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����������
�������

Citation: Despotović, Ž.; Reljić, D.;
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Abstract: The most widely adopted category of the mid-range wireless power transmission (WPT)
systems is based on the magnetic resonance coupling (MRC), which is appropriate for a very wide
range of applications. The primary concerns of the WPT/MRC system design are the power transfer
capabilities. Using the scattering parameters based on power waves, the power transfer of an
asymmetric WPT/MRC system with the series-series compensation structure is studied in this
paper. This approach is very convenient since the scattering parameters can provide all the relevant
characteristics of the WPT/MRC system related to power propagation. To maintain the power
transfer capability of the WPT/MRC system at a high level, the scattering parameter S21 is used
to determine the operating frequency of the power source. Nevertheless, this condition does not
coincide with the maximum possible power transfer efficiency of the system. In this regard, the
WPT/MRC system is thereafter configured with a matching circuit, whereas the scattering parameter
S′21 S21’is used to calculate and then adjust the matching frequency of the system. This results in
the maximum available power transfer efficiency and thereby increases the overall performance
of the system. Theoretical investigations are followed by numerical simulation and experimental
validation.

Keywords: wireless power transfer; asymmetric system; magnetic resonance; two-port networks;
S-parameters

1. Introduction

Wireless power transmission (WPT) is an emerging technology that has been studied
since the work of Tesla and his ideas for wireless transmission [1]. Up to now, WPT has
drawn a lot of attention, while much research has been devoted to improving power
transfer capability (PTC) and power transfer efficiency (PTE), including transmission range.
It is expected that the WPT will be used on a bigger scale in the times to come.

The most popular WPT method is based on the concept of inductive coupling. Since
the WPT via magnetic resonance coupling (MRC) was reported in [2], it has attracted
researches more than ever before. WPT/MRC is a system that operates at resonance to make
the circuit behave as the purely resistive. In many publications, one can find WPT/MRC as
a category of inductive power transfer (IPT) [3] called resonant inductive power transfer [4].
The main advantage of the WPT/MRC system over the well-known IPT is a higher PTE.
This advantage has provided the implementation of the WPT/MRC systems not only
in low-power devices [5–7], but also in high-power applications, such as electric vehicle
charging solutions [8,9]. In order to increase the PTE at the medium distance, resonant
coils (resonant relays) were introduced. Therefore, WPT/MRC system may consist of one
or more resonant coils. With regard to the compensation topology, two-coil WPT/MRC
systems are categorized as series-series (SS), series-parallel (SP), parallel-series (PS), or
parallel-parallel (PP) compensated systems as shown in Figure 1. In addition, few hybrid
compensation topologies have been introduced [3]. Based on the transmitter and receiver
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parameters, the WPT/MRC systems are categorized as symmetric, quasi-symmetric, and
asymmetric (Figure 1). The symmetric system is composed of identical coils (inductances
L1 and L2) and compensation capacitors (capacitances C1 and C2), which results in the same
resonant frequencies ( f01 and f02) on transmitter and receiver sides. In a quasi-symmetric
system, the transmitter and receiver have also the same resonant frequency, but they
consist of non-identical coils and capacitors. The difference between quasi-symmetric and
asymmetric systems is that the transmitter and receiver of the asymmetric system do not
have the same resonant frequencies.
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Numerous studies of symmetric and quasi-symmetric systems have been reported
in the literature over the years. The operating frequency of such systems is equal to the
resonant frequency in the under-coupled and critical-coupled regime. In the over-coupled
regime, however, the transmitting power at the resonant frequency is significantly reduced;
thus, the operating frequency needs to be adopted to provide the maximum PTC [10].
The frequency splitting phenomena, caused by the over-coupled regime, has a significant
influence on the PTC and has been widely studied [11–13].

Many techniques for tracking and eliminating issues of the frequency splitting have
been proposed. In [14,15], the analysis of frequency splitting and the PTE of two-coil and
four-coil systems have been reported. In [14], a symmetric system has been analysed in
terms of voltage gains and output power. With regard to the PTE, defined as the ratio of
load power and available source power, an optimal ratio of load and source resistances
has been investigated, keeping the original resonant frequency. However, matching circuit
between the source and the system, which provides the flow of available source power to
the system, has not been considered. The similar analysis has been reported in [15], but for
a four-coil system.

