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Abstract: In this paper, we propose the first ARIA block cipher on both MSP430 and Advanced
RISC Machines (ARM) microcontrollers. To achieve the optimized ARIA implementation on tar-
get embedded processors, core operations of ARIA, such as substitute and diffusion layers, are
carefully re-designed for both MSP430 (Texas Instruments, Dallas, TX, USA) and ARM Cortex-M3
microcontrollers (STMicroelectronics, Geneva, Switzerland). In particular, two bytes of input data
in ARIA block cipher are concatenated to re-construct the 16-bit wise word. The 16-bit word-wise
operation is executed at once with the 16-bit instruction to improve the performance for the 16-bit
MSP430 microcontroller. This approach also optimizes the number of required registers, memory
accesses, and operations to half numbers rather than 8-bit word wise implementations. For the
ARM Cortex-M3 microcontroller, the 8× 32 look-up table based ARIA block cipher implementation
is further optimized with the novel memory access. The memory access is finely scheduled to
fully utilize the 3-stage pipeline architecture of ARM Cortex-M3 microcontrollers. Furthermore, the
counter (CTR) mode of operation is more optimized through pre-computation techniques than the
electronic code book (ECB) mode of operation. Finally, proposed ARIA implementations on both
low-end target microcontrollers (MSP430 and ARM Cortex-M3) achieved (209 and 96 for 128-bit
security level, respectively), (241 and 111 for 192-bit security level, respectively), and (274 and 126 for
256-bit security level, respectively). Compared with previous works, the running timing on low-end
target microcontrollers (MSP430 and ARM Cortex-M3) is improved by (92.20% and 10.09% for 128-bit
security level, respectively), (92.26% and 10.87% for 192-bit security level, respectively), and (92.28%
and 10.62% for 256-bit security level, respectively). The proposed ARIA–CTR implementation im-
proved the performance by 6.6% and 4.0% compared to the proposed ARIA–ECB implementations
for MSP430 and ARM Cortex-M3 microcontrollers, respectively.

Keywords: ARIA; block cipher; software implementation; counter mode of operation; microcontroller

1. Introduction

The data encryption is important for the network security. The computation of secure
encryption requires high overheads for low-end microcontrollers. In order to achieve high
availability on low-end microcontrollers, the efficient implementation of block cipher has
been actively studied. For the efficient implementation, unique features of target block
ciphers should be considered for optimizations. In this paper, we optimized the electronic
code book (ECB) and counter (CTR) modes of operation for ARIA block cipher on both
MSP430 and Advanced RISC Machine (ARM) Cortex-M3 microcontrollers.

Proposed in 2004, ARIA block cipher [1] is the standards of South Korean and IETF.
Recently, the ARIA on low-end Alf and Vegard’s RISC (AVR) was presented by [2]. ARIA
implementations on 8-bit AVR required 198.3 (for 128-bit security level), 228.0 (for 192-bit
security level), and 257.8 (for 256-bit security level) clock cycles per byte, respectively.
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However, optimized implementations of ARIA block cipher on both MSP430 and ARM
Cortex-M3 microcontrollers have not been studied. Compared with 8-bit AVR microcon-
trollers, target microcontrollers have different architectures, in terms of word size, instruction
set, general purpose registers, and pipeline stages. For this reason, specialized optimization
techniques should be investigated for high performance on both MSP430 and ARM Cortex-
M3 microcontrollers. In this work, we improved ARIA block cipher on both MSP430 and
ARM Cortex-M3 microcontrollers. ARIA implementations are optimized by considering
unique features of target microcontrollers and adopting the state-of-art engineering technique.
Furthermore, we proposed ARIA–CTR implementations on both target microcontrollers.

Contribution

The first ARIA block cipher on both MSP430 and ARM Cortex-M3 microcontrollers:
Primitive operations of ARIA block cipher, such as substitute and diffusion layers, are
efficiently optimized for both MSP430 and ARM Cortex-M3 microcontrollers. With these
optimized operations, high-speed implementations of ARIA block cipher are achieved.

Optimized ARIA block cipher implementations for 16-bit MSP430 microcontrollers: Two
bytes of input data are concatenated to re-construct the 16-bit word. The operation on the
16-bit word is executed at once to improve the performance and reduce the number of
required general purpose registers, memory accesses, and operations, for the 16-bit MSP430
microcontroller. Proposed ARIA implementations on 16-bit MSP430 microcontrollers
achieved 209 (for 128-bit security level), 241 (for 192-bit security level), and 274 (for 256-bit
security level) clock cycles per byte, respectively. Compared with former works on the
identical processor, the running timing is optimized by 92.20% (for 128-bit security level),
92.26% (for 192-bit security level), and 92.28% (for 256-bit security level), respectively [1].

