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Abstract: We propose a robust and reliable method based on deep neural networks to estimate
the remaining useful life of lithium-ion batteries in electric vehicles. In general, the degradation
of a battery can be predicted by monitoring its internal resistance. However, prediction under
battery operation cannot be achieved using conventional methods such as electrochemical impedance
spectroscopy. The battery state can be predicted based on the change in the capacity according to
the state of health. For the proposed method, a statistical analysis of capacity fade considering the
impedance increase according to the degree of deterioration is conducted by applying a deep neural
network to diverse data from charge/discharge characteristics. Then, probabilistic predictions based
on the capacity fade trends are obtained to improve the prediction accuracy of the remaining useful
life using another deep neural network.

Keywords: aging; battery management system; deep neural network (DNN); particle filter (PF);
prognostics and health management (PHM); regression analysis; remaining useful life (RUL)

1. Introduction

Energy storage devices (i.e., batteries) for electric vehicles (EVs) are among the most
expensive components and are essential for supplying the energy required to drive these
vehicles. A malfunction of batteries and their reduced lifetime that hinders an adequate
energy supply to drive the vehicle may lead to accidents in the worst case. Accordingly,
various approaches have been proposed to increase the lifetime of batteries while maintain-
ing the size of a battery pack and protecting from electromagnetic interferences (EMIs) [1,2].
Such various efforts have improved the performance and safety of batteries used in electric
vehicles, but there is still a possibility of malfunction at any time. Therefore, the deteriora-
tion of batteries supplying power to an EV must be continuously monitored [3]. Batteries
are generally charged and discharged through repetitive electrochemical redox processes.
Hence, it is difficult to accurately predict the remaining useful life (RUL) using theoretical
models based on the mechanism of functional degradation by utilizing the data from
experimental measurements of state of charge (SOC), state of health (SOH), and state of life
(SOL) because of these nonlinear characteristics [4]. Moreover, the battery characteristics
are determined by various features such as the microscopic structure of the active materials
in the anode and cathode, as well as the operation environment, conditions, and frequency
of use [5,6]. It is cumbersome to set the requirements according to the characteristics of
the target applications. Therefore, various approaches are required to improve the battery
management system (BMS).
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To assess the reliability of a system relying on battery power, prognostics and health
management (PHM) [7,8] based on measured data can be applied. This technique is an
advancement compared with regular maintenance, corrective maintenance, and conven-
tional diagnosis of the system state [9]. Therefore, this technology can improve the function
of BMSs for EV batteries with high voltages, which can increase user and manufacturer
satisfaction [10]. Research is being actively performed on technology to predict the RUL
of lithium-ion batteries (LIBs) by applying prognostics and health management based
on machine learning [11–17]. Conventional prognostics and health management detect
deterioration or failure due to aging or harsh environments of various mechanical devices
or electronic boards such as BMS [18]. In addition, analysis and predictive diagnosis
identify and characterize anomalies, and facility management helps to maintain systems
and processes. Although most early studies on prognostics and health management have
focused on aerospace engineering, they are currently being applied to diverse areas such
as rail transportation and power generation [19–21].

In the past, RUL prediction could be achieved by measuring their impedance after
removing the batteries from a vehicle for evaluation according to the frequency based
on the potentiostatic/galvanostatic method [11,12]. During the continuous charging and
discharging of the battery, its internal parameters (e.g., conductivities of electrode active
materials and electrolyte ions) are used in this method to identify the relationship between
the battery internal resistance and discharge capacity to predict the RUL. In fact, after sev-
eral charge/discharge cycles, the battery deteriorates because of irreversible reactions,
and the discharge capacity is reduced over the cycles [22].

Other methods for RUL prediction include data analysis, model-based methods,
and hybrid methods that combine data analysis and models [11–14]. Recently, data analy-
sis has been more frequently used and involves acquiring and analyzing performance data
that change over time according to the unique characteristics of the battery. Alternatively,
physics-based methods rely on mathematical models to predict system deterioration [21,23].
Although mathematical modeling based on the analysis of the charge/discharge mecha-
nisms can provide highly accurate and interpretable results, it is difficult to model large
battery packs as opposed to single cells, and environmental variables cannot be reflected in
the model even if interlock circuits and automatic control are considered [10]. RUL predic-
tion using filtering, a statistical technique, has recently attracted research attention [13,14].
For instance, the particle filter (PF) [13], which has been primarily used in the fields of
control, location tracking, and pattern recognition, has been recently used for battery
RUL prediction.

