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Abstract: Inrecent years, rapid development has been made to the Internet of Things communication
technologies, infrastructure, and physical resources management. These developments and research
trends address challenges such as heterogeneous communication, quality of service requirements,
unpredictable network conditions, and a massive influx of data. One major contribution to the
research world is in the form of software-defined networking applications, which aim to deploy rule-
based management to control and add intelligence to the network using high-level policies to have
integral control of the network without knowing issues related to low-level configurations. Machine
learning techniques coupled with software-defined networking can make the networking decision
more intelligent and robust. The Internet of Things application has recently adopted virtualization of
resources and network control with software-defined networking policies to make the traffic more
controlled and maintainable. However, the requirements of software-defined networking and the
Internet of Things must be aligned to make the adaptations possible. This paper aims to discuss
the possible ways to make software-defined networking enabled Internet of Things application and
discusses the challenges solved using the Internet of Things leveraging the software-defined network.
We provide a topical survey of the application and impact of software-defined networking on the
Internet of things networks. We also study the impact of machine learning techniques applied to
software-defined networking and its application perspective. The study is carried out from the
different perspectives of software-based Internet of Things networks, including wide-area networks,
edge networks, and access networks. Machine learning techniques are presented from the perspective
of network resources management, security, classification of traffic, quality of experience, and quality
of service prediction. Finally, we discuss challenges and issues in adopting machine learning and
software-defined networking for the Internet of Things applications.

Keywords: SDN; machine learning; IoT; SDN leveraging ML; IoT leveraging SDN; topical review
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1. Introduction

Internet of Things (IoT) is the connectivity of the enormous amount of physical
devices to the internet to collect, share, and analyze massive chunks of data. Kevin Ashton
introduced the concept of IoT 17 years ago [1], and the concepts become fundamentals for
the 2nd digital revolution [2]. A survey conducted by Cisco forecasts that 50 billion things
will be interconnected through the internet [3]. Interconnection of such a huge number
of devices leads to management and scalability issues. For IoT device management, the
traditional management approaches are slowly getting obsolete due to the evolution of new
technologies and trends. IoT orchestration is one recent advancement in the development
to handle management and scalability issues. Orchestration is considered as the more
flexible and scalable approach for the management of the enormous number of connected
devices through IoT [4,5].

Due to IoT’s tremendous economic potential, technology companies and research
institutions invest in the development and research in the IoT field to propose sustainable
IoT solutions. They have developed various IoT commercial and open source projects
over the past decade. Due to the lack of interoperability between these IoT platforms,
different data formats are used by these platforms, which rise to the vital challenge of
heterogeneity. Thus the need for more efficient network management techniques to handle
an enormous amount of data produced by this large number of connected devices increase
day by day. The paradigm for centralizing processing and storage of data is currently
not feasible; hence, edge computing (EC) plays a vital role in data analysis to improve
these consequences in IoT. A new concept called IoT Big Data refers to semantics and type
of massive generated data by large-scale IoT connected devices. The realization of IoT,
security, and privacy are current research’s challenging issues.

In the literature, several surveys have tackled different IoT challenges and aspects
including IoT applications, challenges, and opportunities [6], IoT frameworks, IoT secu-
rity [7-9], IoT standardization [10], application of in software-defined networking (SDN)
in IoT [11], IoT and cloud integration [12]. However, previous survey studies of IoT did
not review all the challenges in detail. For example, in the context of internet applications,
quality of service (QoS) and security issues are discussed. However, in IoT applications,
these challenges are even more crucial. The existing solutions do not provide solutions
and address the IoT challenges partially. In this study, we discuss the SDN and machine
learning hybrid approaches based on feasible solutions that can deal with some of IoT’s
main challenges and overcome IoT applications’ issues. SDN can address the challenges
of security, cost of hardware, centralization, and management of resources in the IoT
environment. Machine learning helps analyze the big heterogeneous data produced by
the IoT platforms. SDN paradigm fundamental concept in networking is to separate the
control and data planes, enabling network controller to perform network management
and engineer traffic dynamically [13]. SDN’s controller role includes management of the
network resources and programming the network dynamically. Furthermore, the controller
monitors and collects the network configuration data, network state, information, and
packet flow in real-time.

Machine learning models are trained on historical network data to perform opti-
mization of the network, data analysis, and automated network services provisioning
intelligently [14]. In the literature, recent contributions to machine learning provide promis-
ing directions to apply machine learning to networking. Machine learning improves the
performance, efficiency, and security of SDN solutions. The machine learning-based SDN
can improve the performance, security, and efficiency of the IoT network. This review study
is divided as follows: Section 2 presents the methodology of this topical research study.
Section 3 presents existing studies to understand the background of IoT, and Section 4
presents SDN background. Section 5 explains machine learning techniques currently
applied to SDN. In Section 6, we discuss IoT and SDN adaptation efforts and research
contributions. Section 7 presents limitations and challenges for the adaptations of IoT
leveraging SDN and future research direction. Finally, Section 8 concludes the study.
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2. Methodology

This section presents the methodology of the research study for topical review on
IoT, SDN, machine learning approaches, and IoT leveraging SDN techniques. Research
questions, objectives, and research studies identification criteria of the proposed study
are discussed. This research study investigates existing research studies proposed in the
literature to machine learning, SDN, and secure IoT systems. Firstly, we present background
sections to understand SDN, machine learning, and IoT to understand the theme of the
study. Secondly, we will investigate different machine learning techniques applied to
SDN-based networking solutions. Lastly, we will investigate the researchers’ interest and
contributions in IoT leveraging SDN solutions. Table 1 presents the research questions
identified to reach the goals of this study.

Table 1. Research questions for the topical review.

S.No Research Question Description
1 What are the major challenges addressed in the liter- To investigate different IoT concepts, challenges, and solutions
ature regarding IoT networks-based applications? ~ used to address these challenges.
» What techniques were used in the literature to pro- To understand and investigate techniques and solutions proposed
tect IoT systems? by researchers to protect and enhance IoT systems.
3 What is SDN, and different concepts related to SDN  Investigate research contribution to SDN and identifying known
? solutions based on SDN.
4 What machine learning techniques have been ap- To identify the most used and recommended machine learning
plied to SDN? methods used with SDN based solutions.
5 What measures are taken for IoT leveraging SDN? To investigate solutions proposed for IoT leveraging SDN by the
researchers to address IoT systems challenges.
How often is machine learning-based SDN proposed Analysw and comparison of m'ac}'une'learnm'g-based SDN solu-
6 . tions for IoT challenges. Identifying if machine learning-based
as a solution for IoT challenges? N . .
SDN significantly improves IoT solutions.

We searched for IoT, SDN IoT, and Machine learning in IoT, SDN, and IoT keywords
for the answers to the above questions. For example, keyword machine learning in SDN to
narrow down the articles and review papers search criteria. SDN and IoT were explicitly
added in all our keywords because they were the main topics of this topical review. Search
for all the sub-topics was done using the Jeju national university of south Korea, google
scholar, research gate, science direct, and IEEE. The main searches were conducted using
the science direct portal. However, some of the research articles were searched through
google and other search engines. Table 2 presents the search keywords strings used to
retrieve relevant research papers related to IoT leveraging SDN, machine learning in SDN,
IoT challenges, and its solutions using SDN and machine learning.