Optimized ARIA implementations for ARM Cortex-M3 microcontrollers: For the
ARM Cortex-M3 microcontroller, the pre-computed table based ARIA implementation is
further optimized. The memory access is finely re-scheduled to utilize the 3-stage pipeline
architecture of ARM Cortex-M3 microcontroller. Finally, proposed ARIA implementations
on ARM Cortex-M3 microcontrollers achieved 96 (for 128-bit security level), 111 (for
192-bit security level), and 126 (for 256-bit security level) clock cycles per byte, respectively.
Compared with former ARIA implementations on the identical processor, the execution
timing is enhanced by 10.09%, 10.87%, and 10.62% for 128-bit, 192-bit, and 256-bit security
levels, respectively [1].

Efficient implementation of ARIA–CTR on MSP430 and ARM Cortex-M3 microcon-
trollers: The implementation of ARIA–CTR is further optimized for MSP430 and ARM
Cortex-M3 microcontrollers. For the 16-bit MSP430 microcontroller, 1 substitution layer,
1 diffusion layer, and 2 add-round-key operations are optimized away. For the 32-bit
ARM Cortex-M3 microcontroller, both M · S layer and M1 layer are optimized with pre-
computation. With the above optimizations, the performance of the proposed ARIA–CTR
implementations are improved over the proposed ARIA–ECB implementations by 6.6%
and 4.0% for MSP430 and ARM Cortex-M3 microcontrollers, respectively.

The remainder of this paper is organized as follows. Section 2 presents an overview of
the ARIA block cipher and previous block cipher implementations on both 16-bit MSP430
and 32-bit ARM Cortex-M3 microcontrollers. In Section 3, proposed implementations of
ARIA block cipher on both 16-bit MSP430 and 32-bit ARM Cortex-M3 microcontrollers
are presented. In Section 4, the performance evaluation of proposed implementations is
described. Finally, the conclusion is given in Section 5.

2. Related Works
2.1. Target Block Cipher: ARIA

ARIA block cipher consists of a substitution layer, diffusion layer, and add-round-key.
Similar to AES block cipher, the substitution layer executes an affine transformation of
the inversion function on Galois Field and the diffusion layer executes a simple linear
map operation. The add-round-key executes eXclusive-OR operation with plaintext and
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round key. ARIA encryption and decryption operations share the identical architecture.
This feature optimizes the chip size and code size for hardware and software implementa-
tions, respectively.

2.2. Target Microcontrollers: 16-Bit MSP430 and 32-Bit ARM Cortex-M3

The MSP430 microcontroller is a representative 16-bit embedded processor board with
a clock frequency of 8–16 MHz, 32–48 KB of flash memory, 10 KB of RAM, and 12 general
purpose registers from R4 to R15. The microcontroller provides sufficient basic arithmetic
instructions for implementations. Instructions for block cipher implementations on the
MSP430 microcontroller are described in Table 1.

ARM Cortex-M3 is 32-bit microcontroller and designed for embedded computing
services. The microcontroller provides low energy consumption with high performance.
Arithmetic instructions take one clock cycle but memory access instructions take more
clock cycles. The microcontroller supports the barrel-shifter, which performs rotated or
shifted registers without additional costs. Instructions for block cipher implementations on
the ARM Cortex-M3 microcontroller are described in Table 2.

Table 1. Instruction set summary of ARX operations on the 16-bit MSP430 microcontroller, where c
represents carry bit.

asm Operands Description Operation #Clock

ADD A, B Add without Carry B← A + B 1

XOR A, B Exclusive OR B← A ⊕ B 1

RLA A Logical Shift Left c|A← A� 1 1

RLC A Rotate Left through Carry c|A← A� 1||c 1

Table 2. Instruction set summary of ARX operations on the 32-bit Advanced RISC Machine (ARM)
Cortex-M3 microcontroller.

asm Operands Description Operation #Clock

ADD C, A, B Add word without Carry C← A + B 1

EOR C, A, B Exclusive OR C← A ⊕ B 1

LSL C, A, B Shift Left C← A� B 1

ROR C, A, B Rotate Right C← A� >B 1

2.3. Former Symmetric Key Cryptography on 16-Bit MSP and 32-Bit ARM Microcontrollers

In [3], an optimized implementation of authenticated encryption on MSP430X microcon-
trollers was presented. In [4], efficient implementations of AES (132 cycles/byte) and SPECK
(103 cycles/byte) block ciphers on the MSP430 microcontroller were presented, respectively.
In [5], the encryption mode of the tweakable block cipher of the SCREAM authenticated
cipher is implemented in the MSP430 microcontroller. In [6], the implementation of Simeck
on the MSP430 microcontroller reduces the code size by 19.32% and improves the execution
timing by 3.75 times. In [7], a compact implementation of Chaskey on the MSP430 micro-
controller was presented. Similarly, many block ciphers were implemented on MSP430
microcontrollers [8–10].

