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Abstract: Surveillance monitoring systems are highly necessary, aiming to prevent many social prob-
lems in smart cities. The internet of things (IoT) nowadays offers a variety of technologies to capture
and process massive and heterogeneous data. Due to the fact that (i) advanced analyses of video
streams are performed on powerful recording devices; while (ii) surveillance monitoring services
require high availability levels in the way that the service must remain connected, for example, to a
connection network that offers higher speed than conventional connections; and that (iii) the trust-
worthy dependability of a surveillance system depends on various factors, it is not easy to identify
which components/devices in a system architecture have the most impact on the dependability for a
specific surveillance system in smart cities. In this paper, we developed stochastic Petri net models
for a surveillance monitoring system with regard to varying several parameters to obtain the highest
dependability. Two main metrics of interest in the dependability of a surveillance system including
reliability and availability were analyzed in a comprehensive manner. The analysis results show that
the variation in the number of long-term evolution (LTE)-based stations contributes to a number of
nines (#9s) increase in availability. The obtained results show that the variation of the mean time to
failure (MTTF) of surveillance cameras exposes a high impact on the reliability of the system. The
findings of this work have the potential of assisting system architects in planning more optimized
systems in this field based on the proposed models.

Keywords: surveillance; Internet of Things; availability; reliability; stochastic Petri nets

1. Introduction

The Internet of Things (IoT) is a communication paradigm that aims to make day-
to-day technologies even more immersive and widespread. IoT facilitates access and
interaction with several devices, such as surveillance cameras, monitoring sensors, vehicles,
and smartphones. IoT seeks to provide new services to citizens, companies, and public
administrations by analyzing large masses of data. Cities are becoming increasingly
responsive and intelligent [1]. IoT is present in large cities, making them more automated
and technological, the so-called smart cities. The smart city is committed to investing in
the quality of life and economic development of people [2]. Amsterdam is an example
of a well-connected smart city reaping the rewards of opening the data vault. The city
shares traffic and transportation data with interested parties, such as developers, who
then create mapping apps that connect to the city’s transport systems [3]. In Palo Alto,
there are several projects in health, Vehicular ad hoc networks (VANETs) and surveillance
monitoring systems.
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Smart cities adopt CCTV-based surveillance monitoring systems to provide public
services and ensure the safety and security of citizens, e.g., crime prevention and response,
forensic evidence. These applications are key drivers when running smart city projects,
helping authorities to proactively spot and react to potential incidents across the city.
Specifically, surveillance monitoring systems have several important features for a smart
city. These features include facial recognition, motion detection, and activities monitoring
that minimize the chances of disasters. However, the integration of automated analysis
in video surveillance is an area that can be further explored [4], especially concerning the
connectivity of equipment in the security sector. In the security sector, there is still a reliance
on the traditional manual monitoring of CCTV (closed circuit television) images [4].

CCTV consists of cameras distributed and connected to a central system, which makes
images available through monitors. The connection of the CCTV components is carried
out by cabling. The cable connection may make it impossible to monitor a specific area
of smart cities. This way, as solutions to bandwidth and quality of service (QoS) prob-
lems, the connection between CCTV components can be wireless, reducing costs and
expanding monitoring sectors with high quality. Long-term evolution (LTE) technology
is an alternative to providing wireless communication. 5G technology has been gaining
ground in telecommunications for the same purpose, but it is still not widespread world-
wide. With LTE technology, the CCTV system may have inaccuracies that compromise
the service that must be provided in real time. Therefore, evaluating these applications
becomes relevant even before a practical implementation in many aspects. In this context,
analytical models can be used to evaluate systems during design stages [5,6]. Most of
the previous work that adopted analytical models have only focused on the assessment
of performance metrics [7–14]. However, availability and reliability metrics are essential
system requirements in this scenario to guarantee a certain level of quality of service (QoS).
Wahab et al. in [15] proposed a three-fold solution to improve the dependability of multi-
cloud systems. The authors proposed a trust establishment framework that is resilient
to collusion attacks that occur to mislead trust results. A bootstrapping mechanism was
also proposed, which capitalizes on the endorsement concept in online social networks
to assign initial trust values. The authors also proposed a trust-based hedonic coalition
game that enabled services to distributively form trustworthy multi-cloud communities.
Experiments conducted on a real-life dataset demonstrated that their model minimizes
the number of malicious services compared to three state-of-the-art cloud federations and
service communities models. Lockl et al. in [16] have developed and evaluated a block-
chain-based IoT sensor data logging and monitoring system, employing a design science
research (DSR) approach. The authors have shown that such systems should provide
modality, data parsimony, and availability in addition to domain-specific principles. The
proposed prototype improved data integrity and availability but uncovered challenges like
high operating costs through smart contract computation fees. Although these are impor-
tant papers in the fields of cloud computing and IoT, respectively, these studies present
a different focus compared to our work (surveillance was not taken into consideration)
in terms of architecture and goals. In addition, the authors did not consider reliability
as a major metric. Furthermore, designing a surveillance system with uncompromising
constraints of high reliability/availability and high processing capacity is challenging
in planning for the development of smart cities. Due to the partial failures of several
components, the operational services of a surveillance system are probably not offered
perfectly even when the system is available in terms of physical resources. In this context,
capacity-oriented availability (COA) was used to estimate the information [17] of system
availability based on its capacity of available components.