Although data obtained from simulations of data-driven models can be used for RUL
prediction, the low accuracy and efficiency of data analysis based on statistical methods
render machine learning necessary for accurate and fast prediction. Methods based on
machine learning involve the analysis of data relevance, data stratification through mul-
tiple weighted learning models, and other related processes. Learning based on the battery
historic data allows the RUL to be predicted based on currently available data. Therefore,
the prediction accuracy depends on the quantity and quality of the collected data.

Commonly used machine learning techniques include long short-term memory (LSTM),
artificial neural networks (NNs), support vector machines (SVM), and relevance vector
machines (RVMs). Among these, NNs further developed into a generalized regression arti-
ficial neural network that estimates the relationship between the cause and the factor [24].
This technique can be effectively used in BMS because it reflects the probability of failure
of the features from the system according to the representativeness of the learned data.
Thus, it is evaluated as a promising PHM because it is the basis of deep learning and can
compensate for the limitations of prediction [25]. In addition, the regression neural network
technique is probabilistic in the prediction results, so filtering is often used to improve accu-
racy [17,19]. For example, researchers from Toyota recently obtained data from 124 battery
cells and predicted the life of the cells with a probability of approximately 90% [15]. Then,
they used the prediction to optimally charge the battery for 10 min. If the data needed for
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battery RUL prediction are insufficient, it is difficult to obtain valid predictions for a distant
horizon. Therefore, in addition to research on enhancing the performance of machine
learning algorithms, it is crucial to obtain high-quality experimental data under a variety
of conditions and determine representative features for prediction through preprocessing.

In this study, we applied deep neural networks (DNNs) to charge and discharge data
of lithium-ion batteries provided by the Ames Prognostics Center of NASA (National
Aeronautics and Space Administration), a U.S. research institute specialized in aerospace.
Then, we predicted the RUL of the batteries by analyzing 11 battery features and classi-
fying them into training and test data. The 11 features include five test environment and
test condition features and six geometric features from the curves related to the battery
deterioration, which is caused by an increase in internal resistance over charge/discharge
cycles. We implemented a machine learning algorithm in Python to learn the discharge
capacity according to each feature and then predict the capacity from unseen data. Finally,
we analyzed the capacity fading characteristics related to performance degradation with
increasing charge/discharge cycles for RUL prediction. We compared a PF, which has
been extensively used in prior studies, with the proposed prediction method regarding
estimation error considering DNN parameters such as the hidden layers and activation
functions. Furthermore, we evaluated the feature extraction and analysis according to the
training data and analyzed the findings.

2. Materials and Methods

Figure 1 shows the diagram for data preprocessing (i.e., feature extraction) and RUL
prediction adopted in this study. As the charge and discharge data of the lithium-ion
batteries are related to performance degradation that may occur over the cycles, we deter-
mined charge/discharge curve features and extracted additional features from the test
environment and condition data, obtaining 11 features. We used two DNNs to predict
the capacity fade and RUL of batteries: (i) the SOH (i.e., capacity fade) of batteries was
predicted using 11 features, and (ii) the RUL prediction was performed based on the
SOH prediction results obtained in the previous step. Finally, the prediction results are
com-pared with the test data to determine their accuracy. To validate the proposed DNNs,
the battery test data used for prediction were excluded from the training.

Figure 1. Experimental data preprocessing, battery capacity and RUL prediction, and performance
comparison performed in this study. RUL: remaining useful life; NASA: National Aeronautics and
Space Administration.

2.1. Preprocessing

To create an accurate machine learning model, big data must be refined, classified
according to the application, and prioritized according to relevance. For example, for a
learning model to determine capacity fading due to battery deterioration, the available
data include charge voltage/current, discharge voltage/current, temperature condition,
usage frequency, and production date. From the available data, the production date has a
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low relevance for capacity fading estimation. The analysis of big data related to lithium-ion
battery charge and discharge and the exclusion of irrelevant data corresponds to data
mining. In fact, regardless of data availability, accurate results may not be obtained if
redundant or irrelevant data are included in the model.

