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Abstract: Hybrid architectures integrating a processor with an SRAM-based FPGA fabric—for
example, Xilinx ZynQ SoC—are increasingly being used as a single-chip solution in several market
segments to replace multi-chip designs. These devices not only provide advantages in terms of logic
density, cost and integration, but also provide run-time in-field reconfiguration capabilities. However,
the current reconfiguration capabilities provided by vendor tools are limited to the module level.
Therefore, incremental run-time configuration memory changes require a lengthy compilation time for
off-line bitstream generation along with storage and reconfiguration time overheads with traditional
vendor methodologies. In this paper, an internal configuration access port (ICAP) controller that
provides a versatile fine-grain resource-level incremental reconfiguration of the programmable logic
(PL) resources in ZynQ SoC is presented. The proposed controller implemented in PL, called VR-
ZyCAP, can reconfigure look-up tables (LUTs) and Flip-Flops (FF). The run-time reconfiguration
of FF is achieved through a reset after reconfiguration (RAR)-featured partial bitstream to avoid
the unintended state corruption of other memory elements. Along with versatility, our proposed
controller improves the reconfiguration time by 30 times for FFs compared to state-of-the-art works
while achieving a nearly 400-fold increase in speed for LUTs when compared to vendor-supported
software approaches. In addition, it achieves competitive resource utilization when compared to
existing approaches.

Keywords: run-time reconfiguration; ICAP controllers; ZynQ SoCs

1. Introduction

ZYNQ-SoC is a hybrid architecture integrating embedded multi-processor cores
(known as a programmable system) with the FPGA fabric (known as programmable
logic). It combines the software flexibility of ARM processors with the parallel processing
capability of reconfigurable hardware. Real-time low latency applications can be offloaded
to the programmable logic. Unlike previous FPGAs with hard processors (for example,
Virtex-Pro housing a PowerPC with FPGA fabric), the processing system (PS) in Zynq-SOC
is fully capable and able to boot independently of the FPGA. Therefore, the programmable
logic (PL) section is considered to be the auxiliary resource that can extend the processing
capabilities when needed by designers. The PL portion of the ZynQ SoC can be partially
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and dynamically reconfigured during run-time under the control of the PS. This enables
the ZynQ SoC to be deployed in self-healing and self re-configurable systems [1].

For run-time reconfiguration in real-time systems, the generation of partial bitstreams
and their size and delivery speed to the configuration memory are the factors to be con-
sidered. The compilation time for FPGAs is very slow due to the monolithic mapping
process. For example, the Rosetta benchmark mapped onto Xilinx XCZU9EG FPGA takes
42 min [2]. The reconfiguration time for recent FPGA families has been steadily increasing
(i.e., in orders of several milliseconds [3]) due to the increased density of the configuration
memory (20 MB for Virtex-7) and unimproved throughput of the configuration inter-
faces [4]. Compression techniques—for example, Huffman coding [5] and difference vector
(DV) [6]—can be used to reduce the size of the bitstream. For incremental changes to the
configuration memory—for example, changing the content of a single look-up table (LUT)
or a Flip-Flop (FF)—direct bitstream manipulation can be used [7]. There are important
application domains in which high-speed fine-grain incremental configuration memory
changes are vital, for example, fault injection in user and configuration memories [4,8].
fault injection requires huge amounts of time due to the extremely large input and fault
space to explore. Vendor support for such application domains is limited, both in terms of
the level of granularity of the reconfiguration they provide or their throughput.

For Zynq SOC, Xilinx provides software Application Programming Interfaces (APIs)
for both the processor configuration access port (PCAP) and the internal configuration
access port (ICAP) to access the configuration memory that imply flexibility but are unable
to reach the maximum reconfiguration throughput. Compared to the theoretical bandwidth
of 400 MB/s which is achievable with a 100 MHz clock and data width of 32 bits, PCAP
reaches a throughput of 145 MB/s while Xilinx ICAP IP gives 19 MB/s. The PCAP
can only be used with the PS, and its sole purpose is delivery from the PS to the PL
of partial bit-streams stored in DRAM. The PCAP does not provide a software API for
frame-level fine-grain reconfiguration [9]. Custom ICAP controllers have been shown to
achieve a throughput that is quite close to the theoretical limit; i.e., 380+ MB/s in some
cases [10–19]. However, except for the author in [16], no researchers support the fine-grain
reconfiguration of primitive FPGA elements; e.g., LUTs. Even the author in [16] does not
support FF reconfiguration during run-time due to the challenges involved in avoiding
unwanted state corruption [4].

In this work, we propose a novel hardware-implemented reconfiguration controller
featuring efficient control mechanisms that allow the run-time reconfiguration of LUTs
and FFs. The main contributions of the proposed controller are its ability to support
fine-grained LUT and FF reconfiguration at high speed with moderate resource usage. In
particular, handling FF reconfiguration in run-time is not straightforward as it requires the
safe assertion of the Global Set/Reset (GSR) line with side effects that can render logic in
the static region corrupt if care is not taken. This is achieved with the usage of the reset
after reconfiguration (RAR) feature offered in seven-series FPGAs. In our approach, first,
a RAR bit-stream is downloaded upon system boot, which is accomplished through the
PCAP. Therefore, our overall approach uses both the PCAP and the ICAP. However, the
PCAP is used only once at the system boot. The proposed VR-ZyCAP controller provides
the capability of on-the-fly LUT modification and the run-time reconfiguration of FFs in
hardware. The proposed methodology is based on a ZynQ SoC architecture as it provides
a single-chip processor–FPGA integrated solution, which is most suitable for applications
such as fault injection. However, it can be adapted very easily to other Xilinx FPGA
architectures. Our experimental results demonstrate that we can reconfigure LUTs and
FFs at very high speeds compared to existing vendor-based software APIs [4] or other
state-of-the-art works. The same ideas can potentially be used for other vendors’ devices
such as Intel’s Cyclone V SoC FPGAs. However, this is not considered in this paper and is
left for future work.

The rest of the paper is structured as follows. Section 2 discusses the motivation for
fine-grained reconfiguration, describing several use cases in which it is needed. Section 3
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explains the architecture and configuration memory layout of Xilinx FPGAs. Section 4
covers the literature review and provides an overview of the different reconfiguration con-
trollers that have been developed over time. Section 5 presents the proposed methodology.
Section 6 covers the experimental results and provides detailed comparisons with existing
works. Section 7 concludes the paper while also presenting some ideas for future work.

2. Motivation

Fine-grained reconfiguration has several applications in different domains. For ex-
ample, it can be used in cryptography applications, where it can help in the design of
countermeasure strategies [16]. Another application domain is dynamic circuit specializa-
tion (DCS), where it can be used for updating adaptive filters in run-time; for example,
as outlined in [12]. In general, it is applicable to systems with user parameters that can
change during run-time; however, the rate of change of these parameters should be orders
of magnitude slower than the system operating frequency, meaning that these parameters
should change less frequently. In such cases, fine-grained reconfiguration is useful as it
avoids the lengthy partial bitstream generation of vendor design flow. To illustrate the
potential use of fine-grained reconfiguration, this section briefly discusses three practical
applications that benefit from the fine-grained reconfiguration of LUTs and FFs in more
detail. These applications assume a system in which a processor and a programmable logic
are present, as is the case with our proposed VR-ZyCAP controller.