In this paper, we proposed stochastic Petri net (SPN) models [18,19] to represent and
evaluate the dependability (availability and reliability) of surveillance monitoring systems
in smart cities. SPN models were proposed by researchers active in the applied stochastic
modeling field, with the goal of developing a tool which allowed the integration of formal
description, proof of correctness, and performance evaluation. For what concerns the last
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aspect, the proposals aimed at an equivalence between SPN and continuous time Markov
chain (CTMC) models. This way, SPN is superior compared to CTMC in terms of intuitive
representation capabilities. SPN can be used to model any complex systems because it can
model, for example, process synchronization and parallelism. The SPN models are based
on a CCTV architecture, using LTE connection, and a server at the edge of the network
(mobile edge computing—MEC).

Therefore, the main contributions of this paper are:

• An SPN model to assess the availability of a CCTV monitoring system in smart cities.
The proposed model enables the configuration of a significant number of parameters,
including 16 transitions corresponding to mean times to failure (MTTFs) and repair
(MTTRs).In addition, the model is highly scalable in terms of the number of cameras
and radio stations.

• An SPN model to assess the reliability of a CCTV system. The reliability model,
in turn, presents nine configurable transitions, with the aforementioned advantages of
the availability model, but also the capability of calculating the reliability in different
scenarios over time.

• A set of sensitivity analyses on the model’s components to identify those that most
impact the metrics of interest. Sensitivity analysis showed that specific components
have a more significant impact on availability. To reinforce the sensitivity analysis
results, we used the design of experiment (DoE) method. The DoE made it possible to
visualize more precisely the impact of the MTTF and MTTR values of each component
on the availability of the system.

• Case studies that serve as guides for how evaluators can use the proposed mod-
els, adopting the COA metric, for example. Capacity-oriented availability (COA)
assesses how the system is delivered, therefore, it does not consider only the states of
availability or unavailability, but the real impact of these factors in service delivery.

The rest of the paper is organized as follows. We mention some related works in
Section 2. The overall architecture of a surveillance monitoring system in smart cities
is detailed in Section 3. Reliability modeling and assessment is presented in Section 4.
In Section 5, we develop availability models and perform various availability analyses.
Case-studies of the surveillance monitoring system are presented for availability assessment
in Section 6. The paper is concluded in Section 7.

2. Related Work

This section presents some related works. These works include an evaluation of a
system that uses the idea of a base station with 4G or 5G and developed analytical models
for such evaluation. Table 1 summarizes a comparison of related works under four aspects:
model type; metrics; communication type; and sensitivity analysis.

The first criterion refers to the type of model. All previous works in consideration
used Markov chains as a common analytical modeling approach to evaluate their pro-
posals. In [20], the Markov chain was used in modeling to meet the best up-link while
in [10], a Markov chain model was used in a proposal to perform evaluations on different
performance metrics, in which the sizing of the system elements can be analyzed. The
papers [7,8] used the Markov chain to evaluate the femtocells connections aiming to reduce
latency and improve performance in wireless networks. However, no papers have used
Petri nets. Instead of SPN, the use of Markov chains is not a limitation, since both models
are equivalent, but SPN has a higher power of abstraction.

Concerning the metrics, the majority of works opted for performance evaluation.
Some papers [12,14,20] presented innovative proposals for 5G. In [13], for example, the
5G network was studied in a compensation strategy between energy consumption and
the additional delay incurred for user traffic. Markkula and Haapola in [11] addressed
a performance evaluation using 4G. Only the work [20] used the reliability metric to
investigate the problem of cooperative re-transmission and the ideal number of devices
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directly connected to the LTE base station. However, none of the studies explored the
metrics of availability and downtime.

Table 1. Comparison with related work.

Work Metrics Context Contribution

[7] Handover latency
User’s mobility history-based

mobility prediction in Long Term
Evolution (LTE) femtocells network

The results show that the proposed
method predicts better when

random data is 50% and above
compared to the existing method.

[8] Handover latency Mobility prediction via Markov
model in LTE femtocells

The results show the prediction of
users’ direction after
several movements.

[9] Connection latency
Proactive caching for mobile video

streaming in millimeters Wave
5G Networks

They model the proposed system as
a cache management problem and

attain optimal video streaming
quality by using Markov

decision process.

[10] Solar power Markovian models of solar power
supply for an LTE Macro

They described two DTMC models
that can be used for dimensioning
the solar power supply of an LTE

macro base station (BS).

[11] Packets trasmission success Ad hoc LTE method for resilient
smart grid communications

Both the disjoint analysis and
simulations show that all packets

are successfully transmitted at most
by the fourth transmission attempt .