For the case of ARM processors, many implementations were also investigated. In
WISA’13, LEA block cipher on the 32-bit ARM processor was introduced [11]. Primitive
operations of LEA block cipher were optimized for the 32-bit ARM microcontroller. In [12],
AES–CTR implementations were presented and achieved optimal AES implementations.
In [13], the new efficient software design of PRESENT block cipher was presented. The CTR
mode of operation takes 2100 cycles on the Cortex-M3 microcontroller, which improves the
performance by a factor of 8. In [14], a 384-bit permutation design (i.e., Gimli) is efficiently
implemented on the 32-bit ARM processor. In [15], constant time implementations of GIFT
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block cipher on the ARM Cortex-M3 microcontroller were presented. The 128-bit data can
be encrypted with only about 800 cycles for GIFT-64 and about 1300 cycles for GIFT-128.
In [16], fixslicing-based AES implementations were also evaluated on ARM Cortex-M. Simi-
larly, many block ciphers were implemented on ARM Cortex-M microcontrollers [8,17–19].

However, previous works do not optimize the ARIA block cipher on both target mi-
crocontrollers (MSP430 and ARM Cortex-M3). In this paper, we present the first optimized
implementation of ARIA block cipher on both microcontrollers.

3. Proposed Method

Since the length of the original word of the ARIA block cipher is 8-bit, the implemen-
tation of ARIA is efficient for the 8-bit architecture as described in [2]. However, the 8-bit
word-based ARIA architecture is not efficient for 16-bit cases. For this reason, optimiza-
tions for 16-bit architecture should be considered. For the case of 32-bit, the developer of
ARIA block cipher suggested techniques to combine substitute and diffusion layers. This
approach efficiently performs the computation with 8× 32 look-up table access, which is
the optimal method for the 32-bit architecture.

We implemented the ARIA for both MSP430 and ARM Cortex-M3 microcontrollers.
For the case of MSP430 microcontrollers, two 8-bit wise operations are combined to con-
struct the 16-bit word for the efficient diffusion layer. The 8-bit wise memory access is
efficiently handled for the substitution layer. For the case of ARM Cortex-M3 microcon-
trollers, the previous look-up table based access is further optimized by considering the
3-stage pipe-lining of the 32-bit ARM Cortex-M3 microcontroller. Particularly, instructions
are re-scheduled to avoid pipeline stalls. Byte wise rotation operations are also efficiently
implemented with ARM native instruction sets.

3.1. Optimized ARIA Implementation on 16-Bit MSP430

The MSP430 microcontroller has twelve 16-bit registers for general purposes. In
Table 3, the general purpose register utilization for ARIA encryption on 16-bit MSP430
microcontrollers is presented. In particular, general purpose registers are used for differ-
ent purposes, such as plaintext pointer, round key pointer, plaintext, loop counter, and
temporal variable.

Table 3. Register utilization for ARIA encryption on the 16-bit MSP430 microcontroller.

Register Utilization

R4–R11 plaintext #1–#8
R12 plaintext pointer/loop counter/temporal variable #1
R13 round key pointer

R14–R15 temporal variable #2–#3

Diffusion Layer: The diffusion layer executes consecutive XOR operations with 8-bit
words in a certain order. Some XOR operations of diffusion layer are repeated several times
(T value of Algorithm 1). These repeated parts can be computed once. Then, these results
can be used several times through the caching to reduce the number of computations.
Detailed descriptions for sequential diffusion layer are presented in Algorithm 1. In Steps
1, 6, 11, and 16, some parts of XOR operations are pre-computed. Then, these results are
used several times in following steps (2–5, 7–10, 12–15, and 17–20). However, the target
microcontroller only supports 16-bit word size and instructions. The straight-forward
implementation of 8-bit wise pre-computation technique (i.e., Algorithm 1) is inefficient
for the 16-bit MSP430 microcontroller, because only half of register is utilized during
the computation.
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Algorithm 1 Sequential diffusion layer of ARIA block cipher for 8-bit AVR [1].

Input: 128-bit input (i[0–15])
Output: 128-bit output (o[0–15])

1: T ← i[3]⊕ i[4]⊕ i[9]⊕ i[14]
2: o[0]← i[6]⊕ i[8]⊕ i[13]⊕ T
3: o[5]← i[1]⊕ i[10]⊕ i[15]⊕ T
4: o[11]← i[2]⊕ i[7]⊕ i[12]⊕ T
5: o[14]← i[0]⊕ i[5]⊕ i[11]⊕ T
6: T ← i[2]⊕ i[5]⊕ i[8]⊕ i[15]
7: o[1]← i[7]⊕ i[9]⊕ i[12]⊕ T
8: o[4]← i[0]⊕ i[11]⊕ i[14]⊕ T
9: o[10]← i[3]⊕ i[6]⊕ i[13]⊕ T

