on the source
domain and evaluate it on the target domain with different IOU thresholds. It is observed
that the performance is significantly enhanced when the IOU threshold is reduced from 0.7
to 0.5. This result indicates that the object detector could detect far-away objects well, but it
encounters difficulties to accurately localize them.

The performance of different adaptive modules is shown in Table 2. Compared with
the basic network, the proposed method achieves +3.75% and +2.09% gains on BEV and 3D
object detection using the global adaptation module. The proposed method also achieves
+6.18% and 2.89% gains by using the instance adaptation module only. This proves that
global and instance-level adaptation modules can effectively reduce the domain shift.
Combining these two modules, the final gains are +7.52 and +3.21, respectively, at the
moderate level. The results proved the necessity of reducing global and local domain shifts.
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Table 1. The average precision (AP) of the object detection for different IOU values in the valida-
tion dataset.

Threshold
AP-BEV AP-3D

Easy Moderate Hard Easy Moderate Hard

IOU = 0.7 0.00 48.73 48.01 0.00 29.41 29.34
IOU = 0.5 0.00 63.12 62.12 0.00 61.53 56.58

Table 2. The object detection performance of our method. G denotes the global feature adaptation,
and L denotes the subcategories instance adaptation.

Methods
AP-BEV AP-3D

Easy Moderate Hard Easy Moderate Hard

SCNET 0.00 48.73 48.01 0.00 29.41 29.34
SCNET (G) 9.09 52.48 51.43 0.00 31.50 30.66
SCNET (L) 2.27 54.91 51.65 2.27 32.30 31.15

SCNET (G + L) 4.55 56.25 53.01 4.55 32.62 31.89

The division of difficulty level takes into account the image size, occlusion, and trunca-
tion of the object. Because their image height is lower than the easy level judgment standard,
objects in the far-away range are rarely classified as easy level. The small amount of easy
objects in the far-away range explains the huge fluctuations in detection performance at
the easy level.

Some qualitative results are shown in Figures 7 and 8. From Figure 7, it is observed
that the proposed adaptive network increases the recall rate of distant objects. Figure 8
shows a typical orientation error under a correct classification result. It is clearly shown
that our proposed adaptive network can improve the orientation estimation.

(a) (b)

Figure 7. The qualitative results for recall rate. We compare the performance of original method and
proposed adaptive method in two scenes (a,b). In each subfigure, the top-left picture is the original
results and the top-right picture is our results. The bottom picture is the image corresponding to the
point cloud. The blue bounding boxes represent the ground truth boxes, and the green bounding
boxes are the detection results. The results show that the proposed adaptive network can detect
some objects that cannot be detected by the original method, thereby improving the recall rate of
distant objects.
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Figure 8. The qualitative results for orientation error. For better visualization, we put the results of the
original network and proposed adaptive network together. The blue bounding boxes represent the
ground truth box. The yellow bounding boxes represent the original result, and the green bounding
boxes represent the results of the adaptive network. The result shows a typical direction error under
a correct classification result. The direction of the green boxes is closer to the blue ground truth box,
and the direction of the yellow bounding box is quite different from the blue bounding box. Our
proposed adaptive network can improve the orientation accuracy.

6. Ablation Study
6.1. Adaptation via GAN and Multi-Label GAN

We also compare the general GAN and our multi-label GAN. The key difference is
object correspondence. GAN utilizes the discriminator to distinguish the target domain
from the source domain, and then uses the generator to adjust the target domain to reduce
the domain difference. This is a typical data transferring method similar to the global
adaptation. GAN does not take full advantage of the instance characteristics, but only
enhances the global adaptation. The multi-label GAN divides the source domain data
into multiple subcategories and estimates the dynamic label of the target domain data
based on the discriminator. In this way, the categories are expanded from two categories to
multiple categories. A discriminator shares parameters to perform category classification
and domain classification at the same time.

In this experiment, two instance adaptation results are listed in Table 3. From the
results, it is observed that GAN does improve the detection performance in the target
domain, but inferior to the multi-label GAN with subcategories. With different poses,
the distribution of the 3D point cloud has a greater change than the image. The result
shows that the multiple subcategories division of the source domain data can provide more
effective information in transfer learning compared with treating it as one category.

Table 3. Performance of the object detection for different type of GAN.