[12] Cell outage detection
Large-scale and high-dimensional

cell outage detection in 460 5G
self-organizing networks

The proposed method can
automatically detect the cell outage

in complicated and time-varying
mobile wireless

communication environments.

[13]
Trade-off between saved power
consumption versus additional
incurred delay for user traffic

Optimal policies of advanced sleep
modes for energy-efficient

5G networks

They presented optimal control
strategies enabling them to

implement the Advanced Sleep
Modes (ASMs) in

5G non-standalone (NSA).

[14] Effectiveness of downlink
precoding techniques

Millimeter-wave base station
diversity for 5G coordinated

multipoint (CoMP) applications

Results show that the coordination
can improve network performance
by suppressing interference when

it exists.

[20] Outage probability
D2D mobile relaying for efficient
throughput-reliability delivering

in 5G

Simulation results show that
offloading the network by means of

D2D-relaying improves per
device throughput.

This Work Availability, reliability, downtime
Surveillance system in smart cities:
a dependability evaluation based

on stochastic models

Two main metrics of interest in
dependability of a surveillance
system including reliability and

availability are analyzed in a
comprehensive manner.

Type of communication corresponds to the use of which generation of communica-
tion technology was adopted. More recent articles show studies focused on 5G. The less
recent articles show studies focused on 4G. In [12], 5G communication was used for the
study of cell failure detection in base stations, in which users could obtain mobile services
that met their requirements. Cartney et al. [14] used 5G communication to describe a
base station placement optimization, providing a detailed analysis of the performance.
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Markkulai et al. [11] used 4G communication to overcome problems related to the lack of
connectivity of the base station. Our work used 4G technology since 5G technology has
paradigms that are still being studied to be implemented in the future in many countries.
However, it is important to highlight that our models are configurable enabling the use
5G parameters without issues. Finally, regarding sensitivity analysis, none of the related
works explored such a strategy.

3. A Surveillance System in Smart Cities
3.1. System Architecture

Figure 1a presents the overall architecture of a surveillance system in smart cities that
use an IoT-based video monitoring system. The videos were recorded by CCTV cameras
installed in sensitive and/or pre-specified locations of the city. Each recording was stored
together with the date, time, and place, making information essential for a real-time or
future inspection. The supervision of these places allows us to identify individuals and
unusual factors in the environment.

(a)

HARDWARE

CONTAINERS

STORAGE

OPERATING SYSTEM

DOCKER DAEMON

MEC Server

(b)

Figure 1. Overview of the evaluated architecture: (a) base architecture with all macro elements; and
(b) layered architecture of the mobile edge computing (MEC) server.

The architecture consists of an LTE network with cameras, a wireless base station,
a MEC server, and a supervisor. The cameras were installed at strategic locations in the
city based on prior planning by security professionals. Each camera had 4G transmission
connected to a wireless base station. The wireless base station was responsible for collecting
the images transmitted by the cameras and sent to the MEC server. The MEC allowed
the storage of recordings and the management of live images and the facial recognition
feature. A connection was made between the 4G modem and the wireless base station to
gain access to the MEC. Any computer or notebook can be used as a supervisor to configure
this LTE connection.

This architecture only had one wireless base station, however, using more cameras
may require more wireless base stations. This wireless base station centralization may cause
a bottleneck, as all transmissions pass through them. During peak data transmissions,
negative impacts on system availability and reliability can be observed. The purpose
of availability was to keep the system services available for as long as possible, being
susceptible to failure. Reliability refers to the system’s ability to function correctly over
time t.

As the MEC server has significant processing responsibility, it was studied in detail
in terms of software layers. Figure 1b presents the layered architecture of the MEC server,
comprising: hardware; operating system; storage; docker daemon; and containers. The top
layer components depend on the bottom ones. The storage component is responsible for
storing recordings. The docker daemon and container software components are responsible
for managing live images.
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3.2. Assessment Metrics

To comprehend and secure continuous operations of the safe and smart surveillance
system in consideration, we performed various stochastic model-driven reliability and
availability along with sensitivity analyses:

• Reliability is the probability that a system, including all hardware, firmware, and
software, will satisfactorily perform the task for which it was designed or intended,
for a specified time and in a specified environment;

• System availability (also known as equipment availability or asset availability) is a
metric that measures the probability that a system is not failed or undergoing a repair
action when it needs to be used;

• Sensitivity analysis is a measure of the local effect of a given input data about the
output data, aiming to outline the weak links of the computer systems, and from there
on, seek to adopt a set of techniques that aim to improve these systems in different
scenarios. In a way, the sensitivity analysis can provide the necessary security and
forward the results within the perspective established by the system administrators.
In this study, we adopted DoE for the sensitivity analysis. The DoE corresponds to
a collection of statistical techniques that deepen the knowledge about the product
or process under study [21]. It can also be defined by a series of tests in which the
researcher changes the set of variables or input factors in order to observe and identify
the reasons for changes in the output response. The parameters to be changed are
defined using an experiment plan. The goal was to generate the most significant
amount of information with the least possible experiments. The behavior of the
system based on parameter changes can be observed using sets of outputs.