Table 2. Search keywords and criteria.
Key Criteria
Search k d (SDN OR “software defined networking”) AND (IoT OR “Internet of Things”)
carch keywor AND (machine learning OR applications of SDN OR “IoT challenges” OR IoT
solutions using SDN)
Limiters Article date between 2015 and 2020.
Expanders Without the word “optimization”.
Search keyword Search keyword occur anywhere in the article.

This topical review aimed to focus on the most recent research studies and future
trends in IoT, SDN, and machine learning hybrid applications. Without this limitation on
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the scope of this research study, studies to be investigated during this topical review were
large. Another advantage of limiting and filtering the studies distinguished our research
study from previous survey and review papers. Therefore, to conduct effective topical
research, the most relevant and scholarly literature from the last 2 years was collected as a
first priority, and research studies older than 2 years were used for background knowledge
of the topics mentioned in the paper. Some research papers and survey papers were
excluded based on the publisher and publication venue parameters such as impact factor,
journal citation reports. The research papers selected for this study mostly focused on
IoT, machine learning techniques to analyze SDN network traffic, and techniques for IoT
leveraging SDN. Figure 1 represents our approach towards investigating the applications
of intelligent SDN in the field of IoT and its wide deployment.

Research questions

h 4

Search criteria

A 4

Research

[ P
A 4 A 4 A 4
Classify papers to Classify papers to Classify papers to machine
loT domain SDN domain learning domain
A y y
Background Knowledge of loT Background of SDN Machine Learning In SDN
Introduction to loT Architecture of SDN Traffic Classification
Categories of loT Data Plane Routing Optimization
loT Software Platforms Project Control Plane QoE/Qos Prediction
loT Architectures Initiatives. Application Plane Resource Management
A 4

»{ |oT leveraging SDN [«

/\

- Limitations and Future research
directions

Real world applications

Figure 1. Proposed research flow for Internet of Things (IoT) leveraging software-defined networking (SDN).

3. Background of SDN

SDN has recently received much attention to address some of the enduring networking
challenges. SDN's concept is based on ideas of generalization network hardware and
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Application Plane

Control Plane

Data Plane

decoupling the network controls software from the implementation devices [15]. SDN is a
new intelligent architecture for network programmability. SDN’s main idea is to separate
the control plane from the network devices, enabling the data control from a central and
external software entity called an SDN controller. The Open Networking Foundation
(ONF) [16] is a non-profit consortium dedicated to the development, standardization,
and commercialization of SDN for the transport and IP network layer. Figure 2 presents
SDN layered architecture, consisting of [17] four planes: data plane, management plane,
control plane and application plane. The Data plane presents a forwarding table that
forwards the incoming packets to a network device. Management plane provides intelligent
provisioning and orchestration systems for entire network management. The control plane
is also termed as the brain of the networks that control different types of data planes
using SBIs and protocols. The application plane defines the layer on different northbound
applications that exist, which can help out SDN perform and solve future challenges of
5G, as this plane brings innovation, openness, and flexibility for the network vendors.
SDN architecture provides dynamicity, network flexibility, and management capabilities.
Research studies suggest SDN is the most reliable and promising for separating strategic
network computation and data forwarding.

SDN application SDN application
SDN application logic SDN application logic
\ ‘\Contract (SLA)
NBI driver NBI driver
\ T TN
Application explicit Network \SDN Northbound Interfaces (NBI)/
~ ~ — — —
Network States,healt, Stats SDN controller
NBl agent Configure Policy
Expose APls N | @—— Monitor Performance
Translate requirements down; SDN control logic T Management
Report Stats, events up Plane
SBI driver
— o~
Enforce behavior, low level control, —_— e~
capbility discovery, stats, healthﬂerﬁ( SDN Southbound
— — —
-~ Interface (SBAC
4
Network Controller Network Controller
SDN Depth SDN Depth Element Setup

SBI agent
Forwarding engine

SBI agent
Forwarding engine

Figure 2. SDN Architecture.

Several northbound interfaces (NBls) between the control plane and applications were
introduced to provide high-level abstractions to the applications that reside on the control
plane and in the form of various network-level services. OpenFlow [18] is a significant
addition to the southbound interfaces (SBls) that enable the network to be managed
efficiently. Nevertheless, SDN can not be limited to OpenFlow as other less conventional
protocols exist such as ForCES [19], NETCONEF [20], OVSDB [21], Pollex [22], LISP [23], and
OpenState [24]. OpenFlow deports all the intelligence to a centralized entity called SDN
controller, which enables the separation of the control plane from the forwarding plane.
There are three SDN functions in the panorama of OpenFlow, status reporting for each
device connection, slicing, and flow-based forwarding. OpenFlow-based interconnection
device matches the packets against a flow table inside the forwarding plane. FlowVisor
controller is responsible for handling the flows, decisions, and publishing of the policies.
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3.1. OpenFlow

OpenFlow provides an interface-based communication among the infrastructure and
control layer based on open networking Foundation (ONF) [25,26]. Moreover, it provisions
a way for controlling switches regardless of source code disclosure by the vendors. In
summary, Openflow provides a way to directly access and manipulate the forward plan
of switches and routers [27]. Furthermore, it grants access towards the flowable and
provides instructions to the switches on managing and direct traffic of the network. It
allows the network managers to alter the network flow in a short time span [28]. According
to studies, there are two main categories of OpenFlow-based switches: OpenFlow-only
and OpenFlow-hybrid. OpenFlow support is limited to OpenFlow operations, while the
hybrid version supports operations and normal Ethernet switches [29].

The OpenFlow controllers are responsible for managing the OpenFlow switches based
on a secure channel protocol called OpenFlow protocol. One or more flow tables are
contained within a switch for performing a forwarding operation and packet tracing. A
flow table includes a flow entry; each entry possesses header fields, specific counters, and
actions. The purpose of a header field is to match up against packets with information
related to VLAN, ID, source and destination ports and IP address, etc. There are counters for
keeping information about the number of packets their sizes. Action provides information
associated to processing and matching packets; Their forwarding action is also specified,
such as being sent to the controller or a port or sometimes dropped [30-32]. OpenFlow
channel provides an interface for connecting the switches and controllers. Using this
interface, the switches are being managed and configured by the controller; additionally;,
the events are received, and packets are sent through the switches. Various messages
are sent using this channel, including asynchronous messages that involve messages for
updating the controller regarding the network event and state change. The second type is
controller-to-switch messages; these messages are for managing and inspection of switch
states. Lastly, symmetric messages are initiated by the switch or the controller and are
sent unsolicited [33-35]. OpenFlow controller is responsible for managing, allocating,
and updating instructions and policies to the networking devices. It can decide how to
handle packets with invalid flow entries and control the switch flow table. OpenFlow
switch can establish communication with one or more controllers. A multiple-controller
architecture can increase network reliability if a switch fails. OpenFlow starts operations
when the switch is connected to all its configured controllers simultaneously, whereas
related messages are only sent to the next switch [36-39].