2.1.1. Data Structure

The publicly available NASA data used in this study correspond to the lithium-ion
battery charge and discharge tests. These data were collected on the Gen2 18650 lithium-
ion batteries of Idaho National Laboratory (INL: Idaho Falls, ID) under the Advanced
Technology Development (ATD) program. In addition, the data were collected in a study
from 2007 by Saha and Goebel to develop battery failure prognostics and prediction
for accident prevention in the aerospace field [16]. The study was intended to compare
and analyze data obtained via modeling and data obtained from a hardware testbed for
predicting battery deterioration.

In this study, we used the charge and discharge test data obtained from the hardware
testbed to train an RUL prediction model. The data comprised six datasets according to
the experimental conditions and were classified considering the experiment end capacity,
discharge current, discharge conditions, and experimental temperature. In addition to
the charge and discharge voltage and current during the battery cycle testing, various
types of data were included in each dataset, as shown in Figure 2. Although the measured
impedance can indicate battery deterioration or aging, it was irregularly measured after
various cycles and not in every cycle during data collection. On the other hand, although
impedance can provide accurate predictions of battery aging, the battery must be separated
from its host system, and the electrochemical impedance spectrometer used for the mea-
surements is costly. In this study, we aimed to avoid expensive equipment for determining
battery deterioration and instead use only data that can be collected during charge and
discharge from all the battery data that can be collected during the operation of an electric
vehicle to achieve RUL prediction.

Figure 2. Data structure provided by NASA from lithium-ion battery charge/discharge tests.



Electronics 2021, 10, 846 5 of 14

2.1.2. Feature Extraction

To predict the capacity at any battery cycle, features must be extracted according to
the corresponding test environment. We extracted features for machine learning from
the lithium-ion battery data provided by NASA. Figure 3 shows the current and voltage
curves during the battery charge and discharge over time. As the number of cycles in-
creased, although the curves retained a similar shape, various changes occurred in the
curves due to aging. For example, as the internal resistance increased, the constant-voltage
section gradually decreased during discharge, and the usable time continuously de-creased.
Lu et al. [26] proposed a method to extract four types of features from the curves, called
geometric features, and predicted the battery RUL by applying dimensionality re-duction
to the NASA battery data. The four geometric features are the length of the constant voltage
section, maximum curvature radius, area under the constant voltage section in the charge
current curve, and initial slope of the discharge.

Figure 3. Battery charge/discharge curves over time: (a) current variations during charge and (b) voltage variations
during discharge.

After extracting the four geometric features, we analyzed the extraction of additional
features. Figure 3a shows the current curve over 168 charge cycles for battery B0005 from
the dataset. As the number of cycles increased, the constant-voltage section increased,
and the constant-current section decreased. Figure 3b shows the voltage curve over 168 dis-
charge cycles of the battery B0005. Besides the initial slope, we extracted two additional
geometric features, namely the discharge section above 3 V and the curvature radius
of the voltage drop. Figure 4 shows the changes in current and voltage at 10, 50, 100,
and 150 charge/discharge cycles, along with the corresponding definitions of the six
extracted geometric features (a–f).

Figure 4. Extraction of geometric features from curves of (a) current during charge and (b) voltage during discharge.
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Numerous variables affect battery deterioration over time. Excluding electrochemical
elements, they can be classified as test environment and test condition variables. We used
the test temperature (test environment), discharge voltage and current (test condition),
and discharge time and charge time per cycle to complete the features for training and
evaluation of the proposed machine learning model. The output label for the model
is the capacity per cycle, and Table 1 lists the extracted features used to construct the
corresponding datasets.

Table 1. Features used in this study for RUL prediction.

No. Feature Process

1 Length of constant voltage section Charge
2 Area under constant voltage section Charge

3 Maximum radius of curvature in constant
voltage section Charge

4 Maximum slope of initial voltage curve Discharge
5 Length of voltage range above 3 V Discharge
6 Maximum radius of curvature in voltage curve Discharge
7 Discharging time
8 Charging time
9 Test temperature
10 Discharging voltage
11 Discharging current

RUL: remaining useful life.