To overcome issues of the over-coupled regime, a new WPT/MRC method based
on splitting frequencies is proposed in [16]. The power transfer performances have been
investigated theoretically and experimentally. Yet, only the symmetric system has been
discussed. In the case of different quality factors of the transmitter and the receiver, the
exact calculation of splitting frequencies is rather complex [16].

With the aim of increasing the PTE of the quasi-symmetric system, a mixed-resonant
structure (with the shunt capacitor added in the SS circuit arrangement) has been proposed
in [17]. The scattering parameter S21 has been used for the analysis of the PTE and critical
coupling factor derivation of the quasi-symmetric system (also valid for the symmetric
system). In an effort to eliminate the frequency splitting, researchers have also proposed
other topologies of the quasi-symmetric system, such as the circuit structure based on non-
identical transmitting and receiving coils [18,19]. The authors in [18] have used appropriate
coil configuration in a mixed-resonant structure of the WPT/MRC to eliminate frequency
splitting, while the magnitude of the scattering parameter S21 has been used to calculate
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and analyse the PTE. However, without the matching circuit between the source and the
system, the PTE cannot be directly calculated from the S21 scattering parameter. Likewise,
in [19], a pair of non-identical transmitting and receiving coils has been proposed as an
approach to avoid the over-coupled regime.

Nowadays, the diversity of wirelessly charged electrical consumer devices [20–27]
requires greater focus on asymmetric WPT/MRC systems. Unlike the symmetric and
quasi-symmetric systems that are well studied and reported in the literature, the analysis
of the asymmetric circuits is more complex and more challenging. Much less research has
been carried out on the asymmetric structure. The analysis resulting from symmetric cases
cannot be used straightforwardly for the system with asymmetric structure as they will not
be accurate enough [28]. Therefore, the calculation and selection of the asymmetric system’s
operating frequency depends on system parameters, which need to be optimized [29]. Hav-
ing this in mind, this paper aims to establish further theoretical research on the asymmetric
WPT/MRC system and provide solutions for the maximum PTC and PTE of the proposed
system.

Compared with the recent researches discussed above, which are mainly dedicated
to the symmetric and quasi-symmetric systems, this paper focuses on the power transfer
analysis of the two-coil WPT/MRC asymmetric system with the SS compensation topology.
Herein, the traditional impedance (Z) parameters approach is not quite appropriate for
the comprehensive characterization of WPT/MRC systems since it is difficult to involve
frequency-dependent parasitic effects associated with the circuit components. Therefore,
the concept of scattering (S) parameters is introduced as it can provide all the relevant
characteristics of the WPR/MRC system related to power transfer. These parameters
describe the electrical behaviour of the entire system (parasitic effects are included), thus
greatly simplifying the power transfer analysis of the system under test. What is more, the
S-parameters can be easily and accurately obtained by a vector network analyser (VNA),
which is an additional benefit of the proposed approach. Using the electric circuit theory
and the concept of the S-parameters, the model of the asymmetric WPT/MRC system is
derived. The model is used to determine the operating frequency of the system to provide
higher power transferred to the load, thus increasing the PTC of the system. It is shown
that, for the characterisation of the PTC, the scattering parameter S21 is of paramount
importance. By using the impedance matching circuit, the power transfer performance
of the asymmetric WPT/MRC system can be greatly improved. Having determined the
matching frequency and assuming that the system is matched to the power source, input
power to the asymmetric WPT/MRC system will be equal to the available source power,
and it will be transmitted to the load with the maximum possible PTE the system can
provide. Using the concept of the S-parameters based on the power waves, the PTE of
the system can be calculated effectively, by squaring the magnitude of the generalised
scattering parameter S′21. Lastly, the theoretical investigations are verified by numerical
simulations and experimental results.

The remainder of this paper is organized as follows. In Section 2, the theoretical
analysis of the asymmetric system is introduced, followed by the PTC and PTE analyses
using the generalized S-parameters concept. In Section 3, the theoretical investigations are
validated by numerical simulations, followed by experimental tests on the prototype of
the two-coil asymmetric WPT/MRC system with the SS compensation structure. Finally,
the conclusion is drawn in Section 4. Appendix A provides appropriate mathematical
explanations related to Section 2, while the methodology for the recalculation of the S-
parameters for an arbitrary normalisation impedance is presented in Appendix B.