4. Reliability Assessment

This section presents an SPN model to assess the reliability of the surveillance system
in smart cities.

Petri nets are a formal model of quantitative properties of concurrent and synchronized
systems. Petri nets with random firing delays are considered as stochastic Petri nets
(SPNs) [22–26]. Since the last decade, SPN has been enticing the researchers’ attention in
the modeling and performance analysis of discrete event systems. SPNs are modeling tools
for the performance analysis of parallel, concurrent, dynamic and distributed systems.
The nature of temporal specification can be deterministic or probabilistic. Variable X as
a stochastic process can be considered as a family of functions of time as sample paths
of the events of process, formally defined as X(t), t ∈ T, where T = [0, ∞). Each sample
path denotes a particular trajectory over the state space and consists of a possible observed
behavior of the process events.

4.1. Reliability SPN Model

Figure 2 presents an SPN model that was used to assess the reliability of a surveillance
system in smart cities. The SPN model was composed of supervisor (SU), 4G modem
(MO), wireless based station (LTE), cameras (CA), and an MEC server. The MEC server has
components with dependence; when a component fails, the immediate transitions will
make the next components that depend on it fail as well. The MEC server is composed of:
hardware (HW); operating system (OS); storage (ST); docker daemon (DD); and containers (CT).
Each component has a MTTF. As reliability only considers system services until a failure
occurs, it is not necessary to use MTTR. We will only estimate the time for which the system
is up and running.

The 4G modem will be working when it has a token in place MO_U. The 4G modem is
not working when it has a token in place MO_D. The modem goes into the inactive state by
triggering the transition MTTF_MO. The supervisor is working when it has a token in place
SU_U. The supervisor is not working when it has a token in place SU_D. The modem goes
into the inactive state by triggering the transition MTTF_SU.
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MODEM
4G

SUPERVISOR

RADIO
STATION CAMERAS

LTE

MEC
SERVER

CONTAINERSDAEMON DOCKERSTORAGEOPERATING SYSTEMHARDWARE

Figure 2. Stochastic Petri net (SPN) model to assess the reliability of a smart city surveillance
architecture.

The MEC is composed of several components that depend on each other. When the
hardware (HW) fails, all other components will also fail. The MEC is working when it has
a token in CT_U (active container). If the container is working, all other components that
make up the MEC will be working. We consider that the MEC is not working when it has a
token in CT_D (inactive container).

For example, we consider that a wireless base station will be functioning when it has
10 tokens in the location CA_U (active cameras). We consider that a wireless base station is
not working when it has one or more tokens at CA_D (cameras disabled). The equation for
calculating the reliability of the system is given by

R = 1− P(#MO_D > 0)OR(#SU_D > 0)OR(#CT_D > 0)OR(#CA_D > 0) (1)

where P stands for probability and # stands for the number of tokens in a given location.
In DoE, the camera was the most critical component of the system. Therefore, the

reliability assessment was performed by exploring the MTTF of the cameras.Three scenarios
were explored using the base value for the cameras MTTF and two more variations—50%
more and 50% less than the base value.

4.2. Reliability Evaluation Results

Some input parameters are needed to evaluate the proposed model. The values are the
same as those used for the availability assessment listed in Table 7. However, a variation of
the cameras MTTF is used to explore different scenarios. Table 2 shows the input parameters.

Table 2. Parameters variation of camera’s mean time to failure (MTTF).

Scenario MTTF (h)

Minus 50% 45.0
Base Value 90.0
Plus 50% 135.0

Figure 3 presents the result of the reliability analysis for the different scenarios
explored. Initially, for a low service time, the reliability of the system is 100%. How-
ever, as time increases, the reliability decreases. With the value of MTTF_CA using less 50%
of the base value, the model obtained the lowest reliability, which presents approximately
0% reliability after 250 h of service. With the base value of MTTF_CA, the model showed
more excellent reliability than the scenario with MTTF_CA using less than 50% of the base
value, presenting approximately 0% reliability just after 390 h of operation. The most
satisfactory result was obtained by MTTF_CA using an additional 50% of the base value,
where the model showed approximately 0% reliability only after 540 h of service.
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Figure 3. Reliability analysis.

5. Availability Assessment

This section presents an SPN model to assess the availability of a surveillance system
in smart cities. The model was developed when considering the recovery of system
components in the reliability model in Figure 2 as a solution to improve the quality of
service for the surveillance monitoring system.

5.1. Availability SPN Model

Figure 4 presents a model consisting of a supervisor (S), 4G modem (MO), a wireless
base station (LTE), cameras (CA), and an MEC server. The MEC server is composed of
several components that depend on each other. When a component fails, the immediate
transitions will cause the next components that directly or indirectly depend on it to fail as
well. The components that make up the MEC are the hardware (HW); operating system (OS);
storage (ST); docker daemon (DD); and containers (CT). The wireless base station, with its
proper cameras, also established a dependency. If the wireless base station fails, the cameras
will also stop working.

MODEM
4G

SUPERVISOR

LTE

CAMERAS
RADIO

STATION

DAEMON DOCKER

MEC
SERVER

CONTAINERSSTORAGEOPERATING SYSTEMHARDWARE

Figure 4. SPN model for surveillance architecture in smart cities.

Each component has an MTTF (mean time to failure) and a MTTR (mean time to re-
pair). The 4G modem will be working when it has a token in place MO_U (4G modem up).
We considered that the 4G modem was not working, when it had a token in place MO_D
(4G modem down). The active/inactive changes were caused by the transitions triggering:
MTTF_MO and MTTR_MO. The supervisor was working when it had a token in place SU_U
(supervisor up). We considered that the supervisor was not working when it had a token in
SU_D (supervisor down). The active/inactive changes were caused by the triggering of the
transitions MTTF_SU and MTTR_SU.
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The MEC server will be working when it has a token in CT_U (container up). We con-
sidered that the MEC was not working when it had a token in one of the following places:
HW_D (hardware down); OS_D (operating system down); ST_D (storage down); DD_D (docker
daemon down); CT_D (container down). Only one component of the MEC server needs to
fail for it to stop working; this is due to the dependency already mentioned. The change be-
tween the active and inactive state is caused by the transitions: MTTF_HW, MTTF_OS, MTTF_ST,
MTTF_DD and MTTF_CT—for mean time to failure—and MTTR_HW, MTTR_OS, MTTR_ST, MTTR_DD
and MTTR_CT—for mean time to repair.

We considered that a wireless base station was working when it had a token in place
CA_U (cameras up). We considered that a wireless base station was not working when it
had a token in the locations: LTE_D (wireless base station down) and CA_D (cameras down).
The change between the active and inactive state was caused by the transitions: MTTF_LTE,
MTTF_CA—for mean time to failure—and MTTR_LTE, MTTR_CA—for mean time to repair.

Table 3 shows the guard conditions used for the system’s operation. Guard conditions
are used in transitions to ensure that they are only triggered with a specific condition,
preserving behaviors that occur in real life. For example, the transition MTTR_OS has the
following guard condition: P{#HW_U > 0}, meaning that to trigger the recovery transition
of the operating system, the hardware must be active. In other words, the solution to a
failure in an operating system can only occur if the hardware is turned on. However, the
guard condition ensures that the model retains behaviors that occur in real contexts.

Table 3. Guard conditions that restrict the triggering of transitions.

Components Transition Condition

MTTR_OS HW_U > 0
MEC MTTR_ST OS_U > 0

Server MTTR_DD ST_U > 0
MTTR_CT DD_U > 0

Wireless base stations MTTR_CA LTE_U>0

The availability metric was explored for this model. The availability equation repre-
sents all the probabilities of the number of tokens in the system’s constituent components’
upstate. Thus, P stands for probability, and # stands for the number of tokens in a given
location. Some components depend on others being active, so we only used the last com-
ponents of the dependency sequences in the availability metric. For the availability metric,
we only used the container (CT) of the MEC Server because for the container to be working,
all the MEC server components must be active. For a radio station to be working, all that
is required is for its own cameras (CA) to be active. Equation (2) represents the condition
described above:

A = P{(#CT_U > 0)AND(#S_U > 0)AND(#MO_U > 0)AND(#CA_U = CAN1)} (2)

5.2. Sensitivity Analysis

This section presents two sensitivity analyses on the model’s factors. The objective
was to identify the factors that most impact the availability of the system. First, an analysis
based on the percentage difference technique was performed [27,28]. Then, we present a
second complementary analysis based on the DoE technique [29].

5.2.1. Sensitivity Analysis of Transitions with Percent Difference

For the sensitivity analysis, the model’s MTTF and MTTR times were used as parameters
varying them 50% more and less over the base value. Thus, Table 4 presents, in decreasing
order, the transitions with the highest sensitivity indices—that is, those that have the most
significant impact on the availability of the system.
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Table 4. Sensitivity indices.

Base Model

Variable Index

MTTF_CA 1.49 × 10−2

MTTR_CA 1.10 × 10−2

MTTF_HW 1.79 × 10−3

MTTF_ST 1.52 × 10−3

MTTR_ST 1.28 × 10−3

MTTF_OS 1.08 × 10−3

MTTR_HW 8.36 × 10−4

MTTR_CT 5.68 × 10−4

MTTR_OS 5.13 × 10−4

MTTR_DD 4.41 × 10−4

MTTF_CT 2.69 × 10−4

MTTF_DD 2.62 × 10−4

MTTF_LTE 2.26 × 10−4

MTTF_MO 7.99 × 10−5

MTTF_SU 6.32 × 10−5

MTTR_MO 4.98 × 10−5

MTTR_SU 4.11 × 10−5

MTTR_LTE 3.70 × 10−5

To better illustrate the influence of the parameters, Figure 5 represents the variation
in the availability of the main parameters. Figure 5a–d show the MTTF parameters where
availability tends to increase with the increase in MTTF. Figure 5e,f show that increasing
MTTR reduces availability. The variation in the model parameters provides an overview of
the system’s behavior.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Availability results varying the mean time to repair (MTTR)/MTTF: (a) MTTF_CA (camera);
(b) MTTF_HW (hardware); (c) MTTF_ST (storage); (d) MTTF_OS (operating system); (e) MTTR_CA (camera);
and (f) MTTR_ST (storage).

5.2.2. Sensitivity Analysis

This section presents the sensitivity analysis with DoE [29]. The established factors
were the MTTF and the MTTR of each constituent component of the system. We used two
levels for the factors of the experiment. The first level refers to a decrement of 50% under
the base value shown in Table 7. The second level refers to an increment of 50% under the
base value. Table 5 presented the factors and levels used to perform the DoE based on the
availability metric.

Table 5. Factors (in hours) and design of experiment (DoE) levels for the availability metric.

Factors Level 1 Level 2

MTTF_MO 230,500 691,500
MTTR_MO 0.5 1.5
MTTF_SU 22,478.5 67,435.5
MTTR_SU 0.5 1.5
MTTF_HW 4380 13,140
MTTR_HW 4 12
MTTF_OS 1400 4200
MTTR_OS 0.5 1.5
MTTF_ST 720 2160
MTTR_ST 0.5 1.5
MTTF_DD 1258 3774
MTTR_DD 0.1275 0.3825
MTTF_CT 629 1887
MTTR_CT 0.119 0.357
MTTF_LTE 75,000 225,000
MTTR_LTE 0.5 1.5
MTTF_CA 45 135
MTTR_CA 0.5 1.5

Figure 6 shows the Pareto graph for factors related to the availability metric. The
effects of the MTTR_CA factor and the MTTF_CA factor have more significant influence under
availability. Therefore, changing the mean repair time’s values and the mean failure time
of the cameras is decisive in the efficiency of the surveillance system.
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Figure 6. Influence of factors on the availability metric.

Figure 7 shows the main effects graph for the availability metric. The graph represents
the availability to perform the tests at each level for each of the defined factors. In this
graph, the more vertical the line, the more significant influence that factor has on system
availability. As shown in the Pareto graph, in this main effect graph, the MTTF_CA factor
and the MTTR_CA factor are the factors that have the most significant effect on availability.
MTTF_CA, in its first level, has an availability of 97.3%, and in its second level, it has an
availability of 98.7%; therefore, it was a significant increase in availability. In its first level
of MTTR_CA, it has an availability of 98.7%, and in its second level, it has an availability of
97.3%; therefore, it was a significant reduction in availability. MTTR _ST, in its first level,
has an availability of 98.3%, and in its second level, it has an availability of 97.7%; therefore,
it was also a significant reduction in availability. The remaining factors are not relevant
to availability.

Figure 7. Main effects for availability.

As shown in the previous graph, the three factors that most influence system avail-
ability were highlighted, the MTTR_ST, the MTTR_CA, and the MTTF_CA. Figure 8 shows the
interaction graph for these three factors. With this graph, it is possible to analyze which
levels have more significant interference in the experiments’ final result. In other words,



Electronics 2021, 10, 876 13 of 19

we can say that the higher the intersection of the lines, the greater the interaction between
the factors. In the first interaction, MTTR_ST has a significant impact on availability when
there are changes in its levels, at the moment when MTTR_CA is at its second level. In the
second interaction, MTTR_ST has a relevant impact on availability when there are changes
in its levels, at the moment when MTTF_CA is at its first level. Finally, in the last interaction,
the change in MTTR_CA levels has no significant impact on availability at the time that
MTTF_CA assumes its two levels.

Figure 8. Factor interactions for availability.

6. A Case Study of Surveillance Monitoring Systems

This section presents a case study of the surveillance monitoring system when varying
the number of wireless base stations since the number of cameras was the most impacting
factor in the sensitivity analyses.

6.1. Scenarios and Metrics

Cameras are the components that have the most significant effect on the availability of
the surveillance system. The cameras are operational when the radio station is operational.
When we increase the number of wireless base stations; as a result, we increase the number
of cameras in the surveillance system. Thus, three different scenarios were used to assess
the availability of the system: A, B, and C. The scenarios explored the impact of using
redundancy on wireless base stations. Figure 9 shows the states of wireless base stations in
the three scenarios with one, two, and three wireless base stations in operation, respectively.

LTE

Scenario A   Scenario B   Scenario C

Figure 9. LTE Number.

Two evaluations were adopted at this stage: availability and downtime, considering
hours per year. Table 6 presents the metrics for calculating the system availability in each
scenario. The downtime (D) can be obtained by D = (1− A)× 8760, where A represents the
system availability and 8760 represents the number of hours in a year.
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Table 6. Reward definitions of availability metric.

Scenario Availability Metric

A A = P{(#CT_U>0)AND(#S_U>0)AND(#MO_U>0)AND
(#CA_U=CAN1)}

B B = P{(#CT_U>0)AND(#S_U>0)AND(#MO_U>0)AND
((#CA_U=CAN1)OR(#CA2_U=CAN2))}

C C = P{(#CT_U>0)AND(#S_U>0)AND(#MO_U>0)AND
((#CA_U=CAN1)OR(#CA2_U=CAN2)OR(#CA3_U=CAN3))}

6.2. Numerical Analysis Results

Some input parameters are needed to evaluate the proposed model. Failure and repair
times were taken from the manuals and manufacturing datasheets for each component.
Table 7 shows all MTTF and MTTR values used in this case study.

Table 7. Model input parameters.

Component MTTFMTTFMTTF (h) MTTRMTTRMTTR (h)

Modem 4G 461,000 1
Supervisor 44,957 1

Radio stations (1, 2, and 3) 150,000 1
Camera (1, 2, and 3) 90 1

Hardware (MEC server) 8760 8
Operational system (MEC

server) 2800 1

Storage (MEC server) 1440 1
Daemon docker (MEC server) 2516 0.255

Containers (MEC server) 1258 0.238

Figure 10 shows the results of the availability and downtime of the surveillance
system in smart cities. The results were obtained by simulation using the Mercury tool [30].
Scenario C has the highest availability (99.6533%), followed by scenario B (99.6340%)
and scenario A (98.5264%). These results reveal that scenario C presents 30.36 h/year of
inactivity, while scenario B has 32.05 h/year, and scenario C, 129.08 h/year. Scenario C
has the highest availability because it has a greater redundancy in wireless base stations
regarding the other scenarios. Thus, if two towers do not work, the system will still work.

(a) (b)

Figure 10. Levels of availability (a) and downtime (b) in relation to the surveillance system in smart
cities for the proposed scenarios.
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The addition of a redundancy (two wireless base stations) had a significant impact
on the system’s availability. However, the use of three wireless base stations did not have
such a high impact than two wireless base stations. When adding redundancy, the system
does not stop working when one of the wireless base stations fails.

6.3. Capacity-Oiented Availability Assessment

Capacity-oriented availability (COA) assesses how the system is delivered, therefore,
it does not consider only states of availability or unavailability, but the real impact of
these factors in service delivery. The COA calculation considers pci as the operational
processing capacity or the amount of resources available at any state si, while πi describes
the steady state availability for the πi state, a set with all available states know as US it is
also considered and the maximum processing capacity of the system MPC. Thus, we can
calculate the capacity-oriented availability by Equation (3) [31]:

COA =
∑si∈US pci × πi

MPC
(3)

The analyses of the COA of the case-studied surveillance system are shown in
Figure 11. Figure 11a depicts the difference of COA in three scenarios A, B, and C, while,
Figure 11b shows the sensitivity of COA with respect to the variation of the number of
cameras in the scenarios. Figure 11c,d present the sensitivity of COA with respect to the
mean time to failure and repair of cameras in the scenarios, respectively.
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Figure 11. Capacity-oriented availability of a surveillance system: (a) COA under default parameters;
(b) COA with respect to the number of cameras; (c) COA with respect to MTTF_CA; and (d) COA with
respect to MTTR_CA.

As shown in Figure 11a, the analysis results of the surveillance system’s COA also
agree with the analysis results of the resources’ SSA in Figure 11a in the way that (i) the
solution of double redundancy in scenario B obtains a significant impact on COA of the
system; (ii) while triple redundancy in scenario C gains the highest value of COA in
comparison to other cases. This indicates that the redundancy of wireless base stations
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does not only improve the availability of physical systems but also increases the availability
of service capacity that the system can maintain.

In Figure 11b, we can see the common characteristics of the COA’s sensitivity with
respect to the number of cameras in each scenario, in which the value of COA increases
as soon as the number of surveillance cameras connected to each wireless base station
increases. We also observed that when the number of cameras was big enough, the
improvement in COA was marginal. Since the number of failed cameras at a time in the
redundant scenarios B and C can be much bigger than that in the case of scenario A within
the total amount of cameras, COA in scenario A shows a higher sensitivity with respect to
the number of cameras in comparison with scenarios B and C.

In Figure 11c, the sensitivity of the surveillance system’s COA also confirms with that
the resource availability in Figure 5a of the original system architecture. More specifically,
when the cameras have a higher value of a mean time to failure, the system also gains a
higher COA. In contrast to the sensitivity of COA with respect to to the number of cameras,
the sensitivity of COA with respect to the MTTF of cameras in the scenario A was apparently
lower than that in scenarios B and C. This was due to the fact that higher values of the
cameras’ MTTF roughly meant a lower amount of cameras may encounter with uncertain
failures at a time; therefore, the system can maintain the highest capacity of cameras in the
scenario C, and the lower one in scenario B and the lowest one in scenario A.

In Figure 11d, the system’s COA rapidly decreases when it takes a longer time to
recover a failed camera in all scenarios A, B, and C. The COA values in scenario A are also
lower compared to those in the scenarios B and C when the MTTR of cameras varies. This is
to say that if the recovery of cameras takes longer time, it may cause a higher amount of
failed cameras at a time and therefore the system in scenario A with the lowest number of
cameras can maintain the lowest value of COA for operational services.

As of the above analyses, since the wireless base stations play an important role in
the system architecture (Figure 1) for uninterrupted data transactions from surveillance
cameras to the centered MEC server and remote supervisors, the redundancy of wireless
base stations apparently improves the system availability for service capacity. Furthermore,
while increasing the number of surveillance cameras can apparently enhance the COA of
the system, choosing cameras with better quality to guarantee higher values of a mean time
to failure and also improving maintenance services to reduce the mean time to recovery of
failed cameras are the feasible approaches to obtain higher availability of service capacity.

6.4. Discussions
6.4.1. Dependability Analogy

As we investigated carefully in literature, there has clearly not been a comprehensive
study on the dependability assessment of a camera surveillance system in smart cities
in the similar manner as in this work. To the best of our knowledge, our work can be
distinguished as one of the first studies in the research area of dependability assessment for
camera surveillance systems. Therefore, we would like to provide a slight analogy between
our work and one of previous works which adopted a similar methodology and/or analysis
metrics on slightly similar systems. Matos et al. presented in [32] sensitivity analyses for
availability metrics of a mobile cloud computing system. The system architecture consisted
of a cloud station providing computing services for a mobile client through a wireless
communication channel. The system was assessed using a hierarchy of reliability block
diagram (RBD) and continuous-time Markov chain (CTMC) models; thus, it failed to
explicitly incorporate dependencies between the system components. Moreover, the work
did not consider the reliability of the system without recovery. However, the sensitivity
of parameters were performed in a comprehensive manner using a similar methodology
to our work. Since, the system architecture consisted of similar parts as our considered
surveillance system (a server domain, a communication channel, and remote devices), the
availability analysis results of the mobile cloud computing system in the reference paper
are at the same level as our availability results (two to three #9s). Based on the sensitivity
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analyses in our works as compared to the previous work, we also found that (i) the system
availability can be enhanced upon a shorter/reduced set of impacting parameters that
cause sensitive variation of steady state availability (thus, an analyst should focus on
these parameters), (ii) parameters at the highest positions in the sensitivity ranking list
are literally related to critical parts in the system architecture, such as remote devices
(surveillance cameras in our work, and mobile devices in the previous work) and the
computing server and storage at server domains.

6.4.2. Feasible Modeling Extension

The system architecture presented in Figure 1 is slightly simplified only to show the
main illustration of a general surveillance system in smart cities. We tried to keep the system
architecture design simple due to the generality desired in the model. We formulated a
model capable of representing surveillance systems with any specific requirements. The
designer can adapt the model after while if needed.

6.4.3. Surveillance Test-Bed

The most credible findings of this study can be obtained through the synthesis and
evaluation of theoretical studies with experimental and realistic test-bed implementations
in real-world circumstances. Nevertheless, our study in this work provided a prelim-
inary and theoretical basis for future practical experiments on real-world surveillance
systems. It is therefore important to develop a real-world surveillance test-bed with dif-
ferent configurations of software/hardware components to compare and highlight the
model-driven analysis results obtained in this work. We considered this a feasible extension
in future work.

7. Conclusions

In this paper, we proposed SPN models for dependability modeling and the evaluation
of a typical surveillance monitoring system in smart cities. Reliability and availability
attributes, as essential dependability representatives for high quality of service, were
investigated in a comprehensive manner. The reliability assessment was performed by
varying surveillance cameras’ MTTF, showed an increase in reliability when increasing
their respective MTTF. Furthermore, various scenarios for availability evaluation were
investigated, making it possible to observe each component’s impact. The best results
were indicated in the scenarios with a high level of redundancy for wireless base stations.
Sensitivity analysis was applied to identify the components that have the most significant
impact on availability. In this way, the impact of different MTTF and MTTR values for each
component was measured. Sensitivity analysis showed that specific components have
a more significant impact on availability. To reinforce the sensitivity analysis results,
we used the DoE method to precisely visualize the impact of the MTTF and MTTR values of
each component on the availability of the system. On the other hand, system availability
can be enhanced in different ways, such as selecting components with a better MTTF.
Furthermore, this study also pointed out that the camera is apparently the most critical
component of the system that sensitively causes either a positive or negative impact on
reliability/availability for the high quality of the service of the surveillance system. Last
but not least, the combination of performance and availability models can be a proper
future extension to investigate performability issues in surveillance monitoring systems.
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