2.2. Proposed DNNs for Capacity Fade and RUL Prediction

In a DNN structure, the input data are processed through multiple hidden layers to
obtain an output. We used two DNN models. To predict the battery capacity at a cycle,
we adopted a DNN architecture with 1 output layer, 11 input layers, and 5 hidden layers
with rectified linear unit (ReLU) activation. The training data consisted of seven of the
eight types of battery data, and the test data consisted of one of the eight types for capacity
prediction. For the second DNN model, we considered 1 output layer, 65 hidden layers,
and the capacity predicted in the first model as the input. Figure 5 shows the structure of
the DNN proposed in the first step (i.e., capacity fading prediction). If the SOH predicted
by the first model is accumulated, then time-series prediction is performed for the RUL
prediction in the next step.

Figure 5. Deep neural network (DNN) algorithm framework designed for RUL prediction.
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2.3. Data-Based PF for Comparison

The PF was introduced in 1993 to obtain numerical approximations for nonlinear
problems. Since then, it has been used in diverse fields, including economics, defense,
transportation, image analysis, and robotics. PF is a Monte Carlo method based on Bayesian
statistics. An empirical model from known data was used to estimate the current probabili-
ties in several cases. To predict the capacity based on battery data using a PF, the battery
behavior must be modeled. The obtained model can provide an accurate prediction of
capacity fading. Equation (1) describes a capacity fading trend based on regression analysis
from a previous study [27]. The model was generated from a base model considering
several cases using a PF.

Q = a · exp (b · k) + c · exp (d · k) (1)

where Q is the battery capacity, k is the number of cycles, a and b are constants related to the
internal impedance, and c and d indicate the aging rate. Using Equation (1), the parameter
constants were defined according to the battery capacity data. xk

i is a vector that reflects
the noise in the parameter constant. Equation (2) represents the likelihood of the existing
measured battery capacities zk and zk

i [28]:
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where σ is the standard deviation of the measurement noise and hk is the capacity fading
model in Equation (1). Equation (2) expresses the likelihood by considering a Gaussian
distribution of the measurement noise of a single particle. However, multiple particles
accumulate as a probability density function, and the noise distribution no longer follows
a Gaussian distribution because of the state distribution and nonlinearity.

By predicting without nonlinear constraints, the PF can be compared with existing
unscented and extended Kalman filters [12].

wi
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(
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k

)
(3)

To calculate the likelihood for one particle, the accumulation of existing weights
should be performed as in Equation (3).

wi
k =

wi
k

∑N
i=1 wi

k

(4)

Finally, Equation (4) normalizes the accumulated weights to satisfy a total weight of 1.
We adopted this PF model to compare the lithium-ion battery RUL prediction using the
pro-posed DNNs with that using the PF.

3. Results

From the battery data provided by NASA, we used those from cells B0005–B0007,
B0018, B0029–B0032, and B0043–B0045. Batteries B0005–B0018 were tested at a discharge
current of 2 A until 70% of its capacity. However, verification of the actual capacity data
revealed slight differences across the batteries. Similarly, we detected the differences be-
tween the other batteries. Nevertheless, as we use capacity as output, these differences
do not influence the model provided that conditions such as discharge current are correct.
The 11 extracted features were input to the proposed model to predict the battery capacity
using the first DNN model. Then, the number of cycles and capacity predicted from the
first model were input to the second DNN model for the prediction of RUL, which was
defined as the time at which the effective capacity of the battery reached 70%.
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3.1. Feature Extraction for Capacity Fade and RUL Prediction

We obtained 5 of the 11 features (features 7–11 in Table 1) from the available battery
data and calculated the other six features (features 1–6 in Table 1) from the charge current
curve and discharge voltage curve per cycle according to the definitions depicted in
Figure 4. Figure 6 shows the geometric features extracted from the cycle testing data of
B0005 according to the cycle. For the DNN, the training dataset was constructed using 11
features. In the data shown in Figure 6, there is one cycle at which the charge current and
discharge voltage change sharply. This phenomenon was not mentioned in the original
study by the NASA team.

Figure 6. Geometric features (a–f) (defined in Figure 4) extracted from charge/discharge curves of
battery B0005.