2. Theoretical Analysis of the Asymmetric WPT/MRC System

The two-coil WPT/MRC asymmetric system consists of two electromagnetic subsys-
tems with different resonant frequencies (Figure 1). In order to improve PTC and PTE of the
WPT system, the compensation circuit is required in both transmitter and receiver sides [30].
The selection of adequate compensation topology depends on a given range of applications.
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This paper focuses on the SS compensation structure of the two-coil WPT/MRC asymmetric
system, although the analysis concept is also valid for any compensation topologies.

The equivalent circuit of the two-coil SS compensated WPT/MRC asymmetric system
is shown in Figure 2. The system consists of the transmitting coil inductor L1 and its series-
connected compensation capacitor C1. On the receiver side, the compensation capacitor
C2 is series-connected with the receiving coil inductor L2. Mutual inductance between
these two coils is denoted as M12. Here, RL1, RL2, and RC1, RC2 represent equivalent series
resistances associated with transmitting and receiving coils and compensation capacitors,
respectively, while the distributed parasitic capacitance of the coils can be included in the
compensation capacitance. AC voltage source VS, with the inner impedance RS, supplies
the primary side (transmitter resonator), while the voltage of the load RL on the secondary
side is denoted as VL. For the sake of simplicity, and without much loss of generality, it is
adopted that the source and the load impedances are purely resistive.
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2.1. PTC Analysis of the WPT/MRC System

The analytical model of the asymmetric WPT/MRC system is of key importance
for the power transfer performance analyses. Many theories have been adopted in the
literature. The equivalent lumped-element circuit model depicted in Figure 2 is described
using the electric circuit theory with the Z-parameters. This is a common approach at low
frequencies. At higher operating frequencies, however, these parameters are not well suited
to characterize WPT/MRC system because it is difficult to perform their measurements.
Parasitic effects of the circuit components limit their efficient use. Therefore, the concept
of S-parameters is much more convenient. The S-parameters describe correlations of a
new set of variables in terms of forward and backward waves, rather than their terminal
variable values. In the literature, the S-parameters are usually based on voltage and current
travelling waves [31–34]. This description is practical, since the S-parameters can be easily
and accurately measured by the VNA [17]. In this paper, however, the concept of the S-
parameters based on the power waves [35–37] is adopted. This approach is more preferred
herein, due to its usefulness for the power propagation analysis [31,32], as well as the
observation of the frequency splitting phenomena [19].

The equivalent lumped-element circuit model from Figure 2 can be represented as a
passive linear two-port network with the S-parameters, as shown in Figure 3.
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The conversion of the Z-parameter matrix into the generalized S-parameter matrix
can be done by transformation [35,38]:

S = F(Z− Z∗0)(Z + Z0)
−1F−1, (1)

where Z0 represents the reference impedance matrix used for the normalisation process
(symbol * denotes complex conjugate). Based on Equation (1), it is also possible to convert
S-parameters into Z-parameters representation. The appropriate transformation can be
obtained by rearranging Equation (1) and is provided in [35].

For the two-port network from Figure 3, matrices in Equation (1) have the following
general forms:

S =

[
S11 S12
S21 S22

]
, (2)

Z =

[
Z11 Z12
Z21 Z22

]
=

 RL1 + RC1 + j
(

ωL1 − 1
ωC1

)
jωM12

jωM12 RL2 + RC2 + j
(

ωL2 − 1
ωC2

) ,

(3)

Z0 =

[
Z01 0
0 Z02

]
, (4)

F =

 1
2
√

Re{Z01}
0

0 1
2
√

Re{Z02}

, (5)

where Z01 and Z02 are reference impedances for Port 1 and Port 2, respectively. In the
following analysis it is assumed to be Z01 = RS (for Port 1) and Z02 = RL (for Port 2), i.e.,
real-valued reference impedances are selected for the normalisation process.

The S-parameters can provide valuable performance information on energy transmis-
sion through the WPT/MRC network. Among all S-parameters (S11, S22, S12, S21), the S21
parameter is of particular importance. This parameter is the figure of merit in regards to
the PTC since it is commonly used to describe the frequency splitting phenomena and the
power delivered from Port 1 to Port 2 of the WPT/MRC system (Figure 3). Generally, the
PTC is a function of the squared magnitude of the S21 parameter, i.e., |S21|2 represents the
normalised load power (load power scaled by the available power of the source). Hence, a
higher value of |S21|2 leads to higher power transferred to the load.