2.1. FPGA-Based Ternary Content Addressable Memories

With the rise of programmable dataplanes in software-defined networking (SDN),
FPGA-based ternary content addressable memories (TCAMs) have received a great deal of
interest. As there is no built-in macro for its implementation in modern SRAM-based FPGA,
TCAM has to be emulated using on-chip logic and memory resources. PR-TCAM [20]
represents one interesting approach, implementing a TCAM using logic LUTs in contrast to
the memory LUTs used traditionally. The logic LUTs are combinational in nature and can
only be updated using reconfiguration during run-time. VR-ZyCAP is an ideal platform to
achieve such fine-grained LUT-level reconfiguration for PR-TCAM. The PS algorithm is
responsible for identifying which LUTs need to be modified with new configurations (i.e.,
rules). This is controlled by the user. Once the physical location of a LUT and updated rule
values are passed to VR-ZyCAP, it reconfigures the corresponding LUT in run-time. The
newly updated rules can be easily verified by passing a key value from the PS to PL and
checking the received match signal. This fine-grained partial reconfiguration would speed
up TCAM rule modifications compared to existing approaches, making the PR-TCAM rule
update speed competitive. It is worth noting that, without fine-grained reconfiguration, the
modification of PR-TCAM rules is not practical as the vendor partial reconfiguration flow
for generating a partial bitstream for smallest Pblock (i.e., 2 CLB columns in seven-series
FPGAs) is more than three minutes, while for our approach, the read–modify–write cycle
on the embedded platform requires a time consumption on the order of a few milliseconds
at worst. In order to update a rule in PR-TCAM, multiple LUTs across different CLB
columns may be involved, which would require a huge amount of compilation and partial
bitstream generation time in addition to the memory required for storage on the embedded
platform. Therefore, it is not feasible to implement PR-TCAM with the vendor partial
reconfiguration flow.

VR-ZyCAP can be also used with G-AETCAM [21], which stores its rules in the FPGA
FFs. In fact, G-AETCAM [21] needs logic to modify FFs, which can be removed if the FFs
are updated through the FPGA configuration layer through VR-ZyCAP. This would make
G-AETCAM [21] more efficient in terms of resource usage and can accelerate the FF content
modification in real-time, with very high speed compared to existing FF reconfiguration
approaches.
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2.2. Design of Fault Tolerant FPGA-Based CNNs

Convolutional neural networks (CNNs) are widely used, for example, in computer
vision, speech recognition and natural language processing (NLP). When the applica-
tion domain is a safety-critical system—for example, in automotive, avionics or space
industries—reliability becomes an important requirement [22,23]. Reliability evaluation
and fault-tolerant design for FPGA-based CNNs have recently received a great deal of
interest from researchers [24–26]. The proposed VR-ZyCAP can enable soft error injection
in user memories as well as configuration memory [26]. The information of FFs to be
modified is passed from the PS to the PL through the logic allocation (LL) file. In order to
flip the value of an FF, it first needs to be captured. The clock is stopped in the device-under-
test (DUT) region. The current value of the FF is captured in the configuration memory.
Then, the FF corresponding configuration memory is bit-flipped. Next, the DUT region is
unmasked and the static region is masked to avoid unintentional state changes in other
FFs before the configuration memory is written. VR-ZyCAP is ideal for this application,
and its DPR FF flow considers all the requirements of FF modification in run-time. The
fault injection speed is a critical factor as CNNs are large and thus the number of faults to
test is also very large. VR-ZyCAP will help in speeding up CNN testing.

As FPGAs are also increasingly used in safety-critical applications and the testing
and qualification of such systems become more stringent, evaluating the impact of errors
on FFs will be necessary. For example, for electronic automotive systems, the ISO-26262
standard already defines functional safety requirements that need to be met and mandates
the testing of the effect of errors on the components.

2.3. Side Channel Attacks Protection

Side channel attacks (SCA) are one of the latest threats to computer systems in which
an attacker tries to break a cryptographic implementation by launching attacks based on
system properties such as its power consumption, heat signature, timing information,
etc. [27]. The attacker does not target the weaknesses of the cryptographic algorithm
but rather the weaknesses that may have been introduced by the programmer of the
system due to a lack of knowledge or poor coding practices. Securing modern SRAM-
based FPGA implementation against such attacks is an active research area. One possible
counter-measure against such attacks can be realized using fine-grained dynamic partial
reconfiguration (DPR) such as the one provided by the proposed VR-ZyCAP.

Consider the example of the integrity calculation cryptographic hashing algorithm, the
Secure Hashing Algorithm (SHA), which is considered to be the de-facto hashing standard.
In each variant of SHA (1, 2 and 3) the algorithm is initialized with some round constants
that thwart an attack based on data symmetry. If a system contains an implementation of
the SHA algorithm with some fundamental vulnerability that may have been introduced
as a result of poor user implementation, then it can help an attacker to launch a series of
attacks on the SHA algorithm.

Now, consider a system that contains “N” different implementations, instead of one
implementation of the SHA algorithm, that is available on the PS side that and can be
loaded on-demand to the PL via VR-ZyCAP. All of these implementations have the common
property that initial round constants values are stored in FFs on the PL side, which can be
accessed from the PS side and can be updated dynamically. In order to mask the result of
hash computation against SCA, a user can switch the SHA implementation seamlessly by
selecting one of many SHA implementations available at the disposal of PS, form a run-time
partial bit-stream and deliver it using the proposed VR-ZyCAP, dynamically switching
from one implementation to another, thus causing a great deal of confusion for an attacker
that aims to determine the power traces of a system. Before replacing SHA algorithm-1 with
SHA algorithm-2, intermediate calculation results of SHA algorithm-1 have to be captured
using DPR, and once SHA algorithm-2 is successfully loaded using DPR, the initial round
constants of SHA algorithm-2 have to be replaced with the intermediate calculation results
of SHA algorithm-1. Thus, no intermediate results are lost while achieving protection
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against SCA using DPR. To make this possible, fine-grained reconfiguration of FFs is
needed. Finally, the selection of the next SHA implementation out of “N” implementations
may be done using a true random number generating system to avoid bias.

The proposed method not only provides better protection against SCA but also elim-
inates the need for lengthy off-chip bit-stream creation using IDEs such as Xilinx ISE
or Vivado which take at least a couple of minutes [9]. Those large times would make
the described protection impractical, as time is often of great importance in extensive
computation algorithms, including but not limited to hashing, encryption, asymmetric
key-pair generation and key-exchange, etc. VR-ZyCAP would make protection using
several implementations of the algorithm during run-time feasible.

3. FPGA Structure and Reconfiguration of LUTs and FFs

This section discusses the architecture of the ZynQ SoC; however, it should be noted
that the proposed controller is applicable also to seven-series FPGA devices and their
configuration memory in general as ZynQ SoCs are a combination of ARM Cortex-A9
cores in the PS with Artix-7 FPGA in the PL, as shown in Figure 1. The FPGA architecture
consists of columns of different resources, such as input output blocks (IOBs), configurable
logic blocks (CLBs), digital signal processors (DSPs), block RAMs (BRAMs) and clock
management tiles (CMTs), etc. The FPGA device is divided horizontally into two halves; i.e.,
the top half and the bottom half, represented by TOP/BOTTOM bit = 0 and TOP/BOTTOM
bit = 1, respectively.

In each half, there can be several horizontal clock (HCLK) rows depending upon the
family and part. For example, in ZynQ SoC(ZC07020) with an integrated Artix-7 FPGA,
three HCLK rows (also called major rows) are present in the PL section, as shown in
Figure 1. The HCLK/major rows start in the middle of the device with an ID of zero, and
IDs are incremented along the top half and also along the bottom half. The height of an
HCLK row is equal to the CLB column (i.e., 50 CLB), and the width is the same as the
device width. An HCLK is further divided into two halves by the regional clock resources:
25 CLBs above the clock routing and 25 CLBs below. An HCLK row contains different
numbers of CLBs, BRAM, DSP and I/Os depending on the width of a device. There are
400 LUTs per CLB column, where each CLB column is 50 CLB high, resulting in eight LUTs
per CLB. As each CLB has two slices—even and odd—there are four LUTs per slice.