3.2. Data Plane

The Data plane resides at the bottom layer of SDN architecture, consisting of forward-
ing devices such as routers and switches, whether virtual or physical. Virtual switches
are software-based switches that run on a common operating system (OS), examples of
virtual switches are Open vSwitch [40], Pantou [41], and Indigo [42]. Physical switches are
hardware-based switches, implemented either on open network hardware such as NetF-
PGA [43], or on a merchant switch from networking hardware vendors. ServerSwitch [44]
and switchBlade [45] are two examples of NetFPGA-based physical switches. Hardware
vendors design their’s merchant switches with the support of SDN protocols, for example
virtual switches are more flexible and have complete feature support for SDN protocols.
Physical switches have a high rate of flow forwarding as compared to virtual switches.
Both are used to forward, drop, and modify packets using the control plane logic.

3.3. Control Plane

In SDN, the control plane acts as the brain that performs a set of actions; for example, it
applies flow rules to handle the received ethernet frames that decide the traffic destination
ports. SDN controller program network resources, control communication between appli-
cations and forwarding devices. SDN controller translates application plane requirements
into policies and distributes these custom policies into forwarding devices. Control plane
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functionalities include network topology storage, configuration of devices, notification
of state information, and shortest path routing. Some of the SDN controller architectures
proposed in literature are NOX [46], Floodlight [47], POX [48], OpenDayLight [49], Ryu [50],
and Beacon [51]. SDN controller has three interfaces for communication: southbound,
eastbound westbound. Control data plane interfaces (CDPIs) are interfaces between the
data and control plane. CDPIs are also called SBIs, used for forwarding devices to exchange
control policies and network state information with the control plane of an SDN controller.
SBIs allow programmatic-based control of all device capabilities such as event notifications,
advertisements, statistic reports, and forwarding operations. NBIs are exploited by appli-
cations to get an abstract view of the network to facilitate automation, analyze specific
network behaviors, and analyze network requirements. Eastbound interfaces (EBIs) and
westbound interfaces (WBIs) are used in the multi-controller SDN solutions. In multi-
controller SDN networks, the exchange of information is important between controllers
to provide a global network view to the applications. Examples of distributed control
architectures are HyperFlow [52] and Onix [53]. EBIs and WBIs are private and cannot com-
municate with each other. SDN communication-interfaces [54], distributed-control plane
(CIDC) [55], and east-west bridge [56] are some proposals for communication between
different SDN controllers.

3.4. Application Plane

The top layer in the SDN is called the application plane, consisting of business appli-
cations. Business applications provide management and optimization of business services.
These applications implement the control logic based on the network state information re-
ceived from controller NBIs to modify the network behavior. In the study, [57] the solutions
of SDN for traffic engineering are discussed. In paper [58], a security-based survey study is
conducted. Yan et al. [59] proposed analysis of distributed denial of service (DDoS) attacks
in SDN networks in a cloud computing environment. A survey on fault management
issues in SDN and its solutions is presented in [60]. SDN is deployed in real-time scenarios
including transport network, wireless networks [61,62], optical networks [63], wide area
networks (WAN) [64], IoT, EC [65], and cloud computing [66].

3.5. P4 (Programming Protocol-Independent Packet Processors)

P4 is a programming language to access the hardware without the knowledge of
the architecture of hardware. P4 is used to modify the packet-forwarding mechanisms of
the SDN switches [67]. Initially, P4 was used to write software programs and program
hardware switches. Hardware resources including network interface cards, networking
appliances, FPGA, and ASIC. P4 is used to set the custom headers and dynamic parsing
of headers from the packet [68]. P4 provides the custom match and action tables and
other constructs such as counters, registers, etc. This makes the P4 language entirely
protocol-free. If a definite protocol is used in the network, it is easy to reconstruct the
P4 program for new header field maintenance. Other P4 features include configurations,
making new P4 applications reusable if needed rather than purchasing new networking
devices. Furthermore, the P4 is free from any target device specifications and characteristics.
Nonetheless, P4 is dependent upon the design of a device. The P4 application written
for a distinct architecture is deployable beyond all destination devices with the same
architectural design [69]. The P4 program is specially created for the data planes layer;
however, the destination device may hold both the control and data planes. P4 is also used
in literature for defining the interfaces between the control and data plane partially, but it
cannot manage the control plane’s functionality.

4. Background of IoT

IoT is the connectivity of things to the internet for collecting and sharing data be-
tween devices. IoT real-world applications are the basis of the second digital revolution.
IoT platforms recognize connected things by unique addresses using protocols suites of
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transmission control protocol (TCP) and Non-TCP. IoT is the connectivity of sensing and
actuating devices such as sensors to the network. Devices virtualization is the process of
virtualizing physical resources such as sensors and actuators into virtual objects [70-73].
IoT connects physical devices and virtual objects through communication protocols such
as Bluetooth low energy (BLE), WiFi, ZigBee, Z-Wave, Long Range Wide Area Network
(LoRaWAN), to name a few. These IoT devices have dynamic configuration and remotely
accessible interfaces [74]. Recent development and contributions in the IoT field intro-
duced new concepts and IoT terms such as machine-to-machine (M2M), industrial IoT
(IIoT), Internet of everything (IoE), Internet of anything (IoA), social IoT (SIoT), and web of
things (WoT).

BLE is an improved Bluetooth variant, extensively used wireless technology for ef-
fective communication with a range of about 10 m. The newest version of Bluetooth 5.2
adds an innovative IP support profile. Literature shows that BLE is completely developed
and optimized for IoT devices [75]. WiFi is another broadly used protocol for communi-
cation between IoT devices, and most electronic devices manufacturer preferred due to
the infrastructure it bears. The range for device communication using WiFi is around 50 m
that is much higher than BLE communication [76]. ZigBee is another short-range wireless
communication protocol with a 250 kbps data transmission rate. ZigBee is suitable for
effective communication between IoT devices due to low power consumption, security,
durability, and high scalability [77]. Like ZigBee, Z-Wave is a low-power communication
protocol using radiofrequency designed for automation systems such as lamp controllers
and sensors. Z-Wave communication protocol range is about 30-100 m, so the interruption
of Z-Wave with other protocols such as Bluetooth, ZigBee, and WiFi is negligible. The data
transmission rate ranges from 40 kbps to 100 kbps approximately [78]. LoRaWAN protocol
is used for long-range battery-operated IoT devices. It communicates in long-range with
the least power consumption and detects the noise level of signals based on a threshold
range. LoRaWAN is mainly used in smart homes, smart hospitals, and smart cities appli-
cations where enormous devices are interconnected for secure communication using less
power and memory [79-81].

Cisco introduced the concept of IoE [82], IoE is the connection of things, humans,
devices, and global network data [83]. Apart from the capability of IoE, IoA considers
the connectivity of imagined things [84]. M2M is the study of the communication be-
tween machines as well as machine and human [85]. M2M automates communication
between machines without the intervention of human beings [86]. Due to IoT’s tremendous
economic potential, technology companies are investing in the development of real IoT
solutions. These companies have developed various IoT commercial and open source
projects over the past few years.