By rearranging Equations (1)–(5), the S21 parameter can be expressed in terms of the
Z-parameters as:

S21 =
2Z12
√

Z01Z02

(Z11 + Z01)(Z22 + Z02)− Z12Z21
. (6)

In order to find the frequency at which |S21|2 reaches the maximum value, the follow-
ing equation has to be solved:

∂|S21|2

∂ω
= 0, (7)

where ω is the operating angular frequency (S-parameters are frequency-domain quantities).
The Equation (7) has a bi-quartic form and can be solved using the Kulkarni method [39,40],
with the previous reduction to the quartic equation form by introducing the auxiliary
variable x, where x = ω2:

x4 + a3x3 + a2x2 + a1x + a0 = 0. (8)

Coefficients in Equation (8) are as follows:

a3 = 0, (9)
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a2 =
ω4

01ξ2

(1− k2)
2

[
2

Q2
1
+

2
Q2

2
− 1

Q2
1Q2

2
− 2
(

1− k2
)
− 1

ξ2

(
ξ2 − 1

)2
]

, (10)

a1 = 2
ω6

01ξ2

(1− k2)
2

[
1

Q2
2
− ξ2

Q2
1
+ 2
(

ξ2 + 1
)]

, (11)

a0 = −3
ω8

01ξ4

(1− k2)
2 , (12)

where:
ξ =

ω02

ω01
, (13)

Q1 =
ω01L1

Rs + RL1 + RC1
, (14)

Q2 =
ω02L2

RL + RL2 + RC2
, (15)

k =
M12√
L1L2

, (16)

and ω01 and ω02 are resonant angular frequencies of the transmitter and the receiver sides,
respectively. Coefficients in Equations (13)–(16) are expressed in terms of the frequency
asymmetry factor (ξ), loaded quality factors of the transmitter and the receiver (Q1 and Q2,
respectively), and the coupling coefficient (k) between the two coils. These factors provide
more information about the transmitter and receiver sides including their asymmetry, in
contrast to lumped-elements.

As far as solutions of Equation (8) are concerned, only real- and positive-valued
solutions can be selected. Therefore, there are two scenarios: either there is only one real-
and positive-valued solution (x1), or there are three different real- and positive-valued
solutions (x1, x2, and x3) of Equation (8). In the first case, there is only one angular frequency
(ω1 =

√
x1), which is actually the operating angular frequency of the power source. It is

obvious that the WPT/MRC system is not in the over-coupled regime. However, in the
second case, the frequency splitting phenomena occurs, i.e., the WPT/MRC system is in
the over-coupled regime. One has to calculate the magnitude of the S21 parameter for
all three angular frequencies (ω1 =

√
x1, ω2 =

√
x2, ω3 =

√
x3) and to select the one at

which the magnitude of the S21 parameter reaches the maximum value. Thereafter, the
operating angular frequency of the power source is tuned to the previously selected one.
Remaining angular frequencies correspond to a local minimum and a local maximum of
the S21 magnitude, and are not of interest. Detailed expressions of the solutions of Equation
(8), including coefficients in Equations (10)–(12), are listed in Appendix A. One important
note to keep in mind, however, is that in the previous analysis, |S21|2 does not represent the
PTE of the WPT/MRC system. In other words, without the matching circuit, the maximum
value of the |S21| will not provide the maximum PTE of the system.

2.2. PTE Analysis of the WPT/MRC System

In order to achieve the maximum power transfer with the maximum available PTE
of the WPT/MRC asymmetric system, it is, therefore, necessary to match the system to
the power source. The common approach is to introduce an impedance matching network
(IMN) between the power source and the primary side of the WPT/MRC system, as
illustrated by the schematic representation in Figure 4. The matching conditions can be
derived using the maximum power transfer theorem, that is, the output impedance of the
matching network (with the source impedance included) has to be a complex conjugate
matched to the input impedance of the WPT/MRC system, i.e., ZSIMN = Z∗in.
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In general, the impedance ZSIMN (the source impedance seen by the two-port network)
can be represented by a complex number. In order to study the PTE of the matched
WPT/MRC system, it is now more appropriate to use the complex normalisation impedance
associated with Port 1 in Equation (4), i.e., Z01 = ZSIMN . Thus, the PTE of the WPT/MRC
system can be calculated in a more convenient way. Anticipating that the IMN in Figure 4
will provide the matching condition of the WPT/MRC system to the power source, the PTE
(defined as the ratio of the load power and available source power) in terms of S-parameters
becomes:

ηT =
∣∣S′21

∣∣2, (17)

where
∣∣S′21

∣∣2 represents the transducer power gain [37]. Since the current analysis neces-
sitates the use of complex reference impedance, the S matrix in Equation (2) is denoted
as S′ to distinguish it from the previous S matrix with real-valued reference impedances.
Both matrices are, however, related to the power waves. Parameter S′21 is the element of
the generalized S′ matrix. The conversion of the Z matrix of the WPT/MRC asymmetric
system into the generalized S′ matrix is done according to Equation (1), where S is replaced
with S′.