LUTs in the seven-series architecture are used to implement six-input arbitrary Boolean
functions that require a 64-bit initialization value. Each six-input LUT can also be used as
a dual five-input LUT with shared inputs. From a reconfiguration perspective, the 64 bit
configuration for a six-input LUT is divided into two 32-bit groups, with one for each
five-input LUT. One must know the location of the logic resource in the configuration
memory space in order to dynamically reconfigure a system at run-time. There are two
types of locations associated with a LUT; i.e., its location in the XY coordinate system and
its location in the configuration memory represented by a 32-bit frame address register
(FAR). The LUT location can be specified in a constraint file in UCF or XDC format as the
XY coordinates of the target slice, which can then be mapped to the configuration memory
at the corresponding frame address; i.e., the FAR. The format of the LUT location is defined
as a pair of (X,Y) and BEL, where X determines the row, Y determines the column of a slice
and BEL defines the LUT position within that slice; i.e., LUTA, LUTB, LUTC or LUTD.
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Figure 1. ZynQ SoC architecture.

Figure 2 illustrates the configuration memory layout of a CLB column which repre-
sents both our elements of interest—i.e., LUTs and FFs—in the configuration space. This
CLB column has 36 minor frames (or just frames) where a frame is the smallest unit of
configuration memory that can be addressed. Each frame has 101 words, where each word
is 32 bits. Thus, each frame contains 3232 (101 × 32) bits which are stored in SRAM cells.
In order to understand the relationship between the mapping of logic resources in a CLB
column and its configuration memory, consider the ODD slice in Figure 2. It can be seen
that the configuration words start at the bottom with “word0” and move up to “word100”
at the top of the CLB column in the configuration space. As annotated in this figure, one
can see the Y coordinate of the slice in which our LUTs are mapped. Note that for “Y0” at
the bottom, two words are required to configure its LUTA, LUTB, LUTC and LUTD across
frames 26, 27, 28 and 29. It can be seen that “word0” contains 16 bits of LUTA and 16 bits
of LUTB. Similarly, “word1” contains configuration data for 16 bits of LUTC and 16 bits
of LUTD. Therefore, if we consider a single LUT (i.e. LUTA, LUTB, LUTC, LUTD), its 64
bits span over four frames. The same pattern is used for even slices, but the minor frames
are different; i.e., 32, 33, 34 and 35. Therefore, 100 words are required for the configuration
of 50 CLBs. One word in the middle of the frame—i.e., word 51—is for clock information
and the error correction code [28]. Thus, the 400 LUTs in a CLB column are configured by
100 words spanning four frames in the pattern shown in Figure 2. With minor differences
across the Xilinx FPGA families, the frame layout largely remains the same; for example,
the layout presented here is the same as that of Virtex-5 except for the number of CLBs in
a column or the corresponding words. The major column determination for the XY LUT
location is further discussed in the proposed methodology section.
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Figure 2. Look-up-table (LUT) and Flip-Flop (FF) mapping to configuration memory.

Figure 2 shows that frame 31 contains data for the FFs of the CLB. There are different
frames for even and odd slices. These frames contain the instantaneous data for FFs as
well as their configuration settings. However, an exact decoding and mapping between
FFs in the logic space and configuration space is not difficult, as the logic allocation (LL)
file generated by Xilinx design tools gives the locations of all the FFs in the configuration
address space. The initialization of a FF to a known state is interesting to look into from
a FPGA architecture perspective. This is achieved by setting the initial values of FFs
in HDL, which are mapped and stored in the bit-stream and downloaded to the FPGA
upon first configuration. Figure 3 shows the logic that is used for this purpose. It can
be seen that each slice FF is shadowed by another extra FF (it can be a transistor-level
optimized memory element other than a FF). The shadow FF receives the initialization
contents from the bit-stream during the download process. After this, a global set/reset
(GSR) command sequence initializes all the FFs in the FPGA from these shadow FFs. If the
user wants to know the instantaneous value stored in a FF, which represents the current
state of the system mapped onto the FPGA, the user can trigger a global capture (GCAP)
signal which will save the state of all the FFs in the shadow memory. This state can then be
retrieved through configuration memory, read back and changed to the desired value [4].
However, to reliably reconfigure FFs, before triggering the GCAP, the clock to the FFs
should be stopped. The FPGA architecture is designed such that all the memory elements
are connected to the same GSR and GCAP. This has the implication that if a system is
divided into static and dynamic regions, the triggering of GSR and GCAP should not
affect the static region. This problem is handled with the reset after reconfiguration (RAR)
partial bitstream in [4], which masks the GSR and GCAP signals in the static design while
unmasking them in the dynamic/reconfigurable region. It should be kept in mind that the
global signals are asynchronous signals and may cause timing violation when triggered in
run-time. Therefore, care must be taken to allow transitions on these signals to settle by
allowing adequate time.
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Figure 3. FF architecture using a shadow register.

4. Related Work

This section discusses several existing reconfiguration controllers and analyzes and
compares their performance in terms of their reconfiguration time, resource usage and
throughput. Hardware resource utilization and reconfiguration time are often considered
to be the two main performance metrics of a reconfiguration controller. A trade-off between
these two is required to get an optimized solution.

Vendor-provided reconfiguration controllers are mostly dependent on a processor.
Software APIs are used to access the configuration memory, such as OPB HwICAP [19],
XPS HwICAP [29] and AXI HwICAP [30]. The speed of these reconfiguration controllers
is limited by the interconnecting bus interface with which the ICAP is connected. OPB
HwICAP offers a low communication bandwidth between the processor and the ICAP,
which is around 4 MB/s; that is, 100 times slower than the theoretical bandwidth of
the ICAP (400 MB/s) [19]. Similarly, XPS HwICAP provides 10 MB/s data throughput
and only supports Microblaze and Power PC processors in Virtex 4, Virtex 5, Virtex6
and Spartan 6 [29]. AXI HwICAP is used in seven-series architectures and above that
support resource and long frame reading. Functionality to read/write CLBs, LUTs and
FFs is also supported using software APIs. Due to the complex architecture and low
processor communication bandwidth, this type of ICAP controller has a low bandwidth
of approximately 19 MB/s [30]. The architecture of XPS HwICAP and AXI HwICAP
is similar, resulting in the same resource utilization, with the only difference being the
reconfiguration throughput and bus latency.

Another type of reconfiguration controller is based on the ZynQ device. Besides the
internal configuration access port (ICAP), ZynQ devices are also equipped with a novel
configuration interface that supports dynamic partial reconfiguration (DPR), called PCAP.
The main advantage that PCAP provides is the transfer of partial bit-streams through
the DMA engine from external memory such as an SD-card or DRAM to read/write
configuration FIFOs over the AXI-PCAP bridge [9]. PCAP can operate at a maximum
clock frequency of 100 MHz with a 32-bit data width, thus having a maximum physical
bandwidth of 400 MB/s [31]. However, the maximum bandwidth of PCAP is limited
to 145 MB/s [32] due to the limitations of the PS AXI–bus interface. In [10], the authors
proposed the idea of connecting the AXI HwICAP to the hard DMA controller to transfer
partial bit-streams from external memory, which can significantly improve data throughput
from 19 MB/s to 67 MB/s. The ZyCAP controller introduced in [10] also achieves an
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increased reconfiguration throughput of up to 382 MB/s by the addition of the AXI-4
interface which is connected to high-performance (HP) ports to transfer partial bit-stream
data through a soft DMA controller. Finally, the MiCAP and MiCAP-Pro are also Zynq-
based reconfiguration controllers presented in [11] in which an efficient state machine is
utilized to deal with the slow reconfiguration speed mentioned in AXI HwICAP. MiCAP-
Pro is the advanced version of the basic MiCAP in which the reconfiguration throughput
is increased up to 272 MB/s by the addition of a DMA engine and an HP port. Another
partial reconfiguration controller (PRC) mentioned in [13] has microblaze processor-based
architecture instead of ZynQ. At one time, two words of bitstream can be sent due to the
64-bit data width of the bus, which makes it very fast. Furthermore, separate FIFOs for
read and write frames are utilized with a minimum depth of 16 64-bit words, which also
helps in reducing the resource area. However, it does not have read-back capability and
resource-level reconfiguration. A tiny ICAP controller is presented in [15] which utilizes
Picoblaze to read and write frame data into dual port memory. The size of memory is
kept at one frame and the reading and writing of frames is performed using C functions in
Picoblaze; thus, resource utilization is significantly reduced. The purpose of this controller
is to check the status of the configuration registers; thus, it has read-back capability.