Table 3 presents some popular IoT commercial and open source projects. Due to the
lack of interoperability between these IoT platforms and different data formats used by
these platforms, heterogeneity issues have arisen. IoT applications have been deployed
in different domains; the industrial domain is considered the most significant. Appli-
cation of IoT in the industry needs careful deliberations and efforts [87]. IoT with the
fourth industrial revolution is a step toward industry 4.0, which integrates industrial
practices using smart technologies. Security and privacy are the two main challenges to
IIoT applications [88]. To address and investigate these challenges, AT and T, Cisco, GE,
and IBM founded a consortium for the IIoT [89]. A newly comparative analysis study
was performed between IoT and WoT in a white paper presented in Auto-ID Labs. The
comparison results present that IoT has unique identification of things. WoT cannot be
used for resolving structural concerns [90]. WoT is a web-based framework that connects
physical and virtual things through internet connection. WoT provides accessibility and
data analysis, whereas IoT is used for connectivity of devices, automated configuration,
and device management IoT.
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Table 3. Summary of IoT software platforms projects.

IoT Software Platforms Projects Company Open Source
AWS IoT platform [91] Amazon No
Smart World Sensor [92] Libelium No
vCore [93] Hewlett Packard Enterprise No
Watson IoT, IBM IoT Foundation Device Cloud [94] IBM No
ThingWorx - MDM IoT Platform [95] ThingWorx No
M2M/IoT [96] InterDigital yes
Particle.IO Particle No
ThingsBoard [97] ThingsBoard Yes
Cisco IoT System [98] Cisco yes
Google Cloud IoT [99] Google No
Intel IoT Platform [100] Intel No
Microsoft .NET Gadgeteer [101], Azure IoT Suite [102] Microsoft Yes
Edge Gateway [103] Dell yes
OpenMTC [104] Frankhaufer FOKUS yes

SloT enables devices to form their social network [105]. The concepts of SIoT and WoT
are considered very correlated. Now social media networks generate a huge amount of
data, analysis of this immense data effectively requires the development of new data science
applications [106,107]. This concept of socialization can be applied in the context of IoT
[108] for the empowerment of all networks mentioned above to introduce a global network
called future internet (FI). FI will be made possible using the principles of collaboration,
connectivity, cognition, content, context, and cloud [109]. Things with constrained resources
are connected to IoT to generate enormous data, and cloud-based applications will be used
to process the data. This data shift from constrained things to a cloud-based collaborative
environment will result in a cognitive world [110].

IoT gateway layer functionality includes protocols translation [111], security, service
chaining, QoS management, data mining, handover management, mobility, forwarding
packets, and routing [112]. In paper [113] IoT gateway based on oneM2M is proposed.
oneM2M gateway performs three functions, device management, data analysis, and re-
source discovery. This study proposes fog and cloud-based computing architecture to
the gateway layer for service management [114]. In EC, the edge node has the limitation
of computing resources. Therefore migration of computing to the cloud is important for
solving large computing tasks [115]. Cloud of Things (CoT) has the challenge of data
trimming, to handle data trimming, functional architecture-based smart gateway was
proposed [116,117]. Some of the tasks performed by this gateway are data collection, data
preprocessing, data filtering, and reconstruction of data into a more valuable format. This
smart gateway uploads necessary data to the cloud, track the activities of IoT objects and
sensors, track the energy consumption of constrained IoT nodes, manages privacy and
security of the data, monitor and manage IoT services [118].

In [119] authors proposed IoT gateway based on mobile phone for transmission of
data over wide area network(WAN). IoT gateway with the capability of data requests
and replies translations is proposed in [120]. The data is collected from IoT sensors and
transmitted to applications installed on the mobile phone. A two-way approach is used for
the accessibility of the data, pooling, and registration requests for notification to the gateway.
With the revolution of SDN and NFV technologies, Software-defined service chaining is
proposed in [121]. In [122] software-defined edges based service chaining mechanism is
proposed. The deployment of these edges as software engines in a data center is made
using virtual machines. Mininet based simulations are performed for the evaluation and
performance analysis of IoT architectures. SDN controller(Pox) is used for the configuration
of the routers and switches edge nodes. Paradrop, an edge-computing platform used for
IoT gateway, is presented in [123]. Paradrop characteristics include management using
OpenFlow, dynamicity, security functionalities, and APIs support. A comparison of the
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device-centric approach to a data-centric approach is discussed in [124]. Data-centric
approach relies on the collection and provision of data without the consideration of device
identity. Examples of some data-centric cloud-based IoT architectures are IoT6, FI-WARE,
and IoT-A. A service-centric approach relies upon the provisioning of services. In a User-
centric approach, the identity of devices is based on relevancy to the owner identity.

Now we discuss IoT scalability from an architectural perspective. Due to Many IoT
architectures are proposed in the literature, which connects a huge number of objects to the
internet. To address the issues of Interoperability, a standard architecture is needed to pro-
pose sustainable IoT solutions. Heterogeneity, diversity, and interoperability among these
architectures make it inefficient for IoT-wide deployment [125]. SDN provides a common
control layer over the top of these architectures to handle the heterogeneity. SDN handles
privacy, communication resilience, security, big data management [126]. Moreover, SDN
performs efficiently in traffic engineering and QoS guarantee. Table 4 list IoT architectures
providing complete IoT deployment and IoT e architectures leveraging SDN.

Table 4. IoT architectures initiatives.

Architecture

Description

FIWARE [127]
iCore [128]

IEEE Project P2413 [129]
IoT-A [130].
TRESCIMO [131].
OneM2M [132].
COMPOSE [133].
IoTDM [126]
SAM [134]
Dweet.1IO [135]
Particle.IO [136]
Glue.thing [137]
Node-red [138]

IoT applications development based on APIs

An IoT project providing user level management and abstracting the heterogeneity
enable compatibility between different architectures

IoT Architecture Reference Model (ARM).

Smart City M2M Communications Testbeds

A service layer abstraction to overcome the vertical heterogeneity
Collaborative Open Market to Place Objects at your Service

data Broker for M2M

proprietary DIY IoT platform with offline access and cloud support
Open source middleware based IoT platform

Proprietary middleware based IoT platform

Proprietary DIY based IoT platform

Open source partial DIY supported IoT platform

5. Machine Learning Algorithms for SDN

SDN controller has a global view of the networks providing centralize network control
and management. Machine learning algorithms can be used as a separate module or placed
with the other northbound applications of the SDN controller to bring intelligence to SDN.
SDN controllers using machine learning performs network data analysis, optimization,
and automation of the network. In this section, we survey machine learning-based research
studies applied to SDN. We categorize the studies as routing optimization, QoS prediction,
quality of experience (QoE) prediction, network traffic classification, resource manage-
ment, and security management. Table 5 presents machine learning algorithms categories
applicable in the SDN domain.

Table 5. Machine learning algorithms applied to SDN Controller.