The S′21 parameter can be expressed in terms of the Z-parameters as [41]:

S′21 =
2Z21
√

RSIMN RL

(Z11 + ZSIMN)(Z22 + RL)− Z12Z21
, (18)

where RSIMN = Re{ZSIMN}, while other Z-parameters in Equation (18) are previously
defined in Equation (3).

Using the circuit theory, the input impedance of the WPT/MRC asymmetric system
(Figures 2 and 4) can be expressed as:

Zin = (RL1 + RC1) + j
(

ωL1 −
1

ωC1

)
+

ω2M2
12

Z2
, (19)

where:

Z2 = (RL2 + RC2 + RL) + j
(

ωL2 −
1

ωC2

)
. (20)

Assuming that ZSIMN = Z∗in (the maximum power transfer theorem is adopted), and
using Equations (19)–(20), the PTE of the WPT/MRC system displayed in Figure 4 can be
written as:

ηT =
RL

RL2 + RC2 + RL
− RL(RL1 + RC1)

a(RL2 + RC2 + RL)
, (21)

where:

a = Re{Zin} = RL1 + RC1 +
ω2M2

12(RL2 + RC2 + RL)

|Z2|2
. (22)
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The angular frequency at which the system should be matched can be found by solving
the equation:

∂ηT
∂ω

= 0. (23)

The following analytical solution of Equation (23) is obtained:

ωm =

√√√√ 1

L2C2 − (C2(RL2+RC2+RL))
2

2

, (24)

where ωm represents the angular frequency at which the matching condition of the
WPT/MRC system with the IMN occurs. This frequency corresponds to the power source
operating angular frequency.

Equation (24) can be rewritten in terms of the loaded quality factor (Q2) and resonant
angular frequency (ω02) of the receiver, as follows:

ωm =
1

ω02

√
1− 1

2Q2
2

, (25)

where Q2 is defined in Equation (15).
The next step is to design the IMN at the angular frequency of ωm. The IMN is usually

accomplished using a simple L-section circuit, consisting of lumped-elements, such as
capacitors and inductors. Since the approach of the L-section matching circuit design is
well studied in the literature, it will only be briefly discussed in terms of the L-section
topology. The choice of the appropriate L-section configuration depends on the values
of RS and the parameter a (see Equation (22)). If RS < a, the matching inductance Lm is
placed in a series with the source, while the matching capacitor Cm is placed in parallel
with the primary side of the WPT/MRC system (configuration 1 in Figure 5). On the other
hand, if RS > a, then the L-section topology needs to be designed by adding the matching
capacitor Cm in parallel to the source and the matching inductance Lm is series with the
primary side of the WPT/MRC system (configuration 2 in Figure 5). Calculation of the
L-section matching network elements can be performed either analytically or graphically
(using the Smith chart).
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After the system is being matched to the power source, the power of the WPT/MRC
system at Port 1 will be equal to the available source power (Pavs), given in terms of the
source voltage (VS) by:

Pavs =
|VS|2

8RS
. (26)

The IMN provides no reflected power waves. Thus, the power transferred to the load
is maximised. The PTE can now be calculated exactly according to Equation (17), which
represents the maximum available PTE of the WPT/MRC system (maximum available
transducer power gain).
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3. Numerical Simulation and Experimental Results

To validate the theoretical research, the power transfer analysis of the asymmetric
WPT/MRC system is investigated using numerical simulations, followed by experimental
validation. The S-parameters simulations are conducted with the help of the Advanced
Design System (ADS) software tool, while the analytical calculations are obtained based
on the presented theoretical analysis using Matlab software. The experimental prototype
of the asymmetric WPT/MRC system with the SS compensation structure is designed to
verify analytical calculations.