10: o[15]← i[1]⊕ i[4]⊕ i[10]⊕ T
11: T ← i[1]⊕ i[6]⊕ i[11]⊕ i[12]
12: o[2]← i[4]⊕ i[10]⊕ i[15]⊕ T
13: o[7]← i[3]⊕ i[8]⊕ i[13]⊕ T
14: o[9]← i[0]⊕ i[5]⊕ i[14]⊕ T
15: o[12]← i[2]⊕ i[7]⊕ i[9]⊕ T
16: T ← i[0]⊕ i[7]⊕ i[10]⊕ i[13]
17: o[3]← i[5]⊕ i[11]⊕ i[14]⊕ T
18: o[6]← i[2]⊕ i[9]⊕ i[12]⊕ T
19: o[8]← i[1]⊕ i[4]⊕ i[15]⊕ T
20: o[13]← i[3]⊕ i[6]⊕ i[8]⊕ T

In Algorithm 2, the implementation of a 2-way diffusion layer to utilize the 16-bit
word for the 16-bit MSP430 microcontroller is presented. Unlike the straight-forward im-
plementation, two 8-bit words are concatenated to form a 16-bit word (i.e., size of MSP430
microcontroller) and a 16-bit wise XOR operation is performed at once. Similar to the pre-
vious approach, the 16-bit wise pre-computation (TH‖TL) is performed and the result is
utilized by several times in other steps. Compared with the previous approach, the approach
halves the number of required number of XOR operations and general purpose registers.

Substitution Layer: The substitution layer can be implemented with the 8× 8 look-up
table access (i.e., memory access). The 16-bit MSP430 microcontroller supports both word-
wise and byte-wise memory access (.B). Since the look-up table is 8-bit wise, we utilized
byte-wise memory access. In particular, the 16-bit result is accessed twice by 8-bit wise.
Detailed procedures for substitution layer on the 16-bit MSP430 microcontroller are given
in Figure 1 and described as follows:

• The lower part of the general purpose register (1–8) is used for index of look-up table
access. To extract the lower part (8-bit) from the word of the target architecture (16-bit),
MOV.B instruction is utilized.

• The higher part of the general purpose register (9–16) is used for index of look-up
table access. To extract the higher part (8-bit) from the word (16-bit), the higher part
and lower part are swapped (SWPB) and utilized. Then, the lower part is moved with
the MOV.B instruction.

Algorithm 2 The 2-way diffusion layer of ARIA block cipher for the 16-bit MSP430 micro-
controller.
Input: 128-bit input (i[0–15])
Output: 128-bit output (o[0–15])

1: {TH ‖ TL} ← {i[3] ‖ i[2]} ⊕ {i[4] ‖ i[5]} ⊕ {i[9] ‖ i[8]} ⊕ {i[14] ‖ i[15]}
2: {o[0] ‖ o[1]} ← {i[6] ‖ i[7]} ⊕ {i[8] ‖ i[9]} ⊕ {i[13] ‖ i[12]} ⊕ {TH ‖ TL}
3: {o[5] ‖ o[4]} ← {i[1] ‖ i[0]} ⊕ {i[10] ‖ i[11]} ⊕ {i[15] ‖ i[14]} ⊕ {TH ‖ TL}
4: {o[11] ‖ o[10]} ← {i[2] ‖ i[3]} ⊕ {i[7] ‖ i[6]} ⊕ {i[12] ‖ i[13]} ⊕ {TH ‖ TL}
5: {o[14] ‖ o[15]} ← {i[0] ‖ i[1]} ⊕ {i[5] ‖ i[4]} ⊕ {i[11] ‖ i[10]} ⊕ {TH ‖ TL}
6: {TH ‖ TL} ← {i[1] ‖ i[0]} ⊕ {i[6] ‖ i[7]} ⊕ {i[11] ‖ i[10]} ⊕ {i[12] ‖ i[13]}
7: {o[2] ‖ o[3]} ← {i[4] ‖ i[5]} ⊕ {i[10] ‖ i[11]} ⊕ {i[15] ‖ i[14]} ⊕ {TH ‖ TL}
8: {o[7] ‖ o[6]} ← {i[3] ‖ i[2]} ⊕ {i[8] ‖ i[9]} ⊕ {i[13] ‖ i[12]} ⊕ {TH ‖ TL}
9: {o[9] ‖ o[8]} ← {i[0] ‖ i[1]} ⊕ {i[5] ‖ i[4]} ⊕ {i[14] ‖ i[15]} ⊕ {TH ‖ TL}

10: {o[12] ‖ o[13]} ← {i[2] ‖ i[3]} ⊕ {i[7] ‖ i[6]} ⊕ {i[9] ‖ i[8]} ⊕ {TH ‖ TL}
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LUT#1
SWAP 2

1

18916

LUT#1 3

Figure 1. Look-up table access for substitution layer on 16-bit MSP430. Each square block represents 1-bit. 1©: LUT access
with 1–8-th bits, 2©: exchanging lower and higher bytes, 3©: LUT access with 9–16-th bits.