Supervised Learning Unsupervised Learning  Reinforcement Learning

K nearest neighbour K means Reinforcement Learning (RL)

Decision Tree Self organizing map Deep RL (DRL)
Neural Network (DNN) RL game Theory
BayeBaye’s Theorem

Hidden Markov Model
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5.1. Traffic Classification

Traffic classification plays an indispensable role in network management. Traffic
classification enables network operators to control and allocate different services. Currently,
the most used traffic classification approach includes dynamic port-based approaches and
machine learning [139]. Port-based approaches such as deep packet inspection (DPI)
have the advantage of high classification accuracy. DPI limitations include recognition of
applications based on pattern availability and high computational cost to check traffic flow.
DPI is unable to identify the encrypted flow of traffic. Therefore, compared to traditional
DPI approaches, machine learning-based approaches are used to analyze encrypted traffic
with a low computational cost. Traffic classification also includes collecting massive traffic
flow data, extracting knowledge from the traffic data using machine learning approaches.
Machine learning approaches are applied to the SDN controller for the analysis of collected
traffic data. Machine learning-based traffic classification such as elephant flow-aware(EF),
QoS-aware, and application-aware traffic classification.

EF traffic classification is used to classify traffic flow to elephant flow and mice flow.
Elephant flows are bandwidth-hungry persistent flows, whereas mice flow is weak flow
and delay intolerant. There are 80 mice flows in data centers, and the rest of the traffic
flow is elephant flow [140]. In such environments, elephant flow identification is essential
for controlling the traffic flow efficiently. Hybrid data center-based traffic flow scheduling
issues are discussed in paper [141]. Machine learning approaches are used to implement
EF traffic classification at the edge level; SDN controller-based optimization algorithms
further use these analysis results for efficient traffic flow management. Xiao et al. propose
a two-stage algorithm with efficient learning cost in SDN for identification of elephant
flow [142]. Firstly suspicious elephant flow is differentiated from mic flow using a head
packet measuring technique. Secondly, a decision tree classification model is used to
classify the suspicious traffic as elephant flow or not.

In literature, application-aware traffic classification is proposed to identify applications
based on the traffic flow. In study [139], an OpenFlow-based SDN system is proposed
for the collection of data in enterprise networks. Several machine learning classifiers are
trained to classify applications based on traffic flow. A hybrid approach of multi-classifier
and DPI-based classifier is proposed in paper [143] to identify and classify applications.
Rossi et al. proposed a behavioral engine for UDP protocol-based application-aware traffic
classification [144]. SVM-based model is used to classify UDP traffic according to its
Netflow records with more than 90 percent classification accuracy. TrafficVision, an SDN-
enabled edge network, is proposed for mobile application-aware traffic classification [145].
The main component of Trafficvision is TrafficVision Engine(TV Engine). TV Engine
performs tasks such as collecting data, storing data, extracting flow statistics, and data of
ground truth training from access devices and end devices. A decision tree classifier model
is used to classify different applications. In contrast, a KNN classifier-based model is used
to classify flow types such as video content, an audio file, video chat, etc.

QoS-aware traffic classification is used to classify the traffic flow into QoS classes.
QoS classes are assigned to different applications based on QoS requirements such as jitter,
delay, and loss rate. Traffic flow classification, according to QoS classes, is the most efficient
approach towards traffic flow classification. A semi-supervised learning algorithm and
DPI-based approach are proposed for QoS aware traffic classification [146]. DPI approach
is used to label the well-known applications. Laplacian SVM or other semi-supervised
learning-based models are trained on the labeled data from DPI to classify applications
into QoS classes known and unknown.

5.2. Routing Optimization

Mathematical optimization or optimization is selecting the best decisions or choice or
selection regarding some measure, model or criterion, from some set of available choices.
Optimization has been used in different fields including, optimal route recommenda-
tion [147], optimal policy-making [148], energy optimization [149], to name a few. Routing
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is one of the primary functionality of a network; the SDN controller manages the rout-
ing functionality of traffic flow by modifying the network devices’ flow tables such as
routers and switches. SDN controller may guide a network device to route a traffic flow
through specific paths, or it may also decide to discard a specific type of traffic. Inefficient
decisions related to traffic flow can affect the SDN network’s performance in terms of
network overload and transmission delay. There are two types of algorithms used for
routing optimization: shortest path first and heuristic algorithms. Shortest path first al-
gorithms are simple best routing protocols, but it does not enhance the network resource
utilization [150]. On the other hand, heuristic algorithms best utilize the network resources
with a high computational cost [151]. SDN controller devises policies for each routing
flow. Machine learning is used widely to overcome the issues of routing optimization
using fast near-optimal routing solutions. These routing optimization issues are consid-
ered decision-making tasks; hence, machine learning approaches such as Reinforcement
Learning (RL) perform well for routing optimization. In RL-based routing optimization
approaches, the controller is considered as an agent and the network as the platform. The
state-space consists of network and traffic states. Actions represent routing solutions, and
the agent rewards are devised based on optimization metrics such as network delay and
throughput. A distributed intelligent protocol for routing in SDN network using RL is
proposed in paper [152].

In paper [153], a routing optimization algorithm in the domain of SDN-based inter-
data center overlay network is proposed. A time-efficient QoS aware adaptive routing
technique to forward the adaptive packet by using RL algorithms is proposed in paper [154].
The proposed approach selects a routing path with maximum QoS aware reward according
to the user applications and traffic types. Literature also presents studies based on super-
vised learning techniques for routing optimization. Supervised learning-based routing
optimization considers network and traffic states as the input of a training dataset. The
routing solution of the heuristic algorithm is considered the output of the training dataset.
Learning based on supervision can lead to optimal routing solutions like heuristic-like
routing. In [151] dynamic routing based on supervised learning called NeuRoute is pro-
posed. In NeuRoute, the long short-term memory (LSTM) part is used to estimate future
traffic. The estimated network traffic and network state are used as input, and output is
the results of the heuristic algorithms to a neural network model. The neural network is
trained using these input and output data to predict heuristic-like results.

Traffic Prediction

Prediction process involves predictive modeling using regression models to predict
the likelihood of an outcome. Predictive modeling is usually practiced in the domain
of machine learning and artificial intelligence [155,156]. On the other hand, predictive
analytics is used to predict the outcome of undiscovered future events using modeling
and machine learning techniques from current data to predict future problems. Predictive
modeling is used in literature for real-life potential applications [157-160]. Traffic prediction
is an important research topic in the field of routing optimization. Traffic prediction
used to predict the patterns of network traffic volume using analysis of historical traffic
data [161]. Traffic prediction results are utilized by the SDN controller for efficient traffic
routing decisions in advance and distribute the dynamic routing policies to devices in the
data plane. These routing policies are used as a guideline for traffic flow routing soon.
Traffic prediction enables the SDN controller to avoid traffic congestion, improve QoS,
and proactively provide the network. For dynamic optical routing, a dynamic optimal
routing meta-heuristic algorithm is proposed in the literature [162]. These meta-heuristic
algorithms consist of three stages: offline scheduling, offline planning, and online routing.
In the offline scheduling phase, a neural network is used to predict network traffic load for
optimal resource allocation. Online routing decisions are made based on the routing path
with minimum cost.
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A load balance strategy is proposed for the optimization of path load [163]. SDN
controllers use four features for predicting the path load through a neural network model,
packet loss rate, transmission latency, transmission hop, and bandwidth utilization ratio.
The path with the least load is selected for the new traffic flows. In paper, [164] LSTM
based framework NeuTM is proposed to predict the network traffic matrix. GEANT
backbone network [165] based real traffic data are used to train the LSTM model. Results
from the simulation environment show that LSTM prediction performance is good for
routing optimization. Researchers use QoS parameters such as throughput, delay, loss
rate, and jitter for network performance assessment. User satisfaction level and perception
are essential to service providers and network operators. QoE is used for the assessment
of the performance of the network from user-oriented metrics. Service providers use
prediction algorithms to predict QoS and QoE to provide network services to users with
great customer satisfaction. Machine learning algorithms are applied to SDN controller
collected statistics and information for the QoS and QoE prediction [166]. QoS management
can be improved by predicting QoS parameters according to the key performance indicators
(KPIs). Prediction of QoS parameters is considered a regression task because these QoS
metric values are continuous.