Some Reconfiguration controllers are designed completely in hardware and are in-
dependent of the processor; for example, DyRACT [14] and RT-ICAP [17]. DyRACT [14]
uses the PCIe interface in conjunction with the ICAP to transfer partial bit-streams of larger
sizes, thus giving a high communication bandwidth that results in a high data throughput
of up to 364 MB/s and an improved reconfiguration time. In the RT-ICAP controller [17],
the reconfiguration time is reduced by using scratch pad memory (SPM), but the limitation
is the size of the SPM. If the partial bit-stream fits into the SPM, then maximum reconfig-
uration throughput can be achieved. Bitstream compression techniques are also used to
reduce the configuration data size so that a reconfiguration throughput of up to 382.2 MB/s
is achieved.

All the reconfiguration controllers discussed above achieve high reconfiguration
throughput at the cost of increased hardware usage. Some efforts have also been devoted to
increasing reconfiguration throughput by increasing the ICAP clock up to 500 MHz above
the recommended clock frequency. The maximum reconfiguration throughput achieved is
up to 2200 MB/s at 500 MHz clock frequency [33].

Most of the reconfiguration controllers discussed in this section aim to deliver partial
bit-streams in less time, but only a few reconfiguration controllers exist which have read-
back capability. This small group includes the AC_ICAP controller introduced in [16],
which not only sends the partial bit-stream with high reconfiguration throughput but also
provides the additional functionality of the run-time reconfiguration of the LUTs. This
reconfiguration controller is completely implemented in hardware, so additional hardware
resources are utilized compared to the reference design, but the reconfiguration speed is
380 times faster [29]. However, even AC_ICAP [16] does not support FF reconfiguration
during run-time. Our proposed reconfiguration controller VR-ZyCAP supports both LUT
and FF reconfiguration with very high speed, as presented in the next section.

5. Proposed VR-ZyCAP Controller

The proposed VR-ZyCAP is based on the ZynQ SoC and is able to reconfigure LUTs
and FFs during run-time at a fine-grained level. It differs from most of the existing recon-
figuration controllers as they are designed for coarse-grained module-level reconfiguration.
It accelerates the process of LUT and FF reconfiguration while keeping the static logic
intact. The acceleration is achieved by entirely handling the LUT and FF reconfiguration in
hardware while the static logic is being masked. This masking is achieved by generating a
partial bitstream with particular settings, which is first downloaded into the FPGA with
the processor configuration access port (PCAP), and then continuing the LUT and FF re-
configuration during run-time with the ICAP configuration ports. This usage of the PCAP
enables the design of a controller that loads a partial bitstream from external memory to be
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avoided, which in our case is required only once. Partial bitstreams for the configuration of
LUTs and FFs are not pre-generated but instead are created during the read–modify–write
(RMW) cycle of the ICAP at run-time by the proposed VR-ZyCAP. This avoids the lengthy
compilation of FPGA design tools.

The rest of this section covers the computer-assisted design (CAD) flow and PS-PL
mapping of the VR-ZyCAP (the source code of the controller is open source and is available
at https://github.com/bushra-sultana/VR-ZyCAP, accessed on 10 September 2020) onto
the ZynQ SoC as shown in Figure 4. The main components of the platform are the CAD
flow, the PS algorithm and the PL logic of VR-ZyCAP (which consists of different modules
performing two main operations: DPR–LUT and DPR–FF). The main contribution of VR-
ZyCAP is two-fold: the support of the dynamic partial reconfiguration of LUTs (DPR–LUT)
and of the dynamic partial reconfiguration of FFs (DPR–FF). The latter is realized by a
novel hybrid approach, combining the read-back, capture and masking capabilities of
seven-series FPGAs. DPR–LUT and DPR–FF functionality is implemented in the ZynQ-PL
section, which is realized using Verilog HDL, while the masking is achieved via the ZynQ
PS realized using C language. Our proposed VR-ZyCAP uses the AXI interconnection to
establish communication between ZynQ PL and PS. Run-time manageable parameters
are provided to VR-ZyCAP using general purpose input/output pins (GPIOs). Figure 4
shows the complete design architecture of VR-ZyCAP. From Figure 4, it can be seen that
our VR-ZyCAP reconfiguration controller and device under test (DUT) are implemented
on the ZynQ-PL side, whereas the C code runs on the ZynQ PS. The following sub-sections
discuss this in more detail.

Figure 4. Diagram of the VR-ZyCAP architecture in ZynQ-SoC.

5.1. CAD Flow

Tools such as those in [34–36] offer advanced floor-planning and constraint genera-
tion during design flow and bitstream manipulation phases [37]. However, our approach
utilizes the standard Xilinx flow as we only need to mask the static region and unmask the
reconfigurable region which is available in a reset after reconfiguration (RAR)-supported
partial bitstream. Furthermore, we are interested in reconfiguring LUTs and FFs at the
fine-grained level, while the above tools are appropriate for more complex partial recon-
figuration of entire modules, and when considered to be used during run-time on an

https://github.com/bushra-sultana/VR-ZyCAP
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embedded platform such as ZynQ SoC, they may add overheads in terms of memory
footprint and processing cycles, while utilizing them off-line is not suitable for the applica-
tions under consideration. In our controller, on the other hand, we map all DPR–LUT and
DPR–FF functionalities in hardware on the FPGA fabric to make them extremely fast for
applications that need fast fine-grained reconfiguration. Furthermore, tools such as that
in [37] offer DPR–LUT functionality, but there are no software APIs to handle DPR–FFs
directly. Therefore, we have developed our own hardware–software solution to support
these features; more details are presented in the following sub-sections.

5.1.1. Generating a RAR Bit-Stream

The reset after reconfiguration property initializes re-configurable regions to their
starting known values while static routes can easily pass through the re-configurable
region [38]. This property can only be applied on Pblocks, so Pblock constraints must align
to re-configurable frames and must also be aligned vertically to the clock region [38]. We
applied this property to DUT_Pblock; the area selected was between slices X0Y0 and X7Y49.

5.1.2. Generating Logic Allocation (LL) File

The logic allocation (LL) file helps to determine the physically mapped logic positions
of FFs, BRAMs and I/Os within the FPGA. This file can be optionally generated by turning
on the relevant flags in Vivado IDE during the bit-stream generation process. The LL file
can be used to determine the frame address within the configuration memory and the bit
position of an FF.

5.1.3. SD Card Content

We used an SD card due to its non-volatile nature to store the RAR partial bit-streams.
SD card drivers are available within the Xilinx Software Development Kit (SDK). At
system power-up, the DDR memory and the SD card are initialized. Following this, the
partial bit-stream is read from the SD card and transferred to the DDR memory at our
pre-specified address.