Optimization of Counter Mode of Operation for 16-bit Architecture: The counter mode
of operation can be skipped through pre-computation with constant variables [2]. Previous
works have been devoted to improve the performance of counter mode through the pre-
computation [2,20–24]. The input of counter mode of operation consists of counter (32-bit)
and constant nonce (96-bit). One substitution and one diffusion, and two add-round-key
operations for the 96-bit constant nonce part can be pre-computed. Only the remaining
part for the 32-bit counter is computed online. The optimized ARIA–CTR implementation
was presented by [2].

In Algorithm 3, the 2-way diffusion layer after the pre-computation is given. In Steps 1–2,
computations on counter value are performed. In Steps 3–5, 3 XOR operations are performed
with {T[13] ‖ T[12]} in 2-way. In Steps 6, the 16-bit word is swapped in byte-wise. Then,
4 XOR operations are performed with {T[12] ‖ T[13]}. In Steps 11–13, 3 XOR operations
are performed with {T[15] ‖ T[14]} in the 2-way parallel way. In Step 14, the 16-bit word is
swapped in byte-wise. Then, 4 XOR operations are performed with {T[14] ‖ T[15]}.

Algorithm 3 The 2-way diffusion layer of ARIA block cipher for CTR mode on the 16-bit
MSP430 microcontroller.
Input: 128-bit pre-computed (p[0–15]), 32-bit counter (c[0–3])
Output: 128-bit output (o[0–15])
// computation with counter value

1: {T[13] ‖ T[12]} ← {S2[RK1[13]⊕ c[1]]‖S1[RK1[12]⊕ c[0]] }
2: {T[15] ‖ T[14]} ← {S−1

2 [RK1[15]⊕ c[3]]‖S−1
1 [RK1[14]⊕ c[2]] }

3: {p[3] ‖ p[2]} ← {p[3] ‖ p[2]} ⊕ {T[13] ‖ T[12]}
4: {p[7] ‖ p[6]} ← {p[7] ‖ p[6]} ⊕ {T[13] ‖ T[12]}
5: {p[13] ‖ p[12]} ← {p[13] ‖ p[12]} ⊕ {T[13] ‖ T[12]}

// byte-wise swap operation
6: {T[12] ‖ T[13]} ← {T[13] ‖ T[12]}
7: {p[1] ‖ p[0]} ← {p[1] ‖ p[0]} ⊕ {T[12] ‖ T[13]}
8: {p[7] ‖ p[6]} ← {p[7] ‖ p[6]} ⊕ {T[12] ‖ T[13]}
9: {p[9] ‖ p[8]} ← {p[9] ‖ p[8]} ⊕ {T[12] ‖ T[13]}

10: {p[11] ‖ p[10]} ← {p[11] ‖ p[10]} ⊕ {T[12] ‖ T[13]}
11: {p[1] ‖ p[0]} ← {p[1] ‖ p[0]} ⊕ {T[15] ‖ T[14]}
12: {p[5] ‖ p[4]} ← {p[5] ‖ p[4]} ⊕ {T[15] ‖ T[14]}
13: {p[15] ‖ p[14]} ← {p[15] ‖ p[14]} ⊕ {T[15] ‖ T[14]}
// byte-wise swap operation
14: {T[14] ‖ T[15]} ← {T[15] ‖ T[14]}
15: {p[3] ‖ p[2]} ← {p[3] ‖ p[2]} ⊕ {T[14] ‖ T[15]}
16: {p[5] ‖ p[4]} ← {p[5] ‖ p[4]} ⊕ {T[14] ‖ T[15]}
17: {p[9] ‖ p[8]} ← {p[9] ‖ p[8]} ⊕ {T[14] ‖ T[15]}
18: {p[11] ‖ p[10]} ← {p[11] ‖ p[10]} ⊕ {T[14] ‖ T[15]}
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3.2. Optimized ARIA Block Cipher on Cortex-M3

ARM Cortex-M3 microcontrollers have 14 32-bit general purpose registers. In Table 4,
the register utilization for ARIA encryption on target microcontrollers is presented. Plain-
text pointer, round key pointer, look-up table pointer, temporal variables, and plaintext are
allocated in registers.

Diffusion and Substitution Layers: In [1], the 8× 32 look-up table-based round im-
plementation was presented. The look-up table combines both diffusion and substitution
layers for the 32-bit architecture. The diffusion layer A is constructed in the form of
M1 ·M2 ·M1 where

M1 =


I I I 0
I 0 I I
I I 0 I
0 I I I

, M2 =


I 0 0 0
0 P1 0 0
0 0 P2 0
0 0 0 P3

 ·


T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

,

T =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

, P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, P2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

, P3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

.

For simplifying above notations, the following notations are used.

P =


I 0 0 0
0 P1 0 0
0 0 P2 0
0 0 0 P3

, M =


T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

.