3.1. Numerical Results

The asymmetric WPT/MRC system is designed according to the circuit model in
Figure 2. The parameters of the simulated system are provided in Table 1 and are considered
to be frequency-independent. It is worthwhile to mention that these parameters correspond
to those of the experimental setup. The resonant frequencies of the transmitter and receiver
( f01 and f02) are 281.7 kHz and 256.9 kHz, respectively. The sweep range of the power
source operating frequency ( f ) is 100–500 kHz, while the coupling coefficient varies from
0.01–0.7. The inner resistance of the power source (RS) and the load resistance (RL) are
arbitrarily chosen to be 2.2 Ω. The equivalence of source and load resistances is irrelevant
for the power transfer analysis.

Table 1. Parameters of the magnetically coupled resonant wireless power transmission system.

Component Parameter Value

Transmitter coil inductance L1 31.3 µH
Receiver coil inductance L2 18.9 µH

Transmitter coil resistance RL1 0.316 Ω
Receiver coil resistance RL2 0.237 Ω

Transmitter compensation capacitor C1 10.2 nF
Receiver compensation capacitor C2 20.3 nF

Transmitter compensation capacitor resistance RC1 0.044 Ω
Receiver compensation capacitor resistance RC2 0.022 Ω

Figure 6 presents the simulation result of the magnitude of the S21 parameter (marked
as 1) with respect to the operating frequency and the coupling coefficient of the WPT/MRC
system depicted in Figure 2. Results of the analytical calculation based on Equation (6),
including Equations (8)–(16), are presented on the same Figure 6 with the solid black line
(marked as 2).
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As discussed above, the PTC and the frequency splitting phenomena can be described
with the S21 parameter. This is clearly demonstrated by the 3D surface plot in Figure 6
(marked as 1). As the result marked as 1 in Figure 6 shows, for the same values of the
coupling coefficient, the magnitude of the S21 parameter reaches not only the global
maximum but also local extrema. These results fully correspond to the presented theoretical
analysis. On the same 3D plot in Figure 6, the trajectory of the absolute maximum values
of the magnitude of the S21 parameter is outlined at the top of the surface (marked as 2).
As can be seen, this trajectory coincides with the points in the simulation results. Moreover,
the trajectory denotes the system’s operating points, which should be selected to provide
higher power transferred to the load. The square magnitude of the S21 parameter represents
the normalised load power.

The system depicted in Figure 2 is not designed to operate at the maximum PTE,
but with the maximum PTC. To achieve the maximum PTE as well, it has been suggested
in the previous section to incorporate the IMN to the WPT/MRC system (schematic
representation in Figure 4). Using Equation (24) and the parameters of the simulated
asymmetric WPT/MRC system (Table 1), the matching frequency ( fm) of 257.4 kHz is
calculated. Thereafter, the L-section matching circuit elements (Lm and Cm in Figure 5) are
determined for this value of the frequency and each value of the coupling coefficient in
the range of 0.01–0.7. The operating frequency of the power source is tuned at the value
of the previously calculated matching frequency. The PTE of the matched asymmetric
WPT/MRC system versus the coupling coefficient is presented graphically in Figure 7,
where red cross markers denote simulation results, while the solid black line corresponds
to the calculation results of the PTE obtained by the theoretical analysis with the help of
Equations (17) and (18).
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Figure 7. Power transfer efficiency of the matched asymmetric wireless power transmission system
versus the coupling coefficient (k).

It can be observed from Figure 7 that numerical and analytical results correspond
with each other, thus validating the theoretical analysis. The PTE can now be expressed
as the square magnitude of the S′21 parameter, whereas the power at Port 1 is equal to the
available source power and it is transmitted to Port 2 with the maximum possible PTE that
the system can provide. This is consistent with the theoretical investigation.