3.2. Prediction of Capacity Fade and RUL Using DNNs

We used the first DNN model to predict the capacity fade trend considering 80% of the
data from seven batteries as the training data, and the data from battery B0018 as test data.
In Figure 7, the data from the cycles shaded in gray were not used for training. In addition,
the B0043–B0045 data were used as verification data for learning during training. To prevent
overfitting during learning, training was conducted by setting the dropout rate to 0.1. In the
training algorithm, the function “ReLU” was used as the activation function, the function
“He normal” was used as the kernel initializer, and the function “Adam” was used as the
optimizer. Finally, we use the mean-squared error for the loss function:

1
n∑n

i=1(yi − ti)
2 (5)

where n is the number of data points, yi is the output from the DNN, and ti is the correspond-
ing measurement. As shown in Figure 8, the training and test errors decreased throughout
the training and converged close to zero (9.01 × 10−5 and 1.07 × 10−4, respectively).
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Figure 7. Capacity prediction of each battery based using the DNN model.

Figure 8. Mean squared error for (a) training and (b) test data.

We confirmed that the prediction error differs depending on the battery considered
for training and testing. Therefore, we obtained the error according to the battery data
used for training and testing. Table 2 lists the error during training and prediction error
after training considering different test data. The maximum and minimum training errors
occurred for data from batteries B0018 and B0007, respectively, and the maximum and
minimum test errors were obtained for data from batteries B0032 and B0018, respectively.
The average prediction error of battery capacity was 3.40 × 10−4 for the test data of battery
B0018, being the smallest average error. Therefore, the capacity prediction results may vary
with the characteristics of the training data.
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Table 2. Training and test errors according to training data.

Root Mean-Squared Error of Capacity Predictions

Battery
Excluded

from
Training

Training
Error

(×10−5)

Test
Error

(×10−2)

B0005
(×10−5)

B0006
(×10−4)

B0007
(×10−5)

B0018
(×10−5)

B0029
(×10−4)

B0030
(×10−4)

B0031
(×10−4)

B0032
(×10−4)

B0005 5.97 0.344 369 3.10 6.54 2.07 2.45 1.13 0.813 2.29
B0006 3.32 0.258 4.78 28.8 4.59 3.67 5.97 3.15 1.51 4.00
B0007 2.76 5.09 19.1 8.30 5380 13.4 6.11 2.91 2.12 5.97
B0018 9.02 0.0107 5.90 2.44 5.82 10.9 3.10 2.10 1.21 3.90
B0029 2.78 1.69 1.69 2.01 4.50 6.96 144 1.63 1.62 1.57
B0030 3.56 0.054 16.0 2.48 1.39 3.52 1.71 4.95 1.70 1.85
B0031 3.99 21.1 2.59 1.03 6.38 2.62 3.17 2.47 2050 3.52
B0032 5.20 22.9 16.4 5.04 9.25 8.83 8.74 6.14 2.58 2240

We confirmed that the prediction error differed depending on the battery used for
training and testing. Therefore, we obtained the error based on the battery data used for
training and testing. Table 2 lists the training and prediction test errors (e.g., root mean-
squared error (RMSE)) obtained using the process proposed in this study. Each training
dataset consisted of the remaining batteries, excluding one specific battery among all the
battery data. That is, it shows the capacity prediction results performed after training on a
dataset excluding a specific battery. The maximum and minimum training errors occurred
for data from batteries B0018 and B0007, respectively, and the maximum and minimum test
errors were obtained for B0032 and B0018 batteries, respectively. The average prediction
error of battery capacity was 3.40 × 10−4 for test data of battery B0018, which had the
smallest average error. The sum of the mean-squared errors of the predicted capacities
of various batteries was 13.69 × 10-3, which was the smallest when the data of the B0018
battery was selected as the test data. The average prediction error of battery capacity was
3.40 × 10−4 for test data of battery B0018, which had the smallest average error. Therefore,
the capacity prediction results may vary according to the characteristics of the training data.