When S is the substitution layer, the round without key addition is performed as follows:

A · S = M1 ·M2 ·M1 · S = M1 · P ·M1 ·M · S.

M · S is performed by using 8× 32 look-up tables, where M is a block diagonal matrix.
As described above, the efficient implementation of each matrix (M1, P, M · S) is important.
The optimal implementation is highly related with compact memory access on the target
microcontroller. In this paper, we presented the pipelined LUT access method.

Optimization of M · S matrix: The 8× 32 table look-up is performed with the 8-bit
wise offset. Since the word size of the ARM Cortex-M3 processor is 32-bit long, four 8-bit
wise look-up accesses are required for full 32-bit computations. Detailed descriptions are
presented in Figure 2. To extract the 8-bit value out of 32-bit, barrel-shifter, rotation, and
masking operations are performed. The sequential pre-computed table-based approach
performs four pre-computed table accesses, consecutively. However, the read-and-write
dependency between source and destination addresses leads to pipeline stalls in this
approach and pipeline stalls introduce the timing delay.

To resolve this performance penalty, the pipelined LUT access for M · S layer is
proposed in Algorithm 4. The dependency between source and destination addresses is
removed by re-alignment of instruction sets. The operation consists of three steps. In
Steps 1–6, the offset setting for memory address pointer is performed. This step generates
four 8-bit offsets from 32-bit word for four memory address pointers. In Steps 7–10, four
memory accesses are performed with four base address pointers, consecutively. In Steps
11–13, results of LUTs are accumulated together. Finally, the result (Y0) is returned in
Step 14.
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LUT#1

LUT#2 2

1

LUT#3 3

LUT#4 4

5

r0

i0

r1

r2

r3

f0←r0+r1+r2+r3 

LUT#1

SWAP 2

19172532 24 16 8

LUT#23

1

18916

Figure 2. The 8× 32 table look-ups for ARIA block cipher on ARM Cortex-M3. 1©: LUT access with 25–32-th bits, 2©:
LUT access with 17–24-th bits, 3©: LUT access with 9–16-th bits, 4©: LUT access with 1–8-th bits, 5©: XOR operations with
LUT results.

Table 4. Register allocation for ARIA encryption on ARM Cortex-M3 processors.

Register Allocation

R0 plaintext pointer→ look-up table pointer #1
R1 round key pointer
R2 look-up table pointer #2

R3–R6 plaintext #1–#4
R7–R11 temporal variables #1–#5

R12 look-up table pointer #3
R14 look-up table pointer #4

In Figure 3, the comparison of computation order between previous and proposed
methods is presented. The previous method does not take advantage of pipelining features,
while the proposed method achieved the pipelining feature by re-ordering operations. The
proposed approach ensures low latency by avoiding the pipeline stall.

1 2 3 41 1 2 2 3 3 4 4(a)

1 2 3 41 12 23 34 4(b)

Order of computation 

pipelining pipelining pipelining

Figure 3. Order of computation between previous and proposed look-up table access. (a) Previous
approach. (b) Proposed approach. Red, black, and blue characters represent offset setting for address
pointer, memory access, and result accumulation, respectively. The block indicates the specific operation.
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Algorithm 4 Pipelined LUT access for M · S layer of ARIA block cipher on the ARM
Cortex-M3 microcontroller.
Input: LUT input X0, LUT memory addresses (P0, P1, P2, and P3)
Output: LUT result Y0
// offset setting for address pointer

1: LSR Y0, X0, #24 {25–32-th bits}
2: AND TMP0, X0, #0XFF0000 {17–24-th bits}
3: ADD TMP0, P1, TMP0, LSR #14
4: AND TMP1, X0, #0XFF00 {9–16-th bits}
5: ADD TMP1, P2, TMP1, LSR #6
6: AND X0, X0, #0XFF {1–8-th bits}

// memory access
7: LDR Y0, [P0, Y0, LSL #2] {LUT#1 access}
8: LDR TMP0, [TMP0] {LUT#2 access}
9: LDR TMP1, [TMP1] {LUT#3 access}

10: LDR X0, [P3, X0, LSL #2] {LUT#4 access}
//result accumulation
11: EOR Y0, Y0, TMP0 {r0⊕ r1}
12: EOR Y0, Y0, TMP1 {r0⊕ r1⊕ r2}
13: EOR Y0, Y0, X0 {r0⊕ r1⊕ r2⊕ r3}
14: return Y0

Optimization of M1 matrix: The implementation of M1 layer consists of 6 XOR oper-
ations. Descriptions are presented in Algorithm 5. The M1 matrix is performed twice in
each round.

Algorithm 5 M1 layer of ARIA block cipher on ARM Cortex-M3.