Algorithms based on supervised machine learning such as random forest, support
vector regression, ANN-based regressor are used for QoS parameters prediction. QoE
identifies a subjective metric over the network such as mean opinion score (MOS) [167].
MOS classifies the QoE values into five classes: excellent, good, fair, poor, and bad. QoE
values are usually obtained from a feedback form regarding the QoS. The customers rate
the quality of the services in 5 stars or a scale of 1 to 10. The subjective method is time-
consuming as QoE is dependent on QoS parameters. Machine learning algorithms can
be used to find the relationship between QoS parameters and QoE values. In the paper,
ref. [168] QoE prediction experiment is performed in the case study of a video streaming.
MoS value is estimated using network parameters such as delay, bandwidyth, jitter, and
RTT. SDN controller can adjust video parameters to improve the user QoE. In paper [167],
QoE values are predicted based on video quality parameters using four machine learning
algorithms, decision tree, K-NN, ANN, and random forest. Pearson correlation coefficient
and root mean square error (RMSE) is used for the performance analysis.

5.3. Resource Management

Network operators and service providers use resource management techniques to
improve the performance of the network. SDN maximizes resource utilization using
network-based resources management. Data plane level resource management includes
the utilization of computing, networking, and caching resources. Networking resources
include bandwidth, spectrum, and power, which are used to fulfill user QoE and QoS
requirements. Caching techniques to store the most frequently requested data at the device
end to remove data redundancy and reduce data transmission delay. Recent technology
trends such as face recognition and augmented reality require high computation at the
device end to enhance QoS and QoE. Due to scarce computation and battery capacity,
the device resources fail to perform these computational tasks. One solution to offload
such computational tasks is by deploying computing resources near the end-users using
EC [169].

SDN networks are deployed in single and multi-tenant environments for the efficient
resources management of data plane. In a single tenancy SDN network, a logically cen-
tralized controller manages all data plane resources. In a multi-tenancy SDN network,
multiple tenants share data plane layer resources, SDN controller of each tenant manages
their isolated resources. In the paper, [170] a framework for software-defined virtualized
vehicular ad-hoc-network (VANET) is proposed that enhances the network performance
using data plane resources allocation dynamically. A multi-objective optimization problem
is formulated from the resource allocation problem. Deep Reinforcement Learning (DRL)
algorithms are used to solve the problem and obtain policies regarding resource allocation.
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Solution of multi-objective optimization resource allocation problem is proposed for the
case study of smart cities [170,171]. Multi-tenancy SDN network-based resource allocation
challenges in mobile network operators are addressed [172] in C-RAN. For this, a resource
allocation problem is formulated as a non-cooperative game-theoretic problem. Each player
selects an optimal set of mobile network operators using a learning algorithm based on
regret matching to solve the problem. The computational offloading issue in mobile edge
computing (MEC) is also addressed as a non-cooperative game-theoretic problem [173].
MEC servers are the players, and each player performs two actions, active and inactive.
The optimization goal of each player is to minimize the consumption of energy. Each player
learns optimal actions using RL based model.

Network virtualization’s latest advancements enable multi-tenancy SDN networks for
sharing data plane resources using network hypervisor installation between the control and
data plane. Each tenant manages its isolated network resource using a network hypervisor
such as FlowVisor [174] and OpenVirteX [175]. Hypervisors use machine learning algo-
rithms for efficient resource management. In paper [176], hypervisor’s CPU consumption
monitoring tool is proposed, which is named hvbench. Hvbench is a benchmarking tool
used to measure the control message rate. Three regression models are trained to learn the
correlation between control message rate and consumption of CPU. These trained models
are used to detect the overload of network hypervisors in real-time. Control-plane resource
management in SDN is done using the SDN controller placement, which has a significant
impact on the SDN network performance. SDN controller processes traffic flows from
switches installed at different locations. If the distance between network devices and SDN
controller is long, the delay in traffic flow processing will be considered by the resource
management. In literature, heuristic algorithms are proposed to solve the problem of con-
troller placement, but these algorithms have a high computational cost. Thus supervised
learning algorithms are used to obtain an optimal controller placement [177,178]. The
input of these supervised learning models is traffic distribution data, and the output is
a controller placement solution from heuristic algorithms. This hybrid approach based
on supervised learning and heuristic algorithms leads to an optimal controller placement
solution with a low computational cost.

6. IoT Leveraging SDN

IoT plays an important role in the development of intelligent systems such as smart
health-care [179], smart transportation systems [180], and smart energy systems [181] using
large scale distributed systems. These distributed systems connect billions of RFID nodes
and sensors, and hence there is a need for designing a secure, efficient, intelligent, and
cost-effective, salable IoT architecture [182]. A sensing network is made up of sensing
nodes capable of collecting and monitoring information from the environment, such as
temperature, pressure, humidity, and motion. These sensing nodes usually have scarce
resources such as limited computing power, battery, and bandwidth, which raise issues
of heterogeneity and network configurations. SDN is an effective solution for network
management and network configurations. SDN is integrated with the sensing network
for sustainability and efficiency of the sensing network [183]. In paper [119], a model of
a software-defined wireless sensor network (SDWSN) is proposed to solve heterogeneity
and network configurations of scarce resources.

Large-scale distributed systems will generate massive data; machine learning tech-
niques are applied for the predictive analytics of such massive data. Predictive machine
learning models are trained using a centralized approach; however, transferring such
a massive amount of data to a centralized SDN controller requires large network band-
width [74]. For low bandwidth consumption, EC-based solutions are used to preprocess
the data and improve the system response time. The prepared data are then transferred
to the SDN controller to speed up the machine learning training process. To improve IoT
services’ response time, these trained models are deployed on edge servers [184]. Machine
learning and SDN hybrid techniques are applied for route optimization, data analysis,
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Service Layer

Computing Layer

event detection, node clustering, localization [66], intrusion, and fault detection [185] in
IoT applications. In Figure 3, a conceptual IoT architecture based on intelligent SDN
architecture with machine learning modules is presented.

Safety services ---- Services K

Intelligent Patient Health

Transport monitoring

Machine Learning
Module

— SDN Controller

i
|
|
|
!

Accounting & Bill ;
|
|
|
|
|
|
|

Communication
Layer

Virtualization
Layer

Devices layer

Data Processing &
Storage Centre
:

Figure 3. Conceptual IoT Architecture based on Intelligent SDN with Machine learning module.