5.2. PS Algorithm for VR-ZyCAP

The PS algorithm is responsible for the operations at the startup of the ZynQ SoC
as represented by Algorithm 1. It can be seen that the algorithm is responsible for the
initialization of all the drivers of the system; i.e., the IPs in the PS and in the PL. It also loads
the RAR partial bit-stream from the SD card to the FPGA fabric. This is very important
for the dynamic reconfiguration of FFs and is necessary to avoid the corruption of static
logic in the PL. RAR configuration is done to mask the static region and unmask the re-
configurable region during the process of DPR. The resulting partial bit-stream for DUT is
loaded to configuration memory using the RAR_reconfiguration() function. This function
is developed in the Xilinx SDK for the ZynQ PS. This function uses software APIs to load
partial bit-streams to configuration memory using the PCAP interface. First, it transfers
the partial bit-stream from the SD card to the DDR memory, and from there it loads it into
the PL through the PCAP. The device configuration (DCFG) interface is utilized to transfer
bit-stream data onto the configuration memory using the PCAP. Bit-stream location and
size are the two important parameters to send the appropriate configuration data to the
PL. The PCAP utilizes software APIs (XDcfg_Transfer()) to load the partial bit-stream to
the configuration memory. The system then switches from the PCAP to the ICAP as the
configuration engine is shared by both interfaces. This switching will last for the rest of the
operation of the system as VR-ZyCAP is used for dynamic reconfiguration of LUTs and FFs.
The algorithm also controls the main FSM in the VR-ZyCAP by communicating important
setup parameters through AXI-compatible interfaces. The user-defined Op_Sel value is
received through PS UART and controls the Read_ f rame(), Write_ f rame(), DPR_LUT(),
DPR_FF() and Read_BRAM() functions. It should be noted that after DPR_FF(), the
system should wait for any transients of the GSR line to settle down, otherwise this
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asynchronous line can cause a timing violation. Therefore, a delay is introduced to cope
with these effects. Furthermore, the read/write frames are handled by an on-chip BRAM,
and therefore the PS function does not show them. The PL logic is exposed to the PS
algorithm as memory-mapped AXI-connected peripherals controlled through general
purpose input–output (GPIO) IPs.

Algorithm 1: PS algorithm
Input: OP_done
Output: Start, Rst, Op_Sel, Start_Addr, XYBEL, Num_frames, Bit-Location,

Mem_Addr
Next_Option = inbyte();
Switch(Next_Option)
case(0) :

Driver_Init();
RAR_Configuration();
Switch_from_PCAP_to_ICAP();

case(1) :
OP_Sel = inbyte();
Start_Addr = inbyte();
Num_frames = inbyte();
Read_frame(OP_Sel, Start_Addr, Num_frames);

case(2) :
OP_Sel = inbyte();
Start_Addr = inbyte();
Num_frames = inbyte();
Write_frame(OP_Sel, Start_Addr, Num_frames);

case(3) :
OP_Sel = inbyte();
XYBEL = inbyte();
INIT = inbyte();
DPR_LUT(OP_Sel, XYBEL, INIT);

case(4) :
OP_Sel = inbyte();
Start_Addr = inbyte();
Bit-Location = inbyte();
DPR_FF(OP_Sel, Bit-Location, Strat_Addr);
wait_for_GSR();

case(5) :
OP_Sel = inbyte();
Start_Addr = inbyte();
Read_BRAM(OP_Sel, Mem_Addr);

endcase

5.3. Datapath and FSM for VR-ZyCAP

The architecture of the PL of the VR-ZyCAP controller is modular, with different sub-
modules along with logic components and device primitives in DPR_LUT and DPR_FF,
as shown in Figure 4. The sub-modules in the PL part of the VR-ZyCAP architecture are
described below.

5.3.1. Read Frame

The read frame module requires two inputs to read any PL frame; Start_Addr and
Num_ f rames (number of frames). Start_Addr determines the frame address (FAR) from
where data should be read. Start_Addr input increments automatically up to the specified
Num_ f rames input. Num_ f rames may be greater than one but less than or equal to the
total available memory space of the BRAM memory. To read multiple frames, the size of
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the BRAM memory must be considered. It should be noted that the number of frames
must include a dummy frame (to be specified in the configuration register (FDRO)) before
reading from configuration memory. Therefore, to read back the entire contents of a single
LUT, the total number of frames must be specified as four data frames and one dummy
frame. When performing a read operation on seven-series FPGA configuration memory, a
dummy frame is always read first followed by the desired data frames.

When reading an FPGA frame data using the ICAP, a correct assertion of the chip
enable (CE) and read/write (RDWR) signal is of paramount importance. The CE signal
controls the read and write operation over the ICAP. The RDWR signal is asserted as low
when a write to configuration commands is desired and asserted as high when performing
configuration memory read-back is required, as shown in Figure 5. When the ICAP is in an
active state, RDWR signal logic state cannot be changed from read to write or vice versa.
Only upon the correct assertion of CE and RDWR are configuration commands sent to
the ICAP. These signals are also shown in Figure 5, which summarizes the read and write
commands.

Figure 5. Read/write frame commands. RDWR: read/write; CE: chip enable; FAR: frame address register.

We can see from Figure 5 that read-back operation starts when dummy words followed
by the SYNC word (0xAA559966) are sent over ICAP. Upon receiving the SYNC word, the
ICAP output changes from 0xFFFFFF9B to 0xFFFFFFDB, which indicates that the ICAP is
configured successfully. After this, the processing of subsequent data words begin from
the FDRO register (Type-2 read). The ICAP session can be terminated through a de-SYNC
command, after which no further data are accepted. If another frame read-back is desired,
the read process will have to start again from the beginning. The configuration commands
were adopted from seven-series configuration user guide [39]. The process for reading the
contents of FF differs slightly from the LUT reading. For a successful reading of an FF, the
clock of the FF must be stopped prior to capturing (using the CAPTURE primitive) the
instantaneous value of the FF, as shown in Figure 3.

5.3.2. Write Frame

The write frame module has two inputs; Start_Addr and Num_ f rame. The write
frame FSM is a bit more complex than the read frame due to the inclusion of additional
configuration commands, as shown in Figure 5. These commands are needed when writing
data to the configuration memory. The primary commands for the write frame are the same
as in the read frame FSM, with the difference being that, after the initialization of the ICAP,
the device ID code must be written in the IDCODE register. After that, the frame address
is sent in the frame address register. The write configuration command (WCFG) directs
the ICAP to write configuration data using the FDRI register. It must be noted here that,
while writing configuration data, a dummy frame must be appended at the end to flush the
configuration register, as opposed to the configuration memory read-back process. Once
the configuration data have been sent, the CRC value of the frame is computed and written
to the CRC register. The FPGA internal configuration memory controller then compares
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the received CRC values against the CRC value computed during bit-stream reception. If
both values are not a perfect match, the configuration process aborts [39].

The FPGA startup sequence begins after a successful CRC check which performs
various tasks including releasing control of the FPGA done pin, activating the I/O and
the assertion of the chip wide global write enable (GWE) signal to change the state of syn-
chronous elements [39]. Similar to the read frame, the write frame must also be terminated
by a de-SYNC Command. During our testing, it was observed that upon the assertion of
the De-SYNC command, the ICAP output changes from 0xFFFFFFDB to 0xFFFFFF9B and
it takes six additional clock cycles to complete the process. The Vivado design suite allows
the CRC check in the bit-stream generation setting to be bypassed to allow continuous
operation; therefore, CRC checking was bypassed in our FSM for the sake of simplicity.

In VR-ZyCAP, this module is utilized in combination with the read frame to perform
the DPR of LUTs and FFs. Using the read frame, data frames are read, modified as
needed and stored in BRAM. After this, configuration data from BRAM are written to
configuration memory using the write frame module. As the BRAM contains 32-bit wide
data, it provides one complete data frame word at each rising edge of the clock, thus
improving the reconfiguration throughput.

The write frame module is almost identical for the DPR of LUTs and FFs operation,
with the only difference being that for the DPR of FFs, an additional signal of our FSM,
named Write_done, is set to high, indicating successful completion of the write frame
module. Upon assertion of Write_done, the GSR signal is asserted for one clock cycle to
update the FF state.