Input: Intermediate result (T0, T1, T2, T3)
Output: Result (T0, T1, T2, T3)

1: EOR T1, T1, T2
2: EOR T2, T2, T3

3: EOR T0, T0, T1
4: EOR T3, T3, T1
5: EOR T2, T2, T0
6: EOR T1, T1, T2

Optimization of P matrix: The P layer performs three byte-wise rotation operations.
These rotation operations are efficiently performed with dedicated instructions of target
ARM processor. Detailed descriptions of P layer of ARIA block cipher on the ARM Cortex-
M3 microcontroller are shown in Algorithm 6.

Algorithm 6 P layer of ARIA block cipher on the ARM Cortex-M3 microcontroller.

Input: Intermediate result (T1, T2, T3)
Output: Result (X1, X2, X3)

1: REV16 X1, T1 {reverse byte order in each halfword independently}
2: ROR X2, T2, #16 {right rotate by 16-bit}
3: REV X3, T3 {reverse byte order in a word}

Optimization of Counter Mode of Operation for 32-bit Architecture: Previous opti-
mization methods for counter mode of operation are not available in the ARM Cortex-
M3 microcontroller [2], since 32-bit ARM Cortex-M3 implementation employed the LUT
method while the previous approach utilized the 8-bit S-box-based implementation. For
that reason, the CTR technique is re-designed for the LUT-based implementation. First,
M · S layer is optimized. Only the 32-bit counter part is calculated online for this layer.
Second, M1 layer is also optimized. Only the computation with 32-bit counter part is
computed. The detailed M1 layer is given in Algorithm 7. Only three XOR operations
are performed.
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Algorithm 7 Optimized M1 layer of ARIA block cipher for counter mode of operation on
ARM Cortex-M3.
Input: Intermediate result (T1, T2, T3)
Output: Result (T1, T2, T3)

1: EOR T2, T2, T3

2: EOR T3, T3, T1
3: EOR T1, T1, T2

3.3. Secure Implementation of ARIA

Software implementations of block cipher should be secure against the side-channel
attack. The proposed ARIA implementation is secure against the most popular and effec-
tive attack (i.e., timing attack) on software implementations (https://www.bearssl.org/
constanttime.html, accessed date: 10 April 2021) [25]. In order to avoid the timing attack,
proposed implementations do not include conditional branch statements depending on the
secret information. Regardless of the secret key, the implementation always executes same
operations and this ensures the constant timing of implementations. Furthermore, since
the target embedded processor does not provide the cache memory, the memory access
pattern is always the regular fashion. The attacker cannot exploit the cache timing attack
on this case and the implementation is secure against the timing attack.

4. Evaluation

We evaluated optimized ARIA implementations on both MSP430 (MSP430F1611)
and ARM microcontrollers (Arduino DUE). Comparison results in terms of RAM (bytes),
program code size (bytes), and execution timing (clock cycles) are presented in Tables 5
and 6 for MSP430 and ARM Cortex-M3, respectively. The proposed implementation is
the first ARIA optimization on both MSP430 and ARM Cortex-M3 microcontrollers. The
comparison is performed with previous implementations in [1]. 16-bit MSP430 implemen-
tations utilized the 8-bit pre-computation result in ROM (Storing results into the RAM is
also possible but the target processor has limited size of the RAM. For this reason, we only
consider the ROM). The utilization of code and RAM are similar to the previous imple-
mentation. However, the execution timing is significantly improved by 92.2% compared
to the previous work. The performance improvement is mainly coming from the 2-way
computation (i.e., 16-bit wise) of diffusion layer and optimized memory access. Proposed
ARIA–CTR implementations show better performance than proposed ARIA–ECB imple-
mentations by 6.6% (for 128-bit security level), 5.3% (for 192-bit security level), and 5.1%
(for 256-bit security level), respectively.

For the ARM microcontroller, the look-up table is stored in different storage types
(i.e., ROM and RAM). The RAM/ROM-based implementation improved the execution
timing by 10.09/14.13% (for 128-bit security level), 10.87/15.12% (for 192-bit security level),
and 10.62/14.42% (for 256-bit security level), compared to previous implementations,
respectively. The utilization of RAM is similar to previous implementations. The code
size of proposed implementation is smaller than previous work for the 128-bit ARIA
implementation with ROM. For the 192-bit and 256-bit cases for ROM, the code size of
proposed work is bigger than the previous work. Proposed RAM-based implementations
achieved smaller code size than previous works in all security levels. The RAM based
implementation achieved better performance but used more RAM storage than the ROM-
based implementation. Proposed RAM/ROM based ARIA–CTR implementations achieved
better performance than proposed ARIA–ECB implementations by 2.04/4.00% (for 128-bit
security level), 2.33%/3.47% (for 192-bit security level), and 1.54%/3.05% (for 256-bit
security level), respectively.

https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
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Table 5. Performance evaluation of ARIA on MSP430 in terms of code size (bytes), RAM (bytes), and execution time (clock
cycles per byte), where 8t, o, and c represent 8× 8 pre-computation-based implementation, pre-computation stored in
ROM, and counter mode of operation, respectively. EKS, ENC, and SUM represent encryption key scheduling, encryption,
decryption, and summation, respectively.