If the frequency of the power source is varied, the IMN elements have to be designed
for each operating frequency and the coupling coefficient values, so as to maintain the PTE
of the WPT/MRC system at a high level. Figure 8 depicts the simulated PTE of the matched
system (marked as 1) with respect to the wide range of the operating frequency and the
coupling coefficient. Under the assumption that the system is matched to the power source,
the PTE can also be calculated according to Equations (17) and (18). Therefore, on the same
plot in Figure 8, the solid black line (marked as 2) represents the trajectory of the maximum
possible PTE of the system, which corresponds to the matching frequency provided by
Equation (24). As can be seen, this line coincides with the points in the simulation results.
Following this line, the system reaches the maximum possible transmission power and
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efficiency. This is in accordance with the results shown in Figure 7. On the other hand, the
PTE of the matched asymmetric WPT/MRC system decreases as the operating frequency
gets away from the value of the matching frequency determined by Equation (24). This is
clearly observable from simulation results in Figure 8.
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3.2. Experimental Results

To validate the conducted power transfer analysis of the asymmetric WPT/MRC
system, an experimental prototype is constructed, while the power transfer performance is
evaluated by experimental tests. The prototype is displayed in Figure 9. The parameters of
the prototype are consistent with those presented in Table 1.
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The experimental setup, depicted in Figure 9, consists of DC power supply (marked as
1), high-frequency inverter (marked as 2), source impedance (marked as 3), IMN (marked
as 4), transmitting and receiving resonators (coils with their compensation circuits, marked
as 5), and load impedance (marked as 6). Transmitter and receiver air-core coils are made
with a planar spiral structure with the same 100 mm inner diameter. The outer diameters
of the transmitter and receiver coils are 175 mm and 155 mm, respectively. Transmitter coil
has 13 turns and the receiver coil has 10 turns. Both coils are arranged in the same axis
and are aligned. For the entire duration of experimental tests, the distance between coils
was fixed to 35 mm, which provides the mutual inductance between them of 8.66 µH. This
gives the constant coupling coefficient of 0.356. The IMN consists of capacitor and inductor
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arrays, which are manually configured for each operating frequency. A regulated DC
power supply provides the output voltage of 10 V. The inner resistance of the power source
is set to be 2.2 Ω via an external resistor, while the load impedance is also purely resistive
with the resistance of 2.2 Ω. As previously mentioned, the equivalence of source and load
resistances is irrelevant for the power transfer analysis. The high-frequency inverter is
used to drive the WPT/MRC system and is controlled via a square wave signal generated
by the function generator (marked as 7 in Figure 9). All of the above-mentioned electrical
parameters of the system were measured by the impedance analyser at the frequency of
250 kHz.

During the experiment, input and output voltage and current of the resonators are
measured with an oscilloscope. Due to the high bandwidth, the Rogowski probe is used
for the current measurement, while the oscilloscope voltage probe is used for the voltage
measurement. Thus, the input and output instantaneous power of the WPT/MRC system
are obtained as the product of the corresponding instantaneous values of voltage and cur-
rent. The active power is determined as the average value of the calculated instantaneous
power, so the PTE of the WPT/MRC system can be readily calculated.

The S-parameters measurement of the WPT/MRC system is performed in a 50 Ω
impedance system with the Bode 100 Omicron Lab VNA. However, in this paper, the
reference impedances used for the normalisation process are not equal to the normalisation
impedance of 50 Ω. Moreover, in the previous section it has been explained that the
generalized S′ matrix is defined using the complex reference impedance. Therefore, the
measured S-parameters in a 50 Ω impedance system have to be renormalized. An exact
renormalization procedure is provided in Appendix B.