5.3.3. Slice to Frame Address Translation

Xilinx FPGAs consist of hundreds of CLBs, organized in the form of slices. On the
FPGA fabric, the slice location is defined by the XY coordinates, and the LUT location
within a slice is addressed using the 32-bit XYBEL format. X corresponds to odd and
even slices on an FPGA chip fabric, whereas Y corresponds to the word offset within
a configuration frame. As mentioned previously in Section 3, BEL location represents
one of the four LUTs (A–D) within the slice which is targeted for reconfiguration, so BEL
determines the bit offset within the frame words of a LUT. XYBEL is further translated into
the frame address (FAR) location to access the configuration memory, as the FPGA fabric
(configuration layer) only understands the FAR addressing scheme.

The frame address register (FAR) is a 32-bit wide register and has a specific format
consisting of five fields [39]. Starting from the most significant bit, these fields are six
reserved bits, three bits for block type, one bit for top/bottom, five bits for HCLK or row
address, 10 bits for major or column address and seven bits for minor or frame address.

XYBEL is converted by the slice2frameAddr module to the frame address. As shown
in Figure 1, the Zynq SoC architecture contains three major rows: one row is at the bottom
half of the device and two rows are in the top half. There are 114 CLB major columns in the
whole device, and each CLB contains two slices. In VR-ZyCAP, only CLBs are targeted for
reconfiguration, so the block type is always 0 in our case. The top/bottom bit determines
whether the logic resource is in the upper half or bottom half of the FPGA fabric. This
is determined by the position of Y: if it is greater than the column height, the top is 0;
otherwise, it is 1. The horizontal clock row (HCLK) in the frame address is the major row
in the FPGA device, which is also determined by the position of Y. If Y is greater than one
CLB column height (which is 50), the slice lies in the upper half (HCLK = 0,1); otherwise,
the slice lies in the lower half (HCLK = 1). To find the major row in the upper half, we
count how many times Y is greater than the column height. Similarly, the major column
address is found by using the X position. There is one CLB column for two adjacent slices
(X0Y0, X1Y0). Thus, for X = 0,1, the major column is 2, and for X = 2,3, the major is 3 and so
on. For even slices, the minor frame ranges from 32–35, while for odd slices, it ranges from
26–29. The BEL value indicates the word offset with the frame. We used this module to



Electronics 2021, 10, 899 15 of 23

determine the word position and bit offset of a frame, which helped us to target the exact
bits during the DPR.

As an example, if XYBEL = 0x006400C9, which depicts slice X50Y50 and LUTB, X and
Y are computed as 50 and BEL is 1. As Y is equal to Y-Half (50), this means that the slice is
located in the upper half in major row 0, as shown in Figure 1. Thus, top will be computed
as 0. To find the HCLK, Y is compared to the CLB column height (50); as Y is equal to
the CLB column height, the difference between Y and Y-Half (50) is 0, which results in a
horizontal clock row count (Hrcnt) of 0, and as HCLK is equal to Hrcnt, HCLK is computed
as 0. The major CLB column is determined by the position of X; i.e., for X = 50, the major
CLB column is computed as 30. The minor frame is also computed using the X position;
thus, for an even x, the minor frame changes within a range of 32–35.

5.3.4. INIT to Frame Word Conversion

Each seven-series LUT contains an initialization value that is modified to change the
logic behavior of the fabric. Seven-series FPGAs have four six-input LUTs which require
26 = 64-bit initialization values. This initialization value is further divided into 16-bit frame
words in the underlying four LUTs using each frame word (LUTA–LUTD). Figure 6 shows
how the INIT bits map to four 16-bit frame words. These four 16-bit frame words are
replaced with new, user-defined values. Once the new words replace the old ones in the
BRAM, they are written to the configuration memory through the write frame command.
It should be noted here that only the command sequence must be sent in a bit-swapped
manner, whereas data frames must not be bit-swapped.

Figure 6. INIT to frame word conversion.

5.3.5. Capture and Restore Mechanism

The reconfiguration of synchronous elements requires capture and restore mechanism,
which helps to capture the FF output at a defined time and then restore it after modification.
The capture primitive has two inputs: Clk and CAP. We count the cycle in which the FF
output was required. When the defined time/cycle is reached, the CAP signal is asserted
for the CAPTURE primitive to obtain the exact output bit. The CAP signal is controlled
by the read frame FSM. A similar data restoration process is implemented using the GSR
signal provided by the StartUp primitive. GSR assertion is performed after the completion
of the write frame module.

5.3.6. Bit Translation

This module takes the bit location as an input from the logic allocation file (.ll ) and is
required when performing the DPR of a FF. As seven-series FPGAs have 101 words in a
frame, with each word being 32 bits wide, the bit location can range from 0 to 3231. This
module converts the input parameter bit_location into a frame word and the initialization
bit of the FF is identified within the frame word along with the bit position. Using the bit
position information, we identify the bit to be flipped, modify the bit in the corresponding
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frame address and then write the updated bit-stream in BRAM. After this, the entire frame
can be written to the FPGA configuration memory using the write frame FSM. As an
example, if the bit location is 3160, the word position and bit position within the frame are
calculated as (bit-location/32-1) and (bit-location%32-1), respectively. The word position
is computed as 97th among 101 words, and the bit position is computed as the 23rd bit
within the 97th word. Thus, the incoming ICAP output data are extracted at the specified
word position and the bit is flipped according to the bit position computed above. The
address to modify is also identified using word position.

5.3.7. BRAM and Words Modification in Frame

The size of the BRAM is an important aspect to consider when designing hardware-
based reconfiguration modules. In seven-series FPGAs, the initialization value of a LUT
(64-bit) is distributed among four frames (4 × 16-bits). Thus, the modification of four
frames is required to completely reconfigure one LUT. Moreover, besides the data frame,
a dummy frame must also be padded at the end of the data frames to flush the ICAP
properly. Thus, a total of five frames of data (four data frames, one dummy) must be stored
in BRAM in order to perform DPR–LUT. In seven-series FPGAs, there are 101 words (32-bit
wide) in a frame; for each LUT, five frames are required, and so 505 ∗ 32 = 16 Kb of data
storage is used. To this end, we use a dual port BRAM. Similarly, for the DPR of an FF, 202
words are required to be read from configuration memory. These frame words are also
stored in the same BRAM used during DPR_LUT.

5.3.8. DPR_LUT Operation in VR-ZyCAP

VR-ZyCAP allows the DPR of LUT during run-time. The complete design flow for
DPR-LUT is shown in Figure 7. To target and reconfigure a specific LUT, the XYBEL location
is required. The XYBEL location is then translated into the frame address (FAR) using the
SLICE2FrameAddr module. The FAR and Num_frames (with a default value of four for
LUT) are then relayed to the read frame module, which performs the read operation on
FPGA configuration memory and stores the read data in BRAM as golden data. Parallel to
this operation, the INIT2frameAddr module is also operated. The INIT2frameAddr module
converts the 64-bit INIT value to four new 16 bit frame words. Once the golden data are
acquired and stored in BRAM, we modify some of the frame words of the golden data
stored in the BRAM and initiate the writing of the modified frame onto FPGA configuration
memory using the write frame FSM.

Figure 7. DPR–LUT Flow
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5.3.9. On-the-Fly LUT Modification

The VR-ZyCAP architecture provides a novel technique for the DPR of LUTs, called
“on-the-fly LUT modification” in this paper. Using this technique, we achieve a significant
reduction in reconfiguration time in contrast to other proposed hardware-based reconfig-
uration controllers. In previous architectures such as [16], when configuration data are
read from configuration memory, read frames are first stored in dual-port BRAMs. In
order to modify LUT logic, four frames are then read from BRAM, modified as needed
and then written back to BRAM. This process is then followed by writing the updated
BRAM data to the configuration memory using the write frame sequence. The proposed
VR-ZyCAP architecture is designed such that the four frame words (golden words) are
captured on-the-fly from the ICAP’s output before being written into BRAM (saving four
clock cycles). After the desired modification of the golden words, these frame words
are written to the BRAM and then sent to configuration memory using the write frame
FSM. To do this, the address of the word to modify must be known, which determines the
addresses of the golden words within the frames. This parameter is computed by the word
offset parameter, which originates from the SLICE2FrameAddr module. As a result of our
on-the-fly modification technique, four clock cycles are saved, which results in a significant
reduction of reconfiguration time. This reduction in reconfiguration time is measured to be
around 40 ns for each LUT DPR.