Implementation
Options Code Size RAM Execution Time

(Bytes) (Bytes) (Cycles per Byte)

8t o c EKS ENC SUM EKS ENC EKS ENC

ARIA-128

Kwon et al. [1]
√ √

– 2708 1760 2966 288 256 9947 2680
Proposed method

√ √
– 8206 1756 7818 312 248 345 209

Proposed method
√ √ √

– 2872 2872 – 280 – 195

ARIA-192

Kwon et al. [1]
√ √

– 2708 1760 2966 320 288 7586 3117
Proposed method

√ √
– 8856 1756 8468 352 280 380 241

Proposed method
√ √ √

– 2872 2872 320 – – 228

ARIA-256

Kwon et al. [1]
√ √

– 2708 1760 2966 352 320 6404 3551
Proposed method

√ √
– 9556 1756 9168 392 312 209 274

Proposed method
√ √

– – 2872 2872 360 – – 260

Table 6. Performance evaluation of ARIA on ARM-M3 in terms of code size (bytes), RAM (bytes), and execution time (clock
cycles per byte), where 32t a, o, and c represent 8× 32 pre-computation-based implementation, pre-computation stored
in RAM, pre-computation stored in ROM, and counter mode of operation, respectively. EKS, ENC, and SUM represent
encryption key scheduling, encryption, decryption, and summation, respectively.

Implementation
Options Code Size RAM Execution Time

(Bytes) (Bytes) (Cycles per Byte)

32t a o c EKS ENC SUM EKS ENC EKS ENC

ARIA-128

Kwon et al. [1]
√

–
√

– 6504 10,636 11,408 236 224 92 160
Proposed method

√
–

√
– 5872 7688 9336 236 224 67 147

Proposed method
√

–
√

– – 11,500 11,500 – 296 – 144
Kwon et al. [1]

√ √
– – 2408 4816 7312 4332 4320 80 112

Proposed method
√ √

– – 1776 3592 5240 4332 4320 55 100
Proposed method

√ √
–

√
– 3296 3296 – 8500 – 96

ARIA-192

Kwon et al. [1]
√

–
√

– 6504 10,636 11,408 268 256 98 187
Proposed method

√
–

√
– 8840 8360 12,936 268 256 71 171

Proposed method
√

–
√ √

– 12,300 12,300 – 336 – 167
Kwon et al. [1]

√ √
– – 2408 4816 7312 4364 4352 86 131

Proposed method
√ √

– – 4744 4264 5928 4364 4352 58 115
Proposed method

√ √
–

√
– 3864 3864 – 8540 – 111

ARIA-256

Kwon et al. [1]
√

–
√

– 6504 10,636 11,408 300 288 103 212
Proposed method

√
–

√
– 8840 12,288 12,936 300 288 74 194

Proposed method
√

–
√ √

– 12,300 12,300 – 376 – 191
Kwon et al. [1]

√ √
– – 2408 4816 7312 4396 4384 92 148

Proposed method
√ √

– – 4744 8192 6600 4396 4384 61 131
Proposed method

√ √
–

√
– 4416 4416 – 8580 – 127
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5. Conclusions

We presented the new compact implementation of ARIA block cipher on microcon-
trollers, namely MSP430 and ARM Cortex-M3. We firstly optimized the implementation
of ARIA block cipher. The 2-way computations of diffusion layer and optimized memory
access are presented targeting for the MSP430 microcontroller. Pipelined memory access
and optimized byte-wise rotation are presented for the ARM microcontroller. For the
16-bit word diffusion layer, two 8-bit words are combined to construct the 16-bit word and
the two 8-bit operations are performed in a single 16-bit operation of the 16-bit MSP430
microcontroller (i.e., parallel approach). For the pipelined memory access, memory offset,
memory access, and calculation are finely re-scheduled to meet the 3-stage pipeline, which
avoids pipeline stalls in consecutive LUT accesses. Lastly, we proposed the efficient imple-
mentation of ARIA–CTR for both embedded processors. This method takes advantages of
pre-computation of constant nonce value.

In this paper, we proposed compact ARIA implementations on microcontrollers. With
this technique, we can pursue several future works. First, we can utilize the proposed
method to the efficient implementation of CTR [2,21,26]. By combining both techniques,
we can find further improvements on ARIA implementations for specific purposes. Second,
the recent work considered the secure block cipher implementation on ARM Cortex-M4
microcontrollers [19]. We can apply the secure implementation technique to proposed ARIA
implementations for high security. Third, we investigated the block cipher implementation
of low-end embedded processors. We will study on the block cipher implementation on
64-bit AMD and 32-bit RISC-V processors.
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