The benefits of SDN in IoT architecture are discussed in detail by Omnes et al. [186].
SDN allows the dynamic configurations to define the policies and rules for different data
planes. They also discussed IoT architecture requirements such as common service layer,
big data management, QoS, and network access management. In paper [187], a restful
application programming interfaces (APIs) based IoT architecture consisting of several
modules such as northbound and southbound APIs is proposed. The control plane consists
of a processor and database modules. SBIs module deals with protocols such as HTTP,
COAP, and LoRaWAN. In literature, free scale SDN platforms such as vortiQa open network
switch director and vortiQa open network are discussed [188]. SDN-based Majord” home
management platform is proposed in [189]. Due to the extensive use of the internet, device
management has become a difficult task. In Majord” home management, the connected
object is represented by CO, and coCO represents a community of the connected objects.
The virtual object is represented using Vo, and avatar is used for the management of VOs.

Boussard et al. [190] expand the proposed home automation platform further using
a generalization of the concept to any smart environment. CO is generalized to a home
device, VO is the abstract view of a device, whereas coVO is a community of the virtual ob-
jects. Proposed SDN architecture is composed of four layers, a management layer spanning
vertically and three horizontal layers. The data layer performs data generation without
routing and forwarding functions. The Control layer is composed of a network controller,
CO controller, and coVO controller. The management layer consists of a network manager,
application, and VO manager. In paper [191], SDN and distributed data service are applied
to IoT architecture. SDN provides data agility, flexibility, and mobility handling, whereas
distributed data service is used to manage big data. The proposed approach is needed in



Electronics 2021, 10, 880

16 of 28

IoT as its applications and services depend upon the collection and analysis of sensing data.
The architecture addresses three domains: M2M, networks, and application domains of
IoT. In [192], a software-defined infrastructure (SDI) manager-based approach is proposed.
SDI Manager consists of cloud computing controllers such as OpenStack and network con-
trollers such as Flow Visor. Cloud computing controller performs user-level management
of computing resources. Network controller performs network-level management such
as network resource management and collection of topology information of the network.
The network controller also interacts with openvswitches for the configuration of the data
plane’s forwarding tables.

Heterogeneity is addressed using the network operating system (NOS) to allow
the deployment of different applications on a set of devices of different networks. In
paper [193], an operating system has been developed based on ONOS SDN controller for
IoT systems to support SDN-WISE. SDN-WISE is a protocol for extending the capabilities
of SDN for wireless sensor networks. In paper [194], the issue of heterogeneity in the IoT
environment is addressed and solved using a multi-SDN environment. The proposed
approach consists of an IoT controller which communicates with the IoT devices. IoT
controller handles communication requests and estimates forwarding rules. The proposed
approach has some limitations, such as scalability, heterogeneity of identity schemes,
routing protocols, and IoT agents’ integration. In paper [195], management, security, and
scalability relevant issues of IoT are addressed and solved using a layered architecture.
The physical layer consists of IoT devices, and the middleware or control layer consists
of software-defined blocks. Software-defined blocks include blocks for security, storage,
IoT controller, and software-defined controller. Data collectors process the data received
from an IoT gateway, where a software-defined security block authenticates and flags
the data as positive and negative. IoT controller block computes forwarding rules, and
forwarding rules are forwarded to software-defined controller block. Software-defined
controller downloads the data into the network switches. SDN-based WoT architecture
has limitations of security, data management, and things in web technologies [196]. SDN
layer on top of WoT resources provides security and management of devices. SDN-based
WoT architecture comprises three layers, the access layer, control layer, and the application
layer. The access layer provides WOT gateways to the things, the control layer provides
control functions and manages the resources database, and the application layer provides
application-level management.

The need for Universal customer premises equipment (uCPE) based edge gateway is
increasing to facilitate various SDN/NFV functions. These functions include sensing data
aggregation, policy management, data storage, protocol translation, and cloud-specific
functions. To make easier flow data between SBI and NBI, MQTT protocol is deployed.
Bluetooth and ZigBee modules were adapted to setup the uCPE [197,198]. Softwareized
WiFi networks require dedicated softwares for wireless functionalities realization, which
is not fully flexible and causes management complexities. In, the authors proposed Po-Fi,
highly flexible architecture for SDWSN based on Protocol-Oblivious Forwarding (POF) for
WiFi-based innovations. Po-Fi abstract WiFi Acess point as a programmable forwarding
pipeline based on SDN consensus [199]. The data traffic collected at the Macro Base Station
(MBS) increases due to the wide usage of mobile phones. The MBS cannot manage all
user’s requirements, and to get the expected services, some users are offloaded to the
nearby small cells [200]. The tradeoff between the admittance load and economic incentive
to achieve optimal offloading SDN assisted Stackelberg Game is proposed. Stackelberg
Game model selects the users precisely to aggregate the service with Access Point at MBS
to improve QoE. Every player of the game maximizes their payoff utilities in a real-time
scenario. The authors obtained maximum throughput per user, which experiences the
best data service without any lack of QoE. The Stackelberg Game model proves better as
compared with other game theory models in achieving optimal data offloading [201].

Research studies claim that the core network will utilize SDN soon, as some of the data
centers and networks of service providers are already benefiting from SDN. This will sim-
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plify network function deployment and effective feedback to observe network conditions.
In one paper, an SDN mechanism is applied to incorporate wireless IoT edge networks.
Long Range (LoRa) was selected as the IoT communication protocol. The study proposes
integration architecture for LoRa-SDN [202]. In large-scale IoT networks such as LoRaWAN
based IoT, SDN with network slicing must manage network slices flexibly and provide
optimized parameter configuration in IoT. Samir Dawaliby et al. proposed SDN-based
network slicing architecture for LoORaWAN. The network slices are isolated and deployed
virtually over LoRa’s physical gateways. The study also improves large-scale network
configurations using TOPG. TOPG is network slicing-based optimization to improves the
parameters configuration of LoRa based on each slice QoS thresholds. Simulation results
using NS3 highlighted that the proposed optimization approach improves the network
performance of LoRa slices. Network performance was evaluated in terms of reliability
and QoS thresholds in dense deployments of IoT networks [203].

Real World Applications

IoT security is a hot research topic; in literature, machine learning is applied to SDN
to improve IoT security. SDN provides an easy approach to handle simple and distributed
DDoS attacks [204,205]. Flow-based dynamic security schemes can be implemented at the
network edge [206]. A deep learning network-based approach is proposed in paper [207] for
anomaly detection at the edge server. In paper [208], a support vector machine is applied to
analyze sensing data and detect abnormal activities. In paper [209], deep learning is applied
to edge networks for the detection of IoT attacks. SDN provides significant advantages
in the domain of network security, especially in large-scale IoT networks. In summary,
EC, SDN, and machine learning can enable intelligent and sustainable IoT solutions. IoT
real-world applications of IoT and machine learning leveraging SDN are given in Table 6.

Table 6. Real world applications.