5.3.10. DPR–FF Operation in VR-ZyCAP

The DPR of FFs is slightly different from that of the LUTs due to their synchronous
nature. Memory elements are grouped into clock regions in order to avoid state corruption
in synchronous elements, as mentioned previously in Section 2. In the work presented
in [4], the authors state that each clock region must be controlled using tri-state buffers
to enable or disable the global signals (GCAP and GSR). To perform read–modify–write
(RMW) operation on FFs, we need to load partial bit-streams with RAR capability. The
RAR property was discussed in detail above. The RAR property defines the control bits in
the configuration frames for clock and reset circuitry, which helps in the masking of the
static region while the re-configurable region remains unmasked as shown in Figure 4. As
we used the ZynQ SoC, we had the flexibility of using the PCAP for the loading of the
partial bit-streams using the PS section.

The complete design flow for the run-time reconfiguration of FF is shown in Figure 8.
The separation of the design in the PS and the PL is also shown. First, RAR_configuration
is done by loading a partial bit-stream stored in the SD card onto the fabric; then, the other
steps are done on the PL side. In the PL, prior to performing the DPR operation, the clock
of the re-configurable region is stopped to capture the instantaneous value of the FF. For
this purpose, clock-controlled global buffers are utilized. These buffers are controlled by
the read frame FSM. To capture the state of the FF, the CAPTURE primitive is used, which
is also controlled by the read frame FSM. Once the state of the FF is copied onto the shadow
register shown in Figure 3, it can then be read from the configuration memory using our
designed read frame FSM.

To perform the DPR of a FF, the input parameter Bit_location is required, which
we determined using the logic allocation file (.ll) generated by the Vivado Design Suite.
The Bit_location parameter ranges from 0 to 3231 in a seven-series FPGA and is input to
the bit-translation module using the parameter transfer function from the PS-side. The
bit-translation module is used to identify the bit position. Once the position is identified,
the corresponding bit in a frame word is flipped and the modified data word is written
into the BRAM. The modified frame is then sent for writing to the configuration memory
using the write frame FSM. The state of the FF cannot be changed unless the GSR signal is
asserted. For that purpose, we use the STARTUP primitive to control the GSR signal. In the
last step, the clock is enabled, which allows us to see modified data after reconfiguration.
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In both the DPR_LUT and DPR_FF operations, the read frame and write frame mod-
ules are utilized repetitively, whereas, the bit-translation module and the RAR_configuration
are only required in DPR_FF operation.

Figure 8. DPR–FF flow.

6. Results and Analysis

This section describes the evaluation results obtained when testing the proposed
VR-ZyCAP controller. The results contain relevant information regarding the speed of the
reconfiguration controller versus resource utilization in comparison to several reference
designs. The primary reference design is the vendor-provided reconfiguration controller
AXI HwICAP [30], which performs reconfiguration tasks for seven-series FPGA devices
using software APIs and supports fine-grained DPR. The second reference design is the
hardware implemented reconfiguration controller AC_ICAP [16], which not only helps
in reducing the reconfiguration time by loading partial bit-streams through BRAM but
also supports the fine-grained DPR of LUTs in FPGA. The proposed VR-ZyCAP with an
improved architecture, implemented on the ZynQ-SoC, not only supports the fine-grained
DPR implementation of LUTs with a reduced reconfiguration time but also supports the run-
time reconfiguration of FFs. Timing results are analyzed and collected using the integrated
logic analyzer (ILA). Timing performance is measured by recording the number of clock
cycles. Resource utilization data are collected using the Vivado-integrated design suite.

6.1. Resource Utilization and Reconfiguration Throughput

Table 1 presents the resource utilization for each module of the proposed VR-ZyCAP
controller. It can be seen that most of the resources are consumed by the main FSM as
primitive FPGA blocks such as the ICAP, capture, startup and associated glue logic are
instantiated inside this module. Comparing these individual modules to the AC ICAP
controller, one can see that it takes a comparable number of resources. It should be noted
that some modules such as the flash controller and the partial bitstream load from AC
ICAP are not used in our design as we have implemented it based on a ZynQ SoC. The
comparison with different reconfiguration controllers in terms of resource utilization and
reconfiguration throughput is presented in Table 2. It can be seen that, compared to VR-
ZyCAP, fewer resources are utilized by the XPS_HwICAP [29] and AXI_HwICAP [19]
which perform most of the reconfiguration tasks in the processor and thus require fewer
hardware resources. This, however, results in reduced reconfiguration throughput due to
complex architecture and bus latency. Compared to VR-ZyCAP, the amount of resources
utilized by the MiCAP-Pro [11] controller are large and are also implemented on the
ZynQ SoC, which can perform reconfiguration tasks using an efficient state machine
in the PL section with partial bit-stream loading capability and high reconfiguration
throughput using a hard DMA controller. The reconfiguration throughput of MiCAP-
Pro is up to 272 MB/s as the partial bit-stream is loaded from DRAM. However, the D2PR
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controller has a smaller number of resources and a high reconfiguration throughput of up
to 395.5 MB/s. The limitation of the D2PR controller is that it does not provide a read-back
capability and resource-level reconfiguration. Similarly, ZyCAP [10], DyRACT [14],custom
PRC,kirchhoff2019real and RT-ICAP [17] provide a reconfiguration throughput of more
than 380 MB/s but are only capable of loading partial bit-streams and have no bitstream
read-back capabilities. RT-ICAP [17] requires the smallest number of resources. It uses
scratch pad memory, which provides a high reconfiguration throughput but limits the
size of the partial bit-stream. In the AC_ICAP [16] controller, the run-time reconfiguration
of LUTs is supported in hardware, which requires some additional resources. Partial bit-
stream loading is also performed using the flash memory controller. The reconfiguration
throughput for the AC_ICAP is up to 380.43 MB/s by utilizing a dual-port BRAM.

Table 1. VR-ZyCAP controller resource utilization.

Zynq-7000 All Programmable SoC “Zed Board”

Module LUT FFs BRAM

VR-ZyCAP 1189 826 1
Main FSM 309 474 1

Read frame 246 114 0
Write frame 331 158 0
SLICE2FAR 175 32 0

Bit-translation 41 32 0
INIT2FW 87 16 0

Table 2. Comparison of VR-ZyCAP with state-of-the-art works.

Devices Reconfiguration Controllers Supported Features with Timing Performance Resources Utilized

PB/T (MB/s) Readback DPR_LUT/
RT [us]

DPR_FF/
RT [us] RF [us] WF [usec] LUT FF BRAM

ZynQ

VR-ZyCAP Yes/ 380.34 Yes Yes/ 10.87 Yes/ 4.87 Yes/2.38 Yes/2.35 1189 826 1
AXI_HwICAP [30] Yes/19 Yes Yes /4223.40 Yes /145.3 Yes/64.23 Yes/71.68 443 296 0

ZyCAP [10] Yes/382 NS NS NS NS NS 806 620 0
MiCAP [11] Yes/22 Yes NS NS NS NS 221 290 0

MiCAP-Pro [12] Yes /272 Yes NS NS NS NS 2154 2032 2
Custom PRC [13] Yes/399.98 NS NS NS NS NS 292 273 1

7-series DyRACT [14] Yes/ 365 NS NS NS NS NS 261 298 2
Tiny ICAP [15] NS Yes NS NS Yes/NG Yes/NG 313 320 0

CAM [40] Yes/379.70 Yes NS NS Yes/2.30 Yes/1.64 654 330 1
AC_ICAP [16] Yes/380.47 Yes Yes/10.91 NS Yes/2.39 Yes/2.33 1286 1193 7
RT-ICAP [17] Yes/382.2 NS NS NS NS NS 101 245 0

Virtex-5 FSL_AC_ICAP [16] Yes/378.85 Yes Yes/5.36 NS Yes/1.57 Yes/1.56 2329 1484 7
XPS-HwICAP [19] Yes/10 Yes Yes/1912.17 NS Yes/29.21 Yes/32.16 443 296 0

RF: read frame; WF: write frame; PB: partial bitstream; T: throughput; RT: reconfigurable time; NS: not supported; NG: not given.