Methods
AP-BEV AP-3D

Easy Moderate Hard Easy Moderate Hard

GAN 4.55 55.24 52.34 4.55 31.79 30.82
Multiple categories GAN 4.55 56.25 53.01 4.55 32.62 31.89

6.2. Cross-Device Adaptation

We have explored the range adaptation of homogeneous data. Here, we show exper-
iments on the dissimilar domain adaptation from 64-channel data to 32-channel LiDAR
data. The vertical resolution to determine the object density is one of the main parameters
of LiDAR. Generally, there are significant performance differences between models trained
with different line numbers. We construct a new 32-channel point cloud data based on
the KITTI dataset. We uniformly sample the origin 64-channel point cloud data through
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the vertical angle. We use it as the target domain data to be learned. The new 32-channel
dataset contains 3712 samples for training and 3769 samples for validation.

The new 32-channel dataset has the same number of frames as the origin 64-channel
data, but the input order of the two domain data is random, so the two data will not
be aligned during the training process. The range of both data is [−3, 1] × [−40, 40] ×
[0, 70.4] m.

Tables 4 and 5 present our results on BEV and 3D. The results show that the method
that combines global adaptation and local instance adaptation gets the best performance.
Compared with BEV object detection, the performance of 3D object detection has been
greatly improved. Since the performance of 3D object detection has been greatly affected by
domain shift, the adaptive method can improve more performance. Similarly, long-distance
data that is greatly affected by the domain shift will also be improved than overall data.

Table 4. Bird’s eye view (BEV) detection performance on adaptation from 64-channel data to 32-
channel data.

Methods
Full-Range (0–70.4 m) Far-Range (35.2–70.4 m)

Easy Moderate Hard Easy Moderate Hard

SCNET 89.10 78.84 78.62 4.55 46.89 45.01
SCNET(G+L) 89.61 80.01 79.03 4.55 52.43 46.76

Table 5. Three-dimensional detection performance on adaptation from 64-channel data to 32-
channel data.

Methods
Full-Range (0–70.4 m) Far-Range (35.2–70.4 m)

Easy Moderate Hard Easy Moderate Hard

SCNET 78.19 67.00 64.78 0 22.49 21.72
SCNET(G+L) 84.00 68.22 66.19 0 26.57 25.53

6.3. Subcategories Division

We divide the object into different subcategories according to the orientation angle
and observation angle. The orientation angle represents the local orientation and the
observation angle combines local direction and position information. The combination of
global and local information is sufficient to describe the change in point cloud distribution.

The number of the subcategories is critical to the multiple categories classification.
We divide the orientation angle and observation angle into 4 parts and 8 parts, respectively.
In total, we have four combinations, namely 4× 4, 4× 8, 8× 4, and 8× 8. The results under
different settings are shown in Table 6. It is observed that the combination of 8× 4 gets
the best result. In theory, as the resolution increases, the performance gradually improves.
The experiment shows a similar trend. When the angle resolution is set to 4× 4, the perfor-
mance slightly outperforms GAN, and the best performance is achieved at resolution 8× 4.
But the larger resolution 8× 8 could not get better performance. The possible reason is that
the discriminator could hardly distinguish too many subcategories.
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Table 6. Performance of the object detection for different subcategory divisions.

Methods
AP-BEV AP-3D

Easy Moderate Hard Easy Moderate Hard

4 × 4 4.55 55.77 52.30 4.55 32.18 31.49
4 × 8 3.03 55.96 52.31 3.03 32.46 31.83
8 × 4 4.55 56.25 53.01 4.55 32.62 31.89
8 × 8 4.55 55.77 52.30 4.55 32.18 31.49

7. Conclusions

In this paper, we have proposed an unsupervised model adaptation method for object
detection in the 3D point cloud. We use adversarial global feature adaptation and sub-
category instance adaptation to achieve the cross-domain adaptation. We consider the
variability of the point cloud and divide source domain data into multiple subcategories
based on the annotations. The subcategory instance adaptation network uses a multi-
label GAN network to assign labels dynamically to target domain data. Our method has
successfully applied 3D point cloud subcategory information to reduce the discrepancy
between source and target domain data. We evaluated our adaptation method on the
KITTI dataset and demonstrated the combination of global feature adaptation and subcate-
gory instance adaptation can significantly improve the performance of the unsupervised
adaptation model.
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