Literature Approach Complementary Technologies Relative Merits

Orchestration and high level manage-

Heterogeneous IoT SDN  Intent-based management

. NFV and VNF ment capabilities to improve scalability
[210] and orchestration and latency.
Interoperability, security, but too gen-
_ _ NFV and SDN based pro- eral and insufficient in the components
?lllé‘g]lahzed IoT network grammable informagon NEV Zlv.orking detailil. Lack of new SEenarios
technology infrastructure Iscussions, an ‘p.resentatlon of cooper-
ation functionalities between SDN and
NFV.
. . Supports mobility, fexibility, real-time
F?ft‘[;ggl]( architecture for IS)Ofthi}rEfEDef;?ed Fog Fog Computing delivery, fast latency resolving services
0 ased lol architecture and increase efficiency.
IoT-fog based systems SDN and Fog based IoT . Decrease latency, en.a.b.hng IOT nodes
Fog Computing leverage cloud capabilities and increase
[211] systems .
bandwidth.
Trustable Framework for QOE based Trustable SDN . . Orche.strate ba.ised on resource .ab—
. h Mobile edge computing straction, security using authentication
[oT Devices [212] approac mechanism, coordinate management.
IoT edge cloud architec- SDN based IoT mobile . . Improve latency of control a{nd data
. Mobile edge computing plane, reduce overhead and improve
ture [213] edge cloud architecture i
flexibility.
) Data filtering using MQTT, custom
IoT monitoring frame- i?égzzrenetifigdbasii NEV monitoring system, handle load bal-

work [214]

framework

ance through NFV, and improve net-
work intelligence.
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Table 6. Cont.

Literature

Approach

Complementary Technologies Relative Merits

Smart homes [215]

Centralized IoT devices
management [216]

Vehicular networks [217]

Smart grid application
[218]

E-health medical applica-
tions [219]

Smart healthcare systems
[220]

Residential functionalities
virtualization

Software development for
) - o
virtualization

Software-defined architec- N
o

Control IoT using SDN No

Traffic management using  ;
SDN

Low cost, Security updates with no ser-
vice disruption, fexible gateway but
there are limitations of VNF distribu-
tion and Management of tunnels.

NFV and VNF

Network management for monitoring
smart home sensors.

Maintain functional state stability, re-
duce control overhead, high rates of
delivered data but poor resources al-

fure locations and management using the
controller.
Reliable and fexible to adapt to natural
TloT SDN platform NEV troubles or failure. Backup to the smart

grid resiliency but fault detection and
latency managment is poor.

Transmission optimization during high
peak load.

Heterogeneous traffic management, im-
prove reliability and usability but man-
agement functionalities.

7. Limitations and Future Research Directions

This section lists the limitation of current IoT platforms, such as lack of interoperability,
compatibility, realizability, and security. Proposing absolute SDN-based solutions is not
realistic; however, machine learning applied to SDN controllers will lead to IoT’s realiza-
tion. Figure 4 presents limitations of current IoT. Although SDN with machine learning
algorithms addresses some loT network issues, significant research issues still need to be
addressed through SDN. A high-quality training dataset is required to achieve high accu-
racy of machine learning models in SDN [221]. There are no standard open-source datasets
of IoT network data. Comprehensive IoT network datasets will encourage researchers
to analyze IoT network data using machine learning models. IoT network flow data is
a challenge to develop heterogeneous IoT applications [222]. SDN-based IoT controller
decreases the complexities and obtained flexible IoT management. However, attackers can
overload the IoT controller through a massive flow of requests. Machine learning-based
approaches such as generative adversarial network (GAN) [206] is a practical approach to
solve this vulnerability by predicting the new attacks. There are two neural networks in
GAN; one neural network generates new data while evaluating the new data authenticity
according to a real dataset. GAN generates possible new attacks based on existing attack
data; machine learning models can be trained using the new attack data to detect both
known and unknown attacks.
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Current loT

Lack of
Interoperability
Lack of Lack of
Compatibility Standardization
Lack of loT
architecture

Limitations of J
Lack of RealizabilitJ Evaluation software

Lack of Security j/

IoT devices’ scalability raises new issues regarding QoS and security, which can be
addressed through machine learning-based SDN solutions. CISCO IoX is one such solution
for flexible device management in a real-time IoT environment. To ensure QoS and security
in the IoT domain, Microsoft proposed architecture to implement data analytics over the
network’s edge. Many intelligent applications were proposed to collect data, such as IBM
Watson, to develop cognitive systems. However, the realization of IoT is still challenging
from both a practical and theoretical perspective [223]. Lack of compatibility means
that thousands of research were published in the IoT domain proposing IoT platforms
and architectures, raising the need for new network schemes. IoT realization involves
many parties, network services providers, data services providers, device manufacturers,
and application developers. IoT devices manufacturing companies develop monitoring
tools to maintain and manage their devices. Some of the manufacturers provide cloud-
based solutions for IoT devices and services management. SDN coupled with cloud
computing can hide the complexity of data services and devices management; for example,
Amazon provides Amazon web services (AWS) [224] for the management of devices and
IoT services.

Based on the presented limitations, we believe that there are imperative directions that
have to be considered in the future for IoT research studies. One of the critical challenges
which need to be addressed is the interoperability of the proposed IoT platforms with
existing platforms. Well-known research institutes and journal publishers should define the
main IoT challenges as special issues to reduce the number of partial solutions proposed in
the literature. These research institutes and research groups should also work towards the
standardization of IoT. IoT simulation software should be developed to test the different
IoT architectures, algorithms, and protocols. The real implementation of IoT solutions
and performance analysis tools should be developed to test the platforms proposed in
the IoT domain. Machine learning applied to SDN coupled with NFV will overcome the
management complexity of high-scaled IoT networks. SDN enables the programmability of

Figure 4. Limitations of current IoT.
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network functions to overcome loT heterogeneity challenges. EC coupled with a machine
learning-based SDN controller will enable real-time management of big data.

8. Conclusions

Innovations and development to the communication technologies such as SDN ad-
dress heterogeneous communication, quality of service requirements, unpredictable net-
work conditions, and a massive influx of data. SDN aims to deploy rule-based management
to control and add intelligence to the network using high-level policies to have integral
control of the network without knowing issues related to low-level configurations. This
paper aims to discuss IoT leveraging SDN solutions to address security challenges, cost
of hardware, centralization, and resources management in the IoT environment. Machine
learning-based SDN solutions perform optimization of the IoT network, data analysis, and
automated and intelligent services provisioning. Machine learning-based SDN solutions
also improve the performance, efficiency, and security of IoT solutions. We also addressed
potential real-world applications and their relative demerits. The limitations presented in
this study provide promising directions towards IoT research studies. Interoperability of
the IoT platforms, cooperation functions between SDN and NFV, VNF distribution, and
management of tunnels problems are still needed to be addressed. In vehicular networks,
software-defined architectures are used to maintain functional stability, reduce control
overhead, but poor resource allocations should be addressed. Research institutes and
research groups should work towards the standardization of IoT. IoT-SDN simulation
software should be developed to test the different software-defined IoT architectures, algo-
rithms, and protocols. IoT leveraging machine learning-based SDN solutions have limited
healthcare, smart homes, smart cities for sustainable solutions. Lastly, the problem of fault
detection and poor management should be addressed in smart grid environments.
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