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Abstract: An international initiative called Education for All (EFA) aims to create an environment
in which everyone in the world can get an education. Especially in developing countries, many
children lack access to a quality education. Therefore, we propose an offline self-learning application
to learn written English and basic calculation for primary level students. It can also be used as a
supplement for teachers to make the learning environment more interactive and interesting. In our
proposed system, handwritten characters or words written on tablets were saved as input images.
Then, we performed character segmentation by using our proposed character segmentation methods.
For the character recognition, the Convolutional Neural Network (CNN) was used for recognizing
segmented characters. For building our own dataset, handwritten data were collected from primary
level students in developing countries. The network model was trained on a high-end machine to
reduce the workload on the Android tablet. Various types of classifiers (digit and special characters,
uppercase letters, lowercase letters, etc.) were created in order to reduce the incorrect classification.
According to our experimental results, the proposed system achieved 95.6% on the 1000 randomly
selected words and 98.7% for each character.

Keywords: handwritten character recognition; basic educational application; offline self-learning
application; projection; closed character detection; cursive character recognition; Convolutional
Neural Network

1. Introduction

Education is very important to human life. Education enables people to have a quality
life by gaining knowledge and building character. Education provides a broad-based view
of life, instilling ideals and teaching adaptability to a changing environment. Therefore,
all citizens have the right to a quality education [1]. However, according to the UIS global
data for the school year ending in 2018 [2], over 59 million children of primary school
age were not in school. Most of the children in rural areas often sell goods on the street
or work in the fields to supplement family income, as seen in [3]. The author also claims
that students often walk more than 3 km to and from their schools every day since few
schools are in rural areas. Moreover, the lack of resources and an insufficient number of
teachers present major barriers to a quality education. How can we provide high quality
education for all children equally? For these reasons, we proposed an Android application
for primary education. Using this application, children can study anytime, anywhere.
Transportation also will not be a problem anymore. The courses are developed according to
quality standards. Since the application includes an automatic checking system, students
can practice alone. The application is not only useful in rural areas, as children confined to
their homes for any reason can get an education. Parents can arrange for their children to
study at home without anxiety.

Research findings in [4] indicated that the advantages of using handwriting appli-
cations along with traditional teaching for children can improve handwriting skills. The
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benefits and drawbacks of mobile learning are discussed by the authors in [5]. Many appli-
cations have been developed to improve basic education [6]. Most of these are designed to
teach vocabulary by matching words with images. However, they do not help children
memorize spelling. Some provide a virtual keyboard for memorizing spelling, but they
do not provide enough tips for memorizing writing. Some provide traces for writing
characters but cannot effectively teach spelling. We developed an application using image
processing concepts to overcome those problems. Our application can support children
in practicing writing and efficiently learning the spelling of English vocabulary. Since the
application also provides an immediate check of written words, children can study without
an experienced teacher. Children can practice English vocabulary, basic mathematical
operations, and special characters through our system. The system is designed to recognize
72 characters, including the 26 uppercase English letters (A–Z), the 26 lowercase letters
(a–z), 10 digits (0–9), 8 basic mathematical symbols (+, −, ×, ÷, =, >, < and . (the decimal
point)), and two more special characters (? and !). Since primary-level students often write
uneven, skewed or slanted characters, schools use ruled books with four lines to control
their writing. Moreover, the uneven characters can cause some unexpected data errors.
Our application provides four lines on the drawing area not only to make the application
child friendly, but also to help them practice their writing with standard sized letters.

When they write down and submit a word, the system saves the written answer as
an image, performs a step-by-step process on the saved image, and finally, provides the
recognition result for the written characters. The application is developed in the simplest
and most efficient way. Character segmentation is performed using basic image processing
concepts. We label connected objects, combine labels, and then separate labels before
segmentation with the projection profile method. Since even the same characters vary in
shapes, we cannot classify characters with simple image processing techniques. So, we
need to use effective machine learning algorithms.

The authors described an exhaustive review and updated survey with state-of-the-art
methods on two well-known datasets, MNIST and EMNIST in [7]. These two datasets
are broadly used in the area of handwritten character classification and recognition. To
propose an offline handwritten Javanese character recognition, the authors in [8] used
image processing methods for character segmentation and the Convolutional Neural
Network (CNN) model to build recognition software. For the performance evaluation,
the authors compared their proposed model with multilayer perceptron (MLP) models,
including classification accuracy and training time. The Tamil handwritten character
recognition is proposed in [9] by using image pre-processing steps, and then followed by
CNN for recognition. The authors also introduced a new Self Adaptive Lion Algorithm
(SALA) to fine-tune the fully connected layer and weights in CNN. For the optical character
recognition task, the authors in [10] proposed Dense Residual Network (DRN) which is
a combined structure of residual dense block (r-RDB) and global dense block (GDB) to
capture both local and global features.

In our proposed system, we used a Convolutional Neural Network (CNN) for charac-
ter recognition. In the traditional machine learning model, feature vectors are input into
the machine learning algorithm. The feature extraction and feature reduction processes are
needed to perform as the primary step. On the other hand, deep learning models, such as
CNN, only are needed to provide the input image. The feature extraction and classification
processes are automatically done by the CNN framework. Our proposed CNN model is
simply composed with three convolution layers and two fully connected layers. In order
to reduce the workload on the tablet operating system, the network model is trained on a
high-end machine. Training and testing data are collected as traditional handwriting from
primary level students from four different countries: Bangladesh, Myanmar, Nepal and
the Philippines. We also collect some handwritten data from Myanmar students through
a simple tablet application. Since the system is developed to recognize both alphabetical
letters and digits, different types of classifiers are created to reduce some conflicting results.
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Our application focuses on accurate writing styles because the objective is to practice
writing English. Therefore, our approach is to use simple character segmentation and
recognition, so our proposed system might be less applicable for complex writing styles.
However, we can provide an effective environment for students to practice written English
compared with other educational applications. The overall system of our proposed work is
summarized as follows:

• In the character segmentation part, we proposed the simple concepts of labeling
and projection to overcome the segmentation problems that are found after initial
seg-mentation.

• Since the network model is trained on a high-end machine and converted into a very
light classifier which will be deployed on mobile devices, therefore, the model can be
loaded quickly for each character classification process.

• The application provides an effective learning environment without requirements for
experienced teachers or internet service. It can be accessed anytime, anywhere. The
standard courses provide equally high quality for all users.

The rest of this paper is organized as follows. In Section 2, we review some related
research on handwritten character segmentation and recognition on an Android system.
Section 3 covers the steps of our proposed methods. The experimental results and discus-
sion of the results are described in Section 4. The paper is concluded, and future work is
discussed in Section 5.

2. Related Work

As a subset of optical character recognition (OCR), the technology for handwritten
character recognition needs refinement, and is the subject of research worldwide. In recent
years, OCR concepts have been used in applications for banking, healthcare, and the
legal industry, e.g., for invoice imaging [11]. The authors in [12] and [13] apply various
projection methods for the segmentation of digits and CNN for recognition. In another
work, Kannada optical character recognition was implemented on the Android operating
system for Kannada sign boards [14]. In the described research, a Kohonen network was
used to recognize segmented characters. Other related research on recognizing English
letters has also been carried out using a simple feature extraction and neural network [15].
A neural network was also applied to research on the conversion of English text into
Marathi text. This research was also carried out on the Android platform. In this application,
an image with English text is scanned with an Android camera, subjected to several image
processing steps, recognized through a neural network, and then converted into Marathi
text [16]. Not only for English text, but also for other languages such as Malayalam, a
Convolutional Neural Network (CNN) is applied for character recognition in [17].

In Reference [18], the authors proposed a model by presenting Deep Convolutional
Recurrent Network (DCRN) to recognize handwritten Japanese text lines. Their model
is composed of three parts: the Convolutional Neural Network (CNN) and sliding win-
dow method, used for feature extraction from a handwritten image; Bidirectional Long
short-term memory (BLSTM), applied for recurrent layers to make predictions; and finally,
the Connectionist Temporal Classification (CTC) decoder, used for the transcription layer
to make the recognition process. To extract textual information from medical laboratory
reports, the authors in [19] proposed a system by using a deep learning approach. For
text detection, Faster RCNN [20] combined with a patch-based training strategy is applied
and Convolutional Neural Network with a concatenation structure is proposed for the
text recognition part. For Arabic handwritten character recognition, the authors in [21]
proposed a mobile application by using cloud computing and Google APIs. The hand-
written recognition part is developed on a cloud computing platform with the approach
proposed in [22]. Then, recognized text is returned to the mobile phone to apply in the
Google map API for locating the Arabic address on the map, and the Google translate API
for translating Arabic text to English text.
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In our prior work, we mainly focused on the character segmentation part that can
handle segmentation errors [23]. In this paper, we modified our prior segmentation method
to solve the over segmentation errors. We also combined it with the character recognition
part to develop the complete application. In the handwritten character recognition field,
machine learning and deep learning algorithms play an important role. In Reference [24],
the authors proposed a handwritten character recognition model by using deep neural
networks and TensorFlow libraries. To perform specific handwritten character recognition
on mobile devices, the lightweight network model is designed to perform a character
classification process [25]. The authors also described the steps that are applied in the data
collection process by using mobile devices.

Many useful applications can be developed by using OCR on the Android platform,
including our proposed system. Our system is developed with our own dataset for an
effective application area which will be applied as a teaching aid for children’s education.
Since OCR is more reliable and provides more accurate results with machine learning
algorithms, we need massive amounts of training and testing data. Our proposed system
performs a network training process on a high-end machine instead of loading massive
amounts of training data on the Android platform. Using simple image processing methods
without a deep learning approach provides efficient and reliable segmentation results in
our system. Our system can also give good recognition accuracy by using a simple network
with lightweight, learnable parameters, which is more suitable for mobile devices.

3. Proposed System

The handwritten image is segmented and recognized. In the segmentation phase,
the input image is firstly pre-processed. Secondly, the connected components are labeled.
Thirdly, the individually labeled objects are segmented using the vertical projection method
because some words might be written cursively. Finally, some over-segmented parts are
removed, and the image is segmented with the remaining segmentation points. Then,
the resulting segmented characters are recognized with a Convolutional Neural Network
(CNN) classifier. The classifier is trained on a high-end machine and changed into an
Android compatible (.tflite) file using the TensorFlow model. Finally, the classification
result for each character is shown to the user. An overview of our target application is
shown in Figure 1 and the flowchart is shown in Figure 2. This includes preprocessing for
input characters or words, segmentation, character classification and the checking process.
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In our current system, we do not work on the character- or word-checking process. In
the word-checking section, the classified result is compared with the correct ground truth
answer. When incorrect characters are found, these characters are highlighted. It will be
combined in our future application.
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Figure 2. Flowchart of the proposed system.

3.1. Segmentation

Segmentation is the process of separating individual characters from the handwritten
word. We perform pre-processing on the input image before extracting characters. We use
a labeling process to get each connected object. Then, we combine some characters such as
i, j and ?. Since some characters might be connected to each other, they can be assumed to
be one character if we only use the labeling approach. Therefore, we apply the projection
profile method to segment cursive characters.

3.1.1. Pre-Processing

In the pre-processing step, the four lines from the ruled screen in the saved image must
be removed without affecting the handwritten word. Moreover, the saved image must also
be binarized and inverted to facilitate subsequent steps of image processing. Therefore, we
perform pre-processing by inverting black and white pixels. We invert all black pixels into
1 and the other pixels into 0. Although the background in processed images is black in our
system, a white background is used in this paper for better visualization. Since vertical
projection is used for segmentation, a morphological thinning process is performed on the
image. Step-by-step pre-processing for the word “birthday” is illustrated in Figure 3.
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Figure 3. Pre-processing using sample image of “birthday”: (a) ruled writing area with four lines,
(b) input image with handwritten word, (c) binarized image, and (d) thinned image.
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3.1.2. Labeling

After the pre-processing step, objects in the image are labeled in a four-step process.
In the first step, connected objects are labeled. Since some characters such as i, j, ? and ! are
composed of more than one object, we need to combine labeled objects as the second step.
After combining labels, we create a new image with specific spaces between each labeled
object to remediate overlapping characters in the third step. Since the projection profile
approach is mainly used to segment cursive words, we should connect small disjoints in
the fourth step to reduce over-segmented points.

In the proposed system, there are 72 characters (digit, alphabet and special characters).
The connected object is referred to a group of connected pixels. Each connected object is
assigned with a unique label number. For example, character i has two objects and these
two objects need to combine as one label number, which is also called a combined label. In
the following Figure 4, label 7 is an example of a left open object. Combining labels change
label 7 to label 1 after a left open object is detected.
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bi.

(a) Initial labeling using connected regions:

The objects are labeled using the connected component labeling concept. The labeled
number, horizontal start and end points, and vertical start and end points are retained for
each labeled object. Labels are sorted in ascending order based on the horizontal start point.
This allows for analyzing the characters according to the stroke order used in composing
them. In the label-combination step, we use horizontal start and end points, as well as
vertical start and end points of two labels to extract the location of each label from the
image. Next, we replace the larger label with the smaller one. After that, we recalculate
connected component objects in the modified data. Then, the label numbers, horizontal
start and end points, and vertical start and end points are recalculated, and the labels are
resorted to use in the next step. In this way, we correctly label characters.

(b) Label combination for some characters

Generally, we use four categories for objects in the label combination process. They
are completely covered objects, partially covered objects, uncovered objects and objects
left open. Based on empirical results, we assume that an object with less than a 600-pixel
count cannot be a complete character. For combining labels for objects in the first category,
if two consecutively written objects are completely covered by each other, and the pixel
counts for both objects are less than 600, they are combined. For the second category, if two
consecutively written labels are partially covered by each other by at least 20 pixels, they
are combined.

For the third category, if objects with pixel counts of less than 600 are found, they are
combined with their left or right labels. If the object is the first component of a word, it
must be combined with the next object to the right, and if it is last component of a word, it
is combined with its left object. If the object is neither the first nor the last component of a
word, we must determine whether it is associated with an object to the left or right. To find
associated objects, the center points of a found object must be calculated, along with the
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center points of objects to the left and right. Then, the found object is combined with the
closest adjacent object. We should not combine labels if the character is a decimal point.
Since the pixel count of a decimal point is also matched with a third constraint, it can be
wrongly combined, so we add a constraint for a third category of objects. In this constraint,
labels are not combined if the object is horizontally covered by both neighbors.

In the final category, since characters composed of non-contiguous strokes (left open)
are not included in the set of recognizable characters in the proposed system, the left-open
object is combined with the object to the left. Using the flowchart in Figure 5, we determine
whether each labeled object is left open or not. We have illustrated the left-open detection
process using the word “birthday” as a sample image. We must detect left-open data for the
b character. In the sample image, only three objects (left-open data, r and a) are possibilities
after the first two conditions are satisfied. Therefore, we can confirm the existence of
left-open data after satisfying the third condition. For detecting characters such as s and
g, we consider one final condition, as they might result in two separate objects if divided.
However, they cannot have a gap that is greater than half the image height and might
contain a hole after the line is added.
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(c) Label separation

In the label separation process, we create a new image with the same height as the
current image with a new width, as calculated in (1). We use a space pixel count of 20 in
our system. We put the first labeled object into a new image, and then add the next object
20 pixels away from the first labeled object’s end point.

We place the next object similarly. We place a fixed segment point halfway across the
space to the next object:

w(Inew) =
n

∑
i=1

(xri − xli) + (n − 1)× k (1)

where w (Inew) is the width of the new image, xri is the rightmost x-coordinate of object I, xli
is the leftmost x-coordinate of object I, n is the total number of objects, and k is the space
pixel count.



Electronics 2021, 10, 904 8 of 18

(d) Small disjoint connection

In the small disjoint connecting process, we dilate and erode each object label with
same structuring element in order to preserve the object size, and to connect small disjoints.
If the number of holes in the resulting object is increased by exactly one, we replace the
original object with a dilated and eroded object. Otherwise, we retain the original object.

All four steps in the labeling process are illustrated in Figure 6 using the word “birth-
day”.
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Figure 6. Illustration of four labeling steps: (a) Labeling of connected objects, (b) combining labels for
characters b and i using left open and uncovered label combination categories, (c) label separation,
and (d) small disjoint connection of characters d and a.

3.1.3. Segmentation with Projection

Segmentation in cursive words is performed using vertical projection [26] which is the
summation of pixel values in a row for each column. After connecting small disjoints, we
perform projection segmentation for each segmented object of the new image. The steps of
projection segmentation are described as follows:

Step 1. Find vertical projection values for each x-coordinate in the segmented image using
(2) and use the points where projection values are 1:

vp(x) =
m

∑
y=1

f (x, y) (2)

where vp(x) is the vertical projection or histogram values of the x-coordinate, y is the
y-coordinate, x is the x-coordinate, m is the height of the image and f (x,y) is the pixel value
at (x,y) of the image.

Step 2. Use an average point if adjacent points are less than 7 pixels apart, in which a
character cannot exist in the part segmented with the adjacent points.

Step 3. Retain points that match the following two constraints as projection segment
points.

• The first point of the group of adjacent points is not the leftmost point of the
partial image.

• The last point of the group of adjacent points is not the rightmost point of the
partial image.

This process is illustrated in Figure 7. After performing the above steps for all seg-
ments, all projection segment points are combined with the fixed segment points obtained
in the label combination step.
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Figure 7. Segmentation based on vertical projection: (a) Original image, (b) image with segment lines
after Step 1, (c) image with segment lines after Step 2, and (d) image with segment lines after Step 3.

3.1.4. Over-Segments’ Removal

Over-segmented points are discarded based on the following three points of logic.
These are closed character detection, left open character detection, and pixel count de-
tection [27]. Closed character detection is useful for removing over-segments because an
over-segmented character cannot have a loop or a semi-loop in its nearest neighbor so
a segment line is discarded if neither of its neighbors has a closed character. A closed
character is one with a loop or a semi-loop such as a, c, n and o [28]. A closed character
is detected using four pairs of foreground pixel points, as illustrated in Figure 8. In other
words, to detect a closed character, we use the following two vertical lines: from a1 to a2,
and from b1 to b2, and we use the following two horizontal lines: from point c1 to c2, and
d1 to d2. In this process, the empirical results indicate that a pixel distance of 20 is best
used as the threshold.

1. Find two points, a1 and a2, whose x-coordinates are equal, and the differences between
y-coordinates are greater than the threshold.

2. Similarly, find an additional two points, b1 and b2. In finding these points, the
difference between the x-coordinates of a1 and b1 must also exceed the threshold.

3. Find c1 and c2, in the same way as finding a1 and a2, and then find d1 and d2 in the
same way as finding b1 and b2.

4. If none of these four points are zero, the object is determined to be a closed character.
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Figure 8. Illustration of closed character determination.

A left open object is again detected using the process described by the flowchart in
Figure 5, and an over-segmented point between the object and its neighbor to the left is
removed. If the pixel count of an object is less than the threshold (a number that is too
small to be a character), we remove the projection segment point for that segment of the
object. All three points of logic used in removing over-segmented points are illustrated
in Figure 9. In this figure, the blue segmentation lines are drawn using the labeled points.
The red lines are drawn using the projection points. The 1st segment line is removed using
the left open data constraint, the 6th line is removed using the closed character constraint,
and the 7th line is removed using the pixel count constraint.
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Figure 9. Over-segments removal: (a) Image with fixed and projection segment lines, and (b) image
with correct segment lines.

3.2. Classification

After the handwritten characters are segmented, the final step is to classify the hand-
written characters. We applied a convolutional neural network (CNN) model for feature
extraction and classification processes. To perform character recognition on mobile phones
and Android tablets, we used a framework based on an open-source software library called
TensorFlow Lite [29]. We set up the TensorFlow Lite model in our system as described
in [30]. TensorFlow was designed and developed by Google Brain. One of the advantages
of using TensorFlow Lite is that the learning model does not need to be trained on mobile
devices. The learning model is trained on a high-end machine, and then converted into the
TensorFlow Lite model file (a .tflite file) by the converter. By using this file, the classification
process can be performed on mobile devices.

3.2.1. Image Normalization

In preparing for training and testing, we first performed image size normalization.
Each segmented character is normalized into a 64 × 64 pixel width and height. We
converted an input image into a binary image, and extracted a region of interest (ROI).
Then we performed a resizing operation. To adjust the aspect ratio, we primarily checked
the number of rows and columns in the input image. In the first step, we resized the larger
side into 64 pixels. In the second step, we padded zero values to the smaller size to fulfill
64 pixels. We inserted zero padding values from left and right for the image so that its
width is smaller than its height. When the height of the image is smaller than its width,
we inserted zero padding values from top and bottom. While resizing an input image,
degradation can occur due to the number of its object pixels. To overcome this problem,
we applied a morphological operation called thickening on the image, and then resized it.
This process is shown in Figure 10.
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3.2.2. Initial Classification with Convolutional Neural Network

For the CNN model configuration, we applied 20 convolutional filters with the same
padding and a filter size of 3 × 3, and then applied a Rectified Linear Unit (ReLU) layer
for the first hidden layer. For the second hidden layer, we used 40 filters and a filter size
of 5 × 5, as well as a ReLU layer. For a third hidden layer, we used 60 filters with a filter
size of 5 × 5 and a ReLU layer, followed by two fully connected layers. The first fully
connected layer has 1000 nodes. The size (n) of a second fully connected or classification
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layer varies in size for each type of classification. In order to downsample the layer size,
we performed max pooling after each convolution operation with a size of 2 × 2, and a
stride of 2. We proposed different types of classifiers and set the number of nodes for each
character type in the final classification layer as follows: digits and special characters (20),
uppercase (26), lowercase (26), the combination of uppercase and lowercase (52), digit
and lowercase (36) and the combination of all types (72). For the training parameters, we
used the Adam optimizer [31] with a learning rate of 0.001 and 4 epochs. The network
architecture is illustrated in Figure 11.
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3.2.3. Differentiating Uppercase and Lowercase Characters

The system is designed to recognize digits, uppercase characters, lowercase characters,
and some special characters. In the final result, however, some characters are confused
between uppercase and lowercase. In order to solve this problem, we relied on a strength of
our proposed system. It provides four lines on a ruled screen as guidelines to help children
write. We calculate the threshold value from the first two lines of the four lines area. The
midpoint between the first two lines is used as the threshold value. If the start point of the
character is under the threshold value, it is considered a lowercase letter and otherwise an
uppercase letter. The purpose of differentiating uppercase and lowercase characters is to
correctly display on the proposed application. Our list of easily confused characters is the
following: C, c, O, o, P, p, S, s, U, u, V, v, W, w, X, x, Y, y, Z and z. If the recognized object is
on this list, we used this differentiation approach. This process is illustrated in Figure 12.
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4. Data Collection

All experimental work was performed on a self-collected handwritten dataset. These
data were collected from students in the targeted countries, and their grade range was
from kindergarten to primary school. Sample rough data are illustrated in Figure 13.
We collected handwritten data in the traditional way from Nepal, Myanmar, and the
Philippines in the same format. Data from Bangladeshi students were also collected in a
traditional way, but by using a different format. We also collected data from students in
Myanmar using an Android tablet. We created a simple application to collect data written
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on an Android tablet. This application features a screen on which to draw, and two buttons:
save and clear. The amount of data in our dataset is shown in Table 1.
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Table 1. Dataset information.

Dataset
Information Digits Uppercase Lowercase Special Characters Total

Bangladesh 5107 758 754 350 6969
Nepal 221 600 385 125 1331

Myanmar 451 788 1026 120 2385
Philippines 134 690 628 283 1735

Tablet
collected data 2450 6287 6292 2217 17,246

Total 8363 9123 9085 3095 29,666

The proposed system aims to help children write the alphabet, digits, and some mathe-
matical characters. Therefore, we used different types of classifiers for these characters. The
classifier types and their respective ID numbers are listed in Table 2. We performed training
and testing operations on each classifier. These images were split in an 80:20 ratio between
training and testing. The training accuracy for each classifier is also shown in Table 2.
While performing the training and testing processes on our self-collected handwritten
dataset, the differentiation of uppercase and lowercase condition was not applied. This
condition is only applied on Android applications of our proposed system.

Table 2. Training accuracy for each classifier.

No. Type ID
Training

No. of Images Accuracy (%)

1 Digits and Special Characters 1 7594 99.25
2 Uppercase 2 6907 98.80
3 Lowercase 3 6749 98.67
4 Uppercase and Lowercase 4 13,656 91.97
5 Digits and Lowercase 6 12,052 95.46
6 All combined 5 21,250 91.63
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5. Experimental Results

The proposed CNN model (Mp) is compared with two other CNN models: model 1
(M1) and model 2 (M2). Each model has a different architecture, filter size, and output
feature map. The detailed architecture for each model is shown in Table 3. In order to
downsample the image layer size, we performed max pooling on the ReLU layer after each
convolution operation with a size of 2 × 2, and a stride of 2. The first fully connected layers
are composed of 80 and 100 nodes for M1 and M2. For the second fully connected layer
or the classification layer, the output node sizes are same as with the proposed system’s
architecture. Table 4 provides the testing accuracies of the proposed system, compared
with those for models M1 and M2. According to the experimental results, the proposed
model (Mp) gives higher accuracy than the other compared models.

Table 3. Description of model architectures.

No. Model Name Layer Filter Size Output
Feature Map

1 M1
First Layer 5 × 5 16

Second Layer 5 × 5 32
Third Layer 3 × 3 64

2 M2
First Layer 5 × 5 32

Second Layer 5 × 5 64
Third Layer 3 × 3 128

3 Mp
First Layer 3 × 3 20

Second Layer 5 × 5 40
Third Layer 5 × 5 60

Table 4. Comparison of testing accuracies with different models.

No. Type No. of Testing
Images

Testing Accuracy (%)

M1 M2 Mp

1 Digit and Special Characters 3864 95.39 96.84 98.01
2 Uppercase 2216 96.34 96.12 97.43
3 Lowercase 2336 88.14 89.43 92.72
4 Uppercase and Lowercase 4552 80.67 79.13 82.97

5 Digit and
Lowercase 5396 88.55 88.88 91.14

6 All combine 8416 82.32 82.31 85.74

According to our experimental results, the proposed system has a recognition accuracy
of over eighty percent for each classification for digits and special characters, uppercase
letters, lowercase letters, the combination of uppercase and lowercase letters, digit and
lowercase letters, and the combination of all characters.

Our proposed model also makes a comparison with other methods, such as Histogram
of Oriented Gradient (HOG) [32] features with the multiclass Support Vector Machine
(SVM) classifier and AlexNet [33], on our local handwritten dataset. The same training and
testing dataset are applied on both models. For HOG feature extraction, we empirically set
a 4 × 4 cell size with 9 bins orientation to extract prominent features from each image. The
Alexnet model was set up as described in [34]. For AlexNet implementation on our dataset
images, we set a stochastic gradient descent with momentum (SGDM) as the optimizer, a
batch size of 64 images and the learning rate to 0.0001 with 4 epochs. The testing accuracies
of the proposed model and other compared models are shown in Table 5. According to
the experimental result, the proposed system has good recognition accuracy than the other
compared models in all classifier types.
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Table 5. Comparison of testing accuracies with other compared models.

No. Type
Testing Accuracy (%)

HOG + SVM AlexNet Mp

1 Digit and Special Characters 97.05 97.23 98.01
2 Uppercase 97.25 97.02 97.43
3 Lowercase 90.03 88.36 92.72
4 Uppercase and Lowercase 79.70 81.24 82.97

5 Digit and
Lowercase 88.64 89.60 91.14

6 All combine 82.56 84.19 85.74

The confusion matrix of the Type 1 classifier (digit and special character) is shown in
Figure 14.
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Figure 14. A confusion matrix of Type 1 classifier by proposed model.

We then developed an Android application for our proposed system. In our applica-
tion, we used Android studio IDE (version 3.4.1). The OpenCV computer vision library
(opencv-3.4.6-android-sdk) is imported into our system to incorporate built-in image pro-
cessing modules. For the classification process, we used a TensorFlow Lite (version 1.13.1)
to transform the trained network file (.h5) into a file (.tflite) that can be applied on Android
phones and tablets. The application interface is shown in Figure 15. Students can write in a
ruled text area with four lines provided as writing guidelines. This ruled interface is useful
in distinguishing similar uppercase and lowercase characters, such as C, c, O, o, P and p.
The user can choose between the various types of classification by entering the classifier ID
number in classifier type (for example, 1 for digits and special characters). The user can
write on the ruled screen with four green guidelines, and then push the classify button to
get a classification result.

The classification results for each character and for the number of characters are shown
to the user. After adding lecture contents to the application, inputting the classifier type
will no longer be necessary.

We tested our proposed system using 1000 randomly selected words written by
children. Table 6 provides the segmentation accuracy by word. The recognition accuracy is
calculated in two ways: for words and for characters. The results are described in Table 7.
Some correctly recognized words together with their segmentation lines and experimental
results are shown in Figure 16.



Electronics 2021, 10, 904 15 of 18

Electronics 2021, 10, x FOR PEER REVIEW 15 of 18 
 

 

to transform the trained network file (.h5) into a file (.tflite) that can be applied on Android 
phones and tablets. The application interface is shown in Figure 15. Students can write in 
a ruled text area with four lines provided as writing guidelines. This ruled interface is 
useful in distinguishing similar uppercase and lowercase characters, such as C, c, O, o, P 
and p. The user can choose between the various types of classification by entering the 
classifier ID number in classifier type (for example, 1 for digits and special characters). 
The user can write on the ruled screen with four green guidelines, and then push the clas-
sify button to get a classification result. 

The classification results for each character and for the number of characters are 
shown to the user. After adding lecture contents to the application, inputting the classifier 
type will no longer be necessary. 

 
Figure 15. A simple user interface for the system. 

We tested our proposed system using 1000 randomly selected words written by chil-
dren. Table 6 provides the segmentation accuracy by word. The recognition accuracy is 
calculated in two ways: for words and for characters. The results are described in Table 7. 
Some correctly recognized words together with their segmentation lines and experimental 
results are shown in Figure 16. 

Table 6. Segmentation results. 

Result Correct Count Incorrect Count Total Count Accuracy (%) 
Words 985 15 1000 98.50 

Table 7. Recognition results. 

Result Correct Count Incorrect Count Total Count Accuracy (%) 
Words 956 44 1000 95.60 

Characters 4550 57 4607 98.76 

 
Figure 16. Some images of correct segmentation and recognition: (a) Images input to the system, 
(b) images with segmentation lines, and (c) recognition results. 

Ruled w riting area

Classification output text

Classification result and 
number of characters

Figure 15. A simple user interface for the system.

Table 6. Segmentation results.

Result Correct Count Incorrect Count Total Count Accuracy (%)

Words 985 15 1000 98.50

Table 7. Recognition results.

Result Correct Count Incorrect Count Total Count Accuracy (%)

Words 956 44 1000 95.60
Characters 4550 57 4607 98.76
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6. Limitations

Based on these results, our system cannot correctly segment for some characters
such as a disjoint U or d. This is because U and LI are easily confused, as are d and cl.
Wrongly segmented and recognized words are shown in Figures 17 and 18, respectively.
The recognition results for some messy images are shown in Figure 19. The overall accuracy
of our proposed system on the 1000 words in our randomly tested data was 95.60%, and
the overall accuracy on 4607 characters was 98.76%.
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7. Conclusions

In this paper, we proposed an application for handwritten characters that can be
applied as a teaching aid for children. The application enables self-study, so that children
can learn without experienced teachers. We also proposed a character segmentation
processes to overcome the segmentation problems. For character recognition, we applied
the CNN classifier and processed each segmented character. The recognition time for one
character took approximately 0.3 s on a mobile phone or tablet, and it is an acceptable
time. In future work, we will combine the word-checking process in our current system to
check answers immediately. Moreover, we will collect more handwritten data to cover the
various handwriting styles.
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