In the first experiment, the asymmetric WPT/MRC system from Figure 9 was operated
without the IMN. To explore the PTC of the system, the load power was measured over
the operating frequency range of 210–390 kHz and then was scaled by the available
source power, thus leading to the normalised load power. The results of the experiment
are depicted with red cross markers in Figure 10 (Method 1). Likewise, the PTC of the
WPT/MRC system was investigated through the measurement of the S21 parameter. The
results of the square magnitude of the renormalized S21 parameter are also presented in
Figure 10 (Method 2), denoted with blue diamond markers.
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As is to be expected, the results of the previous two experimental tests are almost
identical. This indicates that the PTC analysis of the WPT/MRC system can completely
rely on the S-parameters concept, which is of great practical importance. This fact is based
not only on the experimental results, but also on the presented theoretical investigation.
On the same plot in Figure 10, the analytical calculation of the square magnitude of the S21
parameter, with respect to the operating frequency, is depicted with a solid black line. As
can be seen, the theoretical results are in excellent agreement with the experimental results.
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In the next experiment, the PTE of the matched asymmetric WPT/MRC system was
evaluated to compare theoretical and experimental results. The WPT/MRC system was
connected to the power source via the tuneable IMN, so as to ensure the maximum PTE.
The input power of the WPT/MRC system (power at Port 1 in Figure 9) and the load
power were measured over the operating frequency range of 220–290 kHz, in a step of
10 kHz. The results of the PTE are shown in Figure 11 with red cross markers (Method
1). It can be observed that, for the constant value of the coupling coefficient, the PTE
varies with the operating frequency, resulting in the maximum of around 0.87 at the
frequency of about 250 kHz. This is in accordance with the previous numerical calculations
(Figure 7). Since the WPT/MRC system was matched to the power source, the PTE can be
observed with the generalized S-parameters. After measuring the S21 parameter and its
renormalization to the desired reference impedance, the PTE of the system can be expressed
as the square magnitude of the S′21 parameter. The results of the PTE are depicted in Figure
11 with blue diamond markers (Method 2). It can be noticed that both experimentally
obtained results of the PTE (Method 1 and Method 2) are in a very good agreement. This
proves the effectiveness of the S-parameters concept analysis of the PTE. For comparison
purposes, the results of the analytical calculation are also presented in Figure 11 (solid
black line). The analytical results are in quite good correlation with the experimental ones
(Figure 11). The slight difference between them exists at higher operating frequencies. This
is caused by variations of the overall WPT/MRC system parameters due to frequency effect.
Notwithstanding, both experimental and theoretical results are basically consistent with
each other. Finally, this confirms that the power transfer analysis of the matched asymmetric
WPT/MRC system can be properly performed using the generalized S-parameters.
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4. Conclusions

WPT technique based on the MRC is identified as a key technology for various
commercial applications. However, this concept faces many issues. The main concern
about WPT/MRC systems is power efficiency. It lays at the root of most of the WPT/MRC
system design challenges. Therefore, a deep analysis of PTC and PTE is essential.

In this paper, the power transfer of the two-coil asymmetric wireless transmission
system was considered in details based on the S-parameters. It was shown that the
proposed methodology is quite adequate for the performance characterisation of the
WPT/MRC system, since it entirely provides information on the power transfer capacity
via the S-parameters, including frequency splitting phenomena. Unlike other methods
used to characterise power transfer properties of the transmission system, the proposed
method is highly favourable as the S-parameters are simply obtained with the VNA. With
the use of the S-parameters based on the power waves, the analytical model of the SS
compensated WPT/MRC asymmetric system was used to define the operating frequency
of the system to provide higher power transferred to the load, therefore increasing the
PTC. The analysis was further extended on the system with the incorporated IMN. These
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yield zero reflected power at the network input, making the WPT/MRC system operate
at the maximum possible PTE, with the maximal power transferred to the load at the
same time. Although the efficiency of the matched WPT/MRC asymmetric system varies
with the operating frequency, the paper demonstrated that the PTE can still be observed
with the generalized S-parameters. The validity of all presented theoretical analyses was
successfully proven by numerical simulations, as well as experimentally.

The proposed theoretical investigation concept on the power transfer performance
is applicable not only for the asymmetric WPT/MRC system with the SS compensation
circuit but also for other WPT/MRC structures with different compensation topologies.
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Appendix A

Coefficients in Equation (8) can be expressed in terms of inductances, capacitances,
and resistances of the WPT/MRC system components, including the inner resistance of the
power source and the load resistance, and have the following forms:

a3 = 0, (A1)

a2 =
−2R2

1
L2
C2
− 2R2

2
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C1

+ R2
1R2

2

−
(
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12
)2 +
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2

, (A4)

where:
R1 = RL1 + RC1 + RS, (A5)

R2 = RL2 + RC2 + RL. (A6)

The general solutions of Equation (8) are:
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where:
b1 = 0, (A11)

p = 3

√
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c0 = − a1

2p
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Appendix B

The S-parameters are measured in a 50 Ω impedance system. Their renormalization
to S-parameters for an arbitrary reference impedance can be performed by using:

Sn = Fn

[
(I− S)−1(I + S)− Z∗0nZ0

−1
]
·
[
(I− S)−1(I + S) + Z0nZ0

−1
]−1

Fn
−1. (A18)

where: Sn represents S matrix in the new reference impedance system, S0 represents S
matrix in the 50 Ω impedance system, I is the identity matrix, and Z0 and Z0n are the
original (50 Ω) and new reference impedance, respectively. Symbol * denotes a complex
conjugate. The matrix Fn is given by:

Fn =

 1
2
√

Re{Z0n}
0

0 1
2
√

Re{Z0n}

. (A19)
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