Considering the training and test errors, we constructed training datasets to achieve
the most accurate prediction, excluding data from battery B0018. Thus, excluding this
battery that provides the smallest training error, we used the data from the other batteries
during training to predict the capacity of battery B0018. Figure 9 shows the measured
capacity, predicted capacity, and predicted RUL based on the predicted capacity. For RUL
prediction from the capacity obtained by the DNN with 11 features over various cycles,
we determined the future capacity fade and RUL over cycles through DNN-based regres-
sion. Therefore, we determined the capacity fade and RUL using the predicted capacity
trends from the 11 features under the actual operating environment conditions of an elec-
tric vehicle. DNN-based prediction enhances accuracy by using training data from actual
conditions and obtained during battery manufacturing. For instance, using training data
from batteries other than B0018 for capacity prediction, corresponding to approximately
70% of the available data for battery B0018, we accurately predicted the capacity fading
over the remaining cycles through regression.
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Figure 9. RUL prediction based using the DNN model for batteries (a) B0018 and (b) B0005.

From the obtained results, the error with respect to the actual capacity was 7.93× 10−4,
and the RUL prediction provided an error of approximately 7.63%. Meanwhile, for battery
B0018, despite the small error in capacity prediction, the change in capacity over the
cycles notably increased, as shown in Figure 9a. In contrast, when using data from battery
B0005 for testing, despite the larger training error than that for battery B0018, the capacity
prediction exhibited a small error of 3.59%, as shown in Figure 9b. Hence, when the
data of battery B0005 were used for training, the training error was reduced. Overall,
accurate prediction depends on both the preprocessing of data collected under multiple
test conditions and the type and quality of the data collected during operation.

4. Discussion

The two proposed DNN models were used to predict the capacity fade and RUL based
on capacity by training the measured data in a real driving environment without requiring
expensive and complex equipment for measurement. However, the DNN model cannot
suitably predict the battery capacity during manufacturing, and massive amounts of data
are required to achieve accurate deep learning. We evaluated the DNN model and PF
implemented in previous research to confirm the error in terms of the cycle at which the
capacity fade reaches 80% of the nominal capacity. We also determined the mean squared
error, assuming that 10% to 100% of the initial battery capacity was secured. Figure 10
shows the error between the evaluated methods and the real end of life (EOL) cycle (i.e.,
80% capacity fading of all cycles).

Figure 10. End of life (EOL) prediction error using (a) DNN and (b) particle filter (PF).
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The EOL cycle based on the cycle testing data of battery B0018 is the 75th cycle. At the
13th cycle, that is, 10% of the cycles, we performed DNN training and PF modeling for
prediction. The predicted EOL cycle using the DNN showed an overall error of 45.7%,
which rapidly dropped to 1.1% after 76 cycles. Likewise, the predicted EOL cycle using the
PF showed an overall error of 6.4%, which decreased to 3.7% at 76 cycles, which is when
the DNN error rate decreases. Thus, using the proposed DNN, the EOL was predicted only
when at least 80% of the tested battery data were available, while the PF could predict the
EOL using initial data from less than eight cycles. An analysis of this result was performed
to evaluate the utility of this algorithm during operation in real-time, assuming that there is
no total capacity data. For learning-based algorithms, it can be understood that obtaining
a certain amount of prior data has a great effect on improving accuracy. Figure 11 shows
the results of the training and modeling capacities up to 76 cycles using the DNN and
PF, respectively. The DNN accuracy depends on the data availability, whereas the PF
can perform a suitable prediction even when only initial data are available, given the
underlying model for prediction.

Figure 11. Results from DNN learning and PF modeling at cycle 76 for capacity prediction.

5. Conclusions

We investigated the application of DNNs and machine learning algorithms for bat-
tery capacity fading and RUL prediction. We detail the method design, preprocessing of
training data to extract representative features, and application of the proposed method.
The training data comprise the geometric features of the current and voltage curves during
charge and discharge, test environment features, and test condition features. Using these
features to construct a training dataset, two DNNs were trained to predict the capacity
fading and the corresponding RUL. Specifically, we predicted the capacity using the 11 ex-
tracted features and obtained RUL predictions through regression. The proposed DNN
model can provide accurate predictions with an error of approximately 3.59%. Unlike other
studies in which the battery should be detached to conduct electrochemical impedance
spectroscopy to determine the battery deterioration, we predict the RUL using charge and
discharge data collected during operation, thus preventing the cumbersome process of
measuring the battery impedance. As the 11