i?‘lg electronics

Article

Parallel Computation of CRC-Code on an FPGA Platform for
High Data Throughput

Dat Tran 1-2-*, Shahid Aslam 2, Nicolas Gorius 12 and George Nehmetallah !

check for

updates
Citation: Tran, D.; Aslam, S.; Gorius,
N.; Nehmetallah, G. Parallel
Computation of CRC-Code on an
FPGA Platform for High Data
Throughput. Electronics 2021, 10, 866.
https:/ /doi.org/10.3390/
electronics10070866

Academic Editor: Luis Gomes

Received: 1 March 2021
Accepted: 5 April 2021
Published: 6 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Electrical Engineering and Computer Science Department, The Catholic University of America,
Washington, DC 20064, USA; nicolas.gorius@nasa.gov (N.G.); nehmetallah@cua.edu (G.N.)

2 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; shahid.aslam-1@nasa.gov

* Correspondence: 63tran@cua.edu

Abstract: With the rapid advancement of radiation hard imaging technology, space-based remote
sensing instruments are becoming not only more sophisticated but are also generating substantially
more amounts of data for rapid processing. For applications that rely on data transmitted from
a planetary probe to a relay spacecraft to Earth, alteration or discontinuity in data over a long
transmission distance is likely to happen. Cyclic Redundancy Check (CRC) is one of the most well-
known package error check techniques in sensor networks for critical applications. However, serial
CRC computation could be a bottleneck of the throughput in such systems. In this work, we design,
implement, and validate an efficient hybrid look-up-table and matrix transformation algorithm for
high throughput parallel computational unit to speed-up the process of CRC computation using both
CPU and Field Programmable Gate Array (FPGA) with comparison of both methods.

Keywords: FPGA; CRC; parallel computing; error check

1. Introduction

NASA Goddard Space Flight Center is currently working on several space based
thermal radiometer concepts (e.g., [1,2]). One of these concepts is the Ice-Giants Net-flux
Radiometer (IG-NFR) being developed for a future Uranus or Neptune probe mission [3].
IG-NEFR is capable of measuring energy fluxes in seven spectral bands from 0.2 um to
300 pm, each with a 10° field-of-view (FOV) projected into the sky. As the probe descends
through the planetary atmosphere, a motor drives the IG-NFR field-of-view sequentially
and repetitively in clockwise and anti-clockwise directions to five distinct viewing angles.
Figure 1 shows a mechanical drawing and a system block diagram of the IG-NFR instru-
ment. The scientific integrity of IG-NFR relies on all seven spectral channels being data
logged simultaneously (in parallel). Along with scientific data, there are also auxiliary data
and thermal data to aid with understanding of the scientific data [2]. Here, we will use
the IG-NFR as an example space-based instrument to demonstrate error check high data
throughput using parallel computation of the CRC-code. Table 1 shows details of both
science data and auxiliary data generated by the instrument. As the probe descends rapidly
into the atmosphere, remote sensing measurements and error checking computations must
be executed in a real-time manner before the spacecraft loses communication connection
with the probe, e.g., for a Uranus probe, instruments are being designed for a 10-20 bar
atmospheric pressure survival. The processor card proposed in this work is a hybrid
platform that contains both an FPGA and an embedded processor. It is the heart of the
instrument which controls the IG-NFR, acquires data, packages data, and then forwards
it to the probe communication protocol to the spacecraft. The system block diagram is
shown in Figure 2. In this paper, we will focus on how to implement the CRC error check
protocol on an FPGA to meet the real-time requirements dictated by the constraints of the
physical system.

Electronics 2021, 10, 866. https://doi.org/10.3390/ electronics10070866

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10070866
https://doi.org/10.3390/electronics10070866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10070866
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/7/866?type=check_update&version=2

Electronics 2021, 10, 866 20f11

FPA housed in a Detector =
vacuum micro-vessel FOV’s rotate \)
to five views

Sensor Head Adaptor
(houses drive assembly)

Main Electronics Box

(houses controller and i—{‘;‘f}‘)}t‘ ?4' Cc:: Rotation
wer boards) Sive i
B Width ~ 11 cm s
(a) (b)

Figure 1. (a) Mechanical drawing of the IG-NFR instrument concept; (b) IG-NFR accommodated inside the probe.

Table 1. IG-NFR data.

Name Number of Bits ~ Number of Channels Total Comment
Thermopile Data + Time Stamp 32 8 256 Science Data
Thermistor data on thermopile 16 8 128 Science Data
Hot Target Temperature 12 1 12 Thermal data
Fan-out board Temperature 12 1 12 Thermal data
Vessel Temperature 12 1 12 Thermal data
Windows Temperature 12 1 12 Thermal data
Cold Target Temperature 12 1 12 Thermal data
LED status 1 1 1 Auxiliary data, 1 bit for ON/OFF
Motor Position 3 1 3 Auxiliary data, 3 bits for 7 positions
Survival Heater Status 1 1 1 Auxiliary data, 1 bit for ON/OFF
Thermopile Data + Time Stamp 32 8 256 Science Data

Vacuum Micro-Vessel

Detector Focal Plane

= - Thermopile detectors (8x) T
= Detector thermistors (8x) Probe
> —> Board thermistor (1x)
DC/DC
Converter —
m (EM Fliter

Ll X Serial J Serial
| ADC — Processor Card > o 1« Interface

eSS T

1 Power ~ PID Heater :

] Switching Board Control B |
Main Electronics Box -‘ | -

b A W

Figure 2. System block diagram. The CRC error check will run on the processor card shown in the main electronics box.

Electronics 2021, 10, 866

30f11

2. CRC Background

A CRC-32 checksum algorithm is often used in data transmission and data storage
systems to detect any alteration or corruption of the data [4]. Many digital sensor devices
or wireless networks employ this technique in the form of a packet error check [5-11]. The
packet error checking (PEC) is augmented with original data to check if there have been
any modifications in the data packet. Both hardware and software CRC generation in
serial format are currently well understood. However, with the significant increase of the
amount of data being produced by sensor systems, serial CRC generation methods could
create a throughput bottleneck that prevent such systems from achieving high performance
results [12].

The first version of CRC based computational algorithm was proposed by Peterson
and Brown [9]. This algorithm only processes one-bit at a time by utilizing a simple shift
register. For an n-bit message, the algorithm’s time complexity is O(n), which significantly
affects the throughput of a system. Since then, several techniques have been proposed with
the focus on increasing the efficiency of the algorithm that are both software and hardware
friendly for implementation.

To obtain high throughput, Sarwate et al. [13] proposed to use a table-based CRC
algorithm which can process one byte at a time. This resulted in an 8x speedup than the
original serial method by reducing the number of iterative steps it needed to compute
the CRC code. The algorithm can be generalized to process multiple bytes at a time,
but it always comes down to one thing: trade-off between memory and time complexity.
For practical purposes, the table must be small enough to fit into a cache memory for
quick access; otherwise, the algorithm will be slowed down significantly due to memory
assessment penalty. For example, Sarwate’s table-based algorithm to process 32 bits at a
time will require a 23? = 4G entries that is multiple times larger than the cache memory
of the commercial system. To deal with this problem, Kounavis and Berry [14] proposed
methods called Slicing-by-4 and Slicing-by-8 that use multiple small lookup tables to
avoid a memory explosion problem. Moreover, it can be done in parallel via pipelined or
concurrency processing.

It is interesting to note that a CRC shift register can also be viewed as a linear system.
From a linear system perspective, state-transformation can be computed using matrix
multiplication. For example, a CRC code of a message M can be transformed to CRC code
of message M appended by multiple zeros through the multiplication with a pre-computed
matrix. Derby et al. [15] proposed a parallelization method by taking advantage of this
property of the CRC computation circuit.

Most of the previous research [4-10] can be classified into two main categories:
(1) lookup table (LUT) based and (2) matrix transformation (MT) based methods. Re-
cently, parallel platforms such as FPGAs or multi-core CPUs have shown promising results
in on-board processing capabilities. The traditional serial CRC generation method does
not fully take advantage of the resources from such systems. Several researchers have
implemented parallel CRC generation methods as both software algorithms and hardware
circuitry [16,17]. In this paper, we propose a hybrid algorithm called hybrid LUT-MT that
takes benefits of both methods to speed-up the process while maintaining the memory
requirements to a minimum. Chi et al. [18] have a similar concept, but they focused mainly
on a software implementation on a multi-core CPU system. In addition, their algorithm
will not achieve the theoretical speed-up factor due to thread synchronization management
overhead. In this paper, we will describe in detail how to develop the building blocks
of the algorithm for an FPGA platform. The system is flexible, scalable, and adaptable
which makes it easy to be integrated into a high-performance FPGA-based sensor sys-
tem. Finally, we will show and analyze results of resource allocation vs. throughput for
different configurations.

Electronics 2021, 10, 866 40f 11

3. CRC Computational Process

To fully understand the proposed algorithm, we will briefly revisit the serial CRC gen-
eration process, lookup table based method, matrix transformation method, and introduce
the proposed hybrid LUT-MT algorithm.

3.1. Serial CRC Generation Process

The CRC generation process is basically a modulo-2 arithmetic of two binary poly-
nomials. For a given message M and a generator polynomial G, both can be expressed in
polynomial form as [18]:

M(x) = 81_1 Lix!, (1)

X s @
where m and g are the highest degree of the corresponding polynomial, while g; and [; are
binary coefficients that can be either 1 or 0 at bit position x.. For example, a 32-bit polynomial
for CRC-32 can be expressed by both binary formats as 2’b10000010011000001000111011011011
or G(x) = x32 4+ x20 4+ xB 4+ x22 4+ x10 £ x12 4 x4 510 138 4 %7 4+ x5 + x* + x%2 + x1 + X0, The
CRC value of the message M can be obtained by the following equation [16]:

CRC[M(x)] = M(x)-x8 mod G(x), (3)

The hardware implementation and the corresponding software algorithm are shown
in Figure 3 and Algorithm 1, respectively.

Algorithm 1. Bitwise CRC.

1: Input: Byte Array Data
2: Crc = OXFFFFFFFF
3: While index < size of data do

4: CRC = CRC XOR data[index]

5: forj=0;j<8;j++do

6: CRC = (CRC >> 1) XOR -(CRC AND 1) AND G(x)
7: end for

8: index + 1

9: end while

10: Return CRC XOR O0XFFFFFFFF

G(x) =232 + 220 + 223 + 222 £ x10 4 12 a1l 4 210 4 58 a7 +a% +xt +x? + x4 20
i o Xy X2 X31
D Q D Q D Qp— —®— D a

Clk Clk Clk L N Clk

CLK r f I/ (/

Figure 3. Partial structure of the linear shift register for G(x).

After computing the CRC, it is appended to the original message for later use. Since
the method only processes one bit at a time, it is labeled as a bitwise CRC algorithm. The
time complexity of the algorithm is proportional to the size of the message data stream that
renders it unpractical to use for big chunks of data.

3.2. The Sarwate’s Algorithm and Slicing by an N Algorithm

To speed up the process, instead of processing one bit at a time, Sarwate et al. [12]
proposed an algorithm that can process eight bits (one byte) at a time. In this algorithm,

Electronics 2021, 10, 866

50f11

a lookup table with a 256-entry is precomputed and stored in memory. As mentioned
previously, a lookup table must fit into the cache memory to make the process practical.
The index of the lookup table is computed by XORing eight bits of current CRC code of
that iteration and the current data byte. The new CRC is obtained by shifting current CRC
by eight bits to the right then XORing it with the output of the lookup table. Then, it moves
to the next byte and continues until the end of all the data bytes of the input message.
Pseudocode of Sarwate’s algorithm is shown in Algorithm 2.

Algorithm 2. Sarwate Algorithm.

1: Input: Byte Array Data

2: Crc = OXFFFFFFFF

3: While index < size of data do

4: CRC = (CRC >> 8) XOR TABLE[(CRC AND 0xFF) XOR data[index]]
5 index + 1

6: end while

7: Return CRC XOR 0XFFFFFFFF

Using one single lookup table does not grant much benefit anymore. In order to
keep memory requirements reasonably small, a “Slicing-by-N" algorithm uses a multiple
256 entries lookup table which can be derived from the lookup table proposed in Sarwate’s
algorithm. More details about the method can be found in Ref. [13]. By performing
multiple lookups at once, a modern CPU can speed-up the process by fine-grained parallel
processing. As reported in Ref. [14], the speed-up factor can be varied from 2x to 3x
depending on the number of tables. Algorithm 3 shows Slicing-by-4 pseudocode, but it
can be extended to a general case that uses N tables.

Algorithm 3. Slicing by 4 Algorithm.

1: Input: Byte Array Data

2: Crc = OXFFFFFFFF

3: While index < size of data do

CRC = CRC XOR datalindex:index+3]
XOR TABLE1[(CRC AND 0xFF)]
XOR TABLE2[((CRC >> 8) AND OxFF)]
XOR TABLE3[((CRC >> 16) AND O0xFF)]
XOR TABLE4[((CRC >> 24) AND OxFF)]

O PN 9

: index + 4
10: end while
11: Return CRC XOR 0XFFFFFFFF

3.3. Matrix Transformation

As mentioned before, the CRC linear shift register can be viewed as a linear system.
Based on a superposition property, we can decompose the original input message M into
multiple small blocks with m-bytes and compute their corresponding CRCs. The final CRC
of the whole message is obtained by XORing all the partial CRCs. This method allows us
to increase the throughput of the system by parallel computation of the partial CRC of
each individual block as shown in Figure 4. One can pre-compute one lookup table for one
block. However, it is unpractical to generate lookup tables for a very long input message.
The matrix transformation method can be used where it requires only one look-up table for
the first block. The CRC code of other blocks can be obtained by multiplying their CRC
codes with their corresponding matrices based on Galois Filed Multiplication [14]. The
linear shift register in Figure 3 can be described by the state vector state equation:

x(n+1) = Ax(n) +bu(n)x(n +1) = Ax(n) + bu(n), 4)

Electronics 2021, 10, 866 6of 11
where A is the g x g matrix derived from the input CRC polynomial and its degree:
o 0 0 -0 —g
1 0 0 -0 -1
A = 0 1 0 -0 —&2 (5)
Cee e 0 :
0o 0 0 -1 —go1
and bu(n) is the input term of the system at a given state.
| o~ | N | 1 0 | cre
| m byte | m x (N-1) Byte Zeros | CRC[N —1]
®
| m byte | m x (N-2) Byte Zeros | CRC[N — 2]
s
] | B
L]
| m byte | m Byte Zeros | CRC[1]
®

CRCTo]

Figure 4. Superposition property of the CRC generation method.

If we append the input with m bytes of zeros, the CRC code only changes based on its
current state. It can be expressed as the following formula:

x(n+m) = A"x(n) ©)

3.4. Hybrid Method

To fully leverage parallel computation of such platforms, a hybrid algorithm combin-
ing both slicing-by-N algorithm and matrix multiplication has been introduced [18]. From a
system perspective, slicing-by-N is fine-grained parallelism while a matrix transformation
method is coarse-grained parallelism. For a given input message M, it is split into N blocks
and each block is processed simultaneously with a slicing-by-N algorithm. Finally, all
partial CRCs of each block are multiplied by their corresponding modular matrices to align
their positions and recombine by XORing all of them to obtain the final CRC of the whole
message. The system is shown in Figure 5.

The system can be implemented on a multi-core CPU; however, as mentioned earlier
and emphasized here, it will never achieve the theoretical speed-up factor due to thread
synchronization management overhead. In the following, we describe the development of
a parallel CRC computation system based on the hybrid method to take advantage of the
parallelism offered by the FPGAs.

Electronics 2021, 10, 866

7of 11

Word N-1

Word N-2 A Word 1 Word 0

Slicing

Mn1

Slicing Y Slicing (My) Slicing

Start
—

Figure 5. Hybrid system using both slicing-by-N and matrix transformation.

FSM

SR e RaT T \
Counter ! slicing m Slicing m Sl|cmg| m Slicing '

Ready .+

4. FPGA Implementation

To keep the system flexible, the algorithm is divided into several sub-modules: the
multiplier unit, the slicing unit, and the finite state machine (FSM) unit. The FSM is the
core unit of the system, and it plays an important role in scheduling and synchronizing
other units. The overall architecture of the system is shown in Figure 6. The flowchart of
the FSM is shown in Figure 6.

* Register B xor &) :muLTIPLIER

INPUT BUFFER

i

iy
SExY

Figure 6. Overall architecture of the parallel CRC computational system. For clarity, not all connections are shown. The

counter signal and the ready signal are distributed to all slicing unit and register unit correspondingly.

As shown in Figure 7, initially, the FSM is in the IDLE state waiting for a start signal to
go from 0 to 1. When the FSM starts, in the first cycle, it asserts the LD signal to one to load
the data into the input buffer and turn off the LD signal back to zero immediately in the
next cycle. After the input message has been loaded into the buffer and hold valid during
the process, the counter begins to count in the next cycle. The process iterates over K cycles
where K is calculated as shown in the formula below:

M

K= ow 7

with M is the data buffer length and S is the number of slicing-by-N units. After the
process ends, each output from a Slicing-by-N computation unit is multiplied with its

Electronics 2021, 10, 866

8of 11

-

Start=1
D=1
LD=0

a)

corresponding modular matrix. The multiplication is carried out in single clock since the
modular matrix is precomputed and can be realized with only XOR operation. Finally, the
ready is asserted to 1, and the partial CRC results are loaded into the registers. The final
CRC of the whole input is obtained by XORing all partial CRC results as mentioned in the
previous section.

Shift Register

w ! ! ! !
XOR XOR XOR XOR

Matrix Matrix || 7 Matrix Matrix

PR

READY =1 ?

[Reth;r }J

l OQutput

b}

Figure 7. (a) FSM of the architecture and (b) Implementation of the Slicing-by-N computation unit.

5. Experimental Results

Prior to the implementation on FPGA, we simulate the algorithm by using multi-
threaded C++ program and verify the results by comparing it with the serial CRC algorithm.
The hybrid algorithm passes all the test cases where data are from 128 KB to 2 MB with
256 KB increasement. In addition, we also measure the performance of the simulation.
A linear congruential generator is used to generate input for various data lengths. Each
test configuration is repeated 20 times, each time with different seeds for random testing.
To cancel the noise in the performance measurement, we average 20 test cases of a given
configuration. Figure 8 shows performance results. Figure 9 shows the comparison between
Sarwate algorithm, Matrix Multiplication method, and the hybrid method to validate the
effectiveness of parallel computing.

BENCHMARK

128 KB to 2 MB with
256 KB increasement

Time (us)

4 2 1
Threads

Figure 8. Performance results of a multi-threaded C++ program.

Electronics 2021, 10, 866 9of 11

1e7 Comparision between three methods
16 1
E Sarwate
14 {4 BN Matrix
N Hybrid
— 121
L}
2
S 10 A
@
e 08 1
m
£
w 0.6 4
£
=
0.4 1
0.2 1

128 384 512 768 1024 1280 1536 1792 2048
DATA SIZE (KB)

Figure 9. Comparison between three methods, hybrid methods running with two threads.

As expected, the CPU version could not achieve a speed factor equal to the number of
threads used due to thread management overhead and other CPU resources sharing (e.g.,
data transfer, cache memory). Figure 10 below shows speed up achieved with the number
of threads used in normalized time. Unlike a CPU, an FPGA is parallel in nature; therefore,
it would be able to achieve speed-up factors approaching theoretical results.

100 1

90 4

80 4

70 1

Time

60 4

S0 +

40 4

”1

.

T T T

2 4 6 8 10 12
Threads

Figure 10. Measured normalized operating time vs. threads for 2 MB data.

To verify the functionality of the parallel CRC computational system, we synthesized
and implemented the architecture on the ZEM5310 FPGA evaluation board from Opal
Kelly Inc. (Portland, OR, USA). This board is a commercial, off-the-shelf FPGA board that
contains a USB 3.0 driver and supports C++ packages. A test program has been written
in C++ to generate the data, transfer the data to the FPGA via USB protocol, obtain the
CRC results, and compare it with software computed CRC results. The experiment has

Electronics 2021, 10, 866

10 of 11

successfully passed all the test cases. The test cases are similar to what we described in the
experiment with CPU. The test system is described in Figure 11.

Test
Configuration |————{ C++Program

VOdd

. Controller
Desktop Application

Figure 11. Simplified diagram of the test system.

To analyze the effectiveness of the parallel CRC computational system, we measured
the number of cycles against the number of logic elements needed to implement the
algorithm on an FPGA platform for various data lengths. The logic element is defined
as the smallest logic block of the FPGA family architecture which consists of a 4-input
lookup table and a D-flipflop. All of the experiments are synthesized and measured by
using Quartus compiler. Figure 12 below shows the measurement results with the system
clock at 100 MHz. It is interesting to note that resource investment is only useful when the
data length is sufficient long. For example, the number of cycles to compute the CRC does
not reduce much in the case of 2 KB data length.

120

100

Cycle

20

570 855 1140 1425 1710 1995 2280
Logic Elements

H 6 8 10 12 14 16
Computational Units

Figure 12. Number of cycles vs. logic elements for different data lengths.

6. Conclusions and Future Work

In this paper, we have demonstrated the implementation of an efficient hybrid lookup
table and matrix transformation algorithm for high throughput parallel computational
unit on an FPGA platform. This algorithm will have significant applications in space-
based remote sensing instrumentation by ensuring the signal integrity of the data. We

Electronics 2021, 10, 866 11 of 11

also analyzed the throughput of the system vs. resource utilization for several cases and
showed the effectiveness of the system versus data length. In the future, to further optimize
the system, an advanced multi-port ROM topology can be used to reduce the number
of logic elements and the possibility to use dual port Random-Access-Memory (RAM)
as shared memory to transfer data from the resource to CRC module Another possible
improvement is re-architecting the system to use pipelining where both data loading and
CRC computation can be performed without the need of using the FSM.

Author Contributions: Writing—original draft, D.T.; Writing-review and editing, S.A., N.G. and G.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the NASA Grant and Cooperative Agreement Federal Award
Identification No.: S0NSSC20MO0017.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.
11.
12.
13.
14.

15.

16.

17.

18.

Aslam, S.; Amato, M.; Bowles, N.; Calcutt, S.; Hewagama, T.; Howard, J.; Howett, C.; Hsieh, W.-T.; Hurford, T.; Hurley, J.;
et al. Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions. Acta Astronautica 2016, 128,
628-639. [CrossRef]

Aslam, S.; Achterberg, R.K.; Calcutt, S.B.; Cottini, V.; Gorius, N.J.; Hewagama, T.; Irwin, P.G.; Nixon, C.A.; Quilligan, G,;
Roos-Serote, M.; et al. Advanced Net Flux Radiometer for the Ice Giants. Space Sci. Rev. 2020, 216, 11. [CrossRef]

Mousis, O.; Atkinson, D.H.; Cavalié, T.; Fletcher, L.N.; Amato, M.].; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.;
et al. Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 2018, 155, 12—40. [CrossRef]

Lin, B.-C. System and Method for Storing a Data File Backup. U.S. Patent US7533291B2, 12 May 2009.

Hu, T.; Zheng, M,; Tan,].; Zhu, L.; Miao, W. Intelligent photovoltaic monitoring based on solar irradiance big data and wireless
sensor networks. Ad. Hoc. Netw. 2015, 35, 127-136. [CrossRef]

Elahi, A.; Gschwender, A. Zigbee Wireless Sensor and Control Network; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009.
Berger, C. Automating Acceptance Tests for Sensor- and Actuator-Based Systems on the Example of Autonomous Vehicles; Shaker Verlag
Gmbh: Aachen, Germany, 2010.

Brito, J.; Gomes, T.; Miranda, J.; Monteiro, L.; Cabral, J.; Mendes, J.; Monteiro, J.L. An Intelligent Home Automation Control
System Based on a Novel Heat Pump and Wireless Sensor Networks. In Proceedings of the 2014 IEEE 23rd International
Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1-4 June 2014; pp. 1448-1453. [CrossRef]

Kiigiik, G.; Basaran, C. Reducing Energy Consumption of Wireless Sensor Networks through Processor Optimizations. J. Comput.
2007, 2, 67-74. [CrossRef]

Wu, H. A Brief Overview of CRC Implementation for 5G NR. Available online: https://www.intechopen.com/online-first/a-
brief-overview-of-crc-implementation-for-5g-nr (accessed on 20 October 2020).

Wesley Peterson, W. Available online: https:/ /en.wikipedia.org/wiki/W._Wesley_Peterson (accessed on 20 October 2020).
Sarwate, D.V. Computation of cyclic redundancy checks via table look-up. Commun. ACM 1988, 31, 1008-1013. [CrossRef]
Kounavis, M.E.; Berry, FEL. Novel Table Lookup-Based Algorithms for High-Performance CRC Generation. IEEE Trans. Comput.
2008, 57, 1550-1560. [CrossRef]

Derby, J. High-speed CRC computation using state-space transformations. In Proceedings of the GLOBECOM’01. IEEE Global
Telecommunications Conference (Cat. No.01CH37270), San Antonio, TX, USA, 25-29 November 2001; pp. 166-170. [CrossRef]
Kounavis, M.E.; Berry, EL. A Systematic Approach to Building High Performance Software-Based CRC Generators. In Proceedings
of the 10th IEEE Symposium on Computers and Communications (ISCC’05), Cartagena, Murcia, Spain, 27-30 June 2005;
pp. 855-862. [CrossRef]

Mitra, J.; Nayak, T. Reconfigurable very high throughput low latency VLSI (FPGA) design architecture of CRC 32. Integration
2017, 56, 1-14. [CrossRef]

Henriksson, T.; Eriksson, H.; Nordqvist, U.; Larsson-Edefors, P; Liu, D. VLSI implementation of CRC-32 for 10 Gigabit Ethernet.
In Proceedings of the ICECS 2001, 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483),
Malta, Malta, 2-5 September 2001; p. 4.

Chi, M.; He, D,; Liu, J. Exploring Various Levels of Parallelism in High-Performance CRC Algorithms. IEEE Access 2019, 7,
32315-32326. [CrossRef]

http://doi.org/10.1016/j.actaastro.2016.08.009
http://doi.org/10.1007/s11214-019-0630-x
http://doi.org/10.1016/j.pss.2017.10.005
http://doi.org/10.1016/j.adhoc.2015.07.004
http://doi.org/10.1109/ISIE.2014.6864827
http://doi.org/10.4304/jcp.2.5.67-74
https://www.intechopen.com/online-first/a-brief-overview-of-crc-implementation-for-5g-nr
https://www.intechopen.com/online-first/a-brief-overview-of-crc-implementation-for-5g-nr
https://en.wikipedia.org/wiki/W._Wesley_Peterson
http://doi.org/10.1145/63030.63037
http://doi.org/10.1109/TC.2008.85
http://doi.org/10.1109/glocom.2001.965100
http://doi.org/10.1109/iscc.2005.18
http://doi.org/10.1016/j.vlsi.2016.09.005
http://doi.org/10.1109/ACCESS.2019.2903304

	Introduction
	CRC Background
	CRC Computational Process
	Serial CRC Generation Process
	The Sarwate’s Algorithm and Slicing by an N Algorithm
	Matrix Transformation
	Hybrid Method

	FPGA Implementation
	Experimental Results
	Conclusions and Future Work
	References