The proposed VR-ZyCAP controller implemented using the ZynQ SoC is designed
to load partial bit-streams using the ARM processor while the reconfiguration opera-
tions (DPR_LUT & DPR_FF) are performed in the PL section. DPR_LUT and DPR_FF
operations mostly use the same modules and thus can perform two operations within
the same resource space. The current design provides the best solution to perform the
run-time reconfiguration of LUTs and FFs with moderate resource utilization and reconfig-
uration throughput.

From the above discussion, it can be seen that the resource overhead increases when
we want to speed up reconfiguration operations. The latest FPGA devices have become
more area-dense because of the rich heterogeneous resource architecture compared to
legacy FPGAs. The availability of various resources such as DSPs, BRAMs, PLLs, etc, on a
single chip die has caused the configuration data size to grow. Due to this, the requirement
to configure more hardware logic in less time has risen. Therefore, the reconfiguration time
and throughput are becoming increasingly important, as discussed below.
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6.2. Reconfiguration Time

VR-ZyCAP provides optimization in terms of reduced reconfiguration time and
enhanced reconfiguration throughput. Time is measured using the integrated logic analyzer
(ILA), where the number of clock cycles is recorded and converted to time units using the
following formula: time (µs) = number of clock cycles/sampling frequency.

As the recommended operating frequency for ICAP is 100 MHz, we designed VR-
ZyCAP to operate at 100 MHz as well. Table 3 shows the number of clock cycles utilized
for each module along with the number of clock cycles required to read/write a single
frame (data and dummy) into configuration memory. The overall reconfiguration time
for DPR_LUT operation is measured to be 1087 clock cycles with four data frames to read
and write and utilizing the on-the-fly LUT modification technique. To the best of our
knowledge, this is the best reconfiguration speed reported to date for the DPR of LUTs. In
DPR_FF, only single-frame reconfiguration is required, so the reconfiguration time for the
read–modify–write operation for FF is measured to be 4.87 µs.

Table 3. Reconfiguration operations time summary (clock cycles)

Reconfiguration Read Write Slice2FAR INIT2FW Bit
Operation Frame Frame Translation

DPR_LUT 239 237 1 1 NS
DPR_FF 239 237 NS NS 1

NS: not supported.

Table 2 provides the timing comparison for different reconfiguration controllers. The
vendor-provided controller AXI_HwICAP [19] is implemented on the Zynq-SoC. It is
evident from Table 2 that the primary reference design AXI_HwICAP [19] takes a huge
amount of time to read and write the frames, at around 65µs and 72µs, respectively.
The function of LUT reconfiguration for AXI_HwICAP does not exist, so the reconfig-
uration time for DPR_LUT and DPR_FF is computed using xHwICAP_readframe and
xHwICAP_writeframe software APIs. VR-ZyCAP is found to be 27 times and 30 times
faster than the AXI_HwICAP in reading and writing the frame, respectively. Similarly,
DPR_LUT operation is also improved by a factor of 388 times by VR-ZyCAP with respect to
AXI_ICAP. The DPR_FF in AXI_HwICAP [19] takes 145.23 µs for a complete read–modify–
write operation, which is improved in VR-ZyCAP by up to 30 times. The other ZynQ-based
reconfiguration controllers—i.e., MiCAP-Pro [11] and ZyCAP [10]—do not provide the
resource-level reconfiguration. They are designed to load the partial bit-stream with a
high reconfiguration throughput. In Virtex-7 devices, two controllers are designed: one is
DyRACT and the other is CoRQ. CoRQ is specifically designed for run-time reconfiguration
by using the LEON3 CPU. It processes commands using FSM and load partial bitstreams
for different reconfigurable regions at run-time. However, it utilizes software routines
to load the partial bitstream through ICAP, so the reconfiguration time is in microsec-
onds; additionally, it does not support the run-time reconfiguration of LUTs and FFs.
In seven-series FPGA devices, a CAM controller is found to be more appropriate for the
proposed design with respect to reading and writing frames using ICAP FSM and the ICAP
interface. It provides a higher reconfiguration throughput at the cost of a high resource
utilization with respect to AC_ICAP and VR-ZyCAP. However, it does not support the
run-time reconfiguration of LUTs and FFs. The write frame reconfiguration time is kept to
a minimum by avoiding some configuration commands which may lead to the reliability of
the controller being compromised. In comparison with AC_ICAP [16], the reconfiguration
time for LUT in VR-ZyCAP is also improved by 40 ns (@100 MHz Clk) by utilizing the
on-the-fly LUT modification technique. However, AC_ICAP [16] lacks the capability of
the run-time reconfiguration of FFs. The D2PR controller is implemented on the Virtex-6
FPGA, wherein the read and write operations are performed using FSMs to speed up
reconfiguration tasks, but the architecture of the design only supports fast reconfiguration
using a partial bit-stream. In Virtex-5, the reconfiguration time for different reconfiguration
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operations is computed using the FSL_AC_ICAP [16] and the XPS_HwICAP [29], both
supporting resource-level reconfiguration. In comparison to seven-series architecture, the
reconfiguration time for reading/writing frames is less because of the smaller configuration
memory architecture. The length of a frame in Virtex-5 is 41 frame words, so less time is
required to read and write configuration memory.

Table 2 discusses the combined analysis of different reconfiguration controllers in
terms of the supported features, reconfiguration time and resources. From Table 2, it can
be observed that, in terms of supported features, the vendor-provided reconfiguration
controller AXI-HwICAP [19] supports the largest number of features but provides a slow
reconfiguration speed. AC_ICAP [16] also supports most features except for DPR_FF
with a significant increase in reconfiguration speed and reconfiguration throughput. The
drawback of AC_ICAP [16], however, is that it utilizes more resources, especially BRAMs.
Other reconfiguration controllers only support limited features, among which ZyCAP,
DyRact and D2PR controllers only support the loading of partial bit-streams while MiCAP,
MiCAP-Pro and FARM controllers also provide read-back capability. In summary, the
proposed VR-ZyCAP is the most advantageous of all the aforementioned controllers in
terms of supported features, reconfiguration speed and resource overhead and is especially
useful when fine-grained reconfiguration is needed.

7. Conclusions

This paper presents VR-ZyCAP, an improved hardware-based reconfiguration con-
troller with the ability to modify FPGA logic resources (LUT and FF) in run-time. Sig-
nificant improvements in terms of reconfiguration time and reconfiguration throughput
are achieved compared to vendor-offered solutions, while reduced resource utilization is
achieved compared to state-of-the-art fine-grain reconfiguration controllers. As a future
work, we plan to perform masking through a hardware-implemented reconfiguration con-
troller so that the dependency on the processor can be further reduced, making VR-ZyCAP
an optimal reconfiguration solution for all seven-series FPGAs, including those that do not
have a processor. The dynamic reconfiguration of other logic resources such as DSP blocks
or BRAMs in run-time is also intended as future work. The study of the fault tolerance of
the proposed VR-ZyCAP controller is also an interesting area for further work and should
be considered if it is to be used in safety-critical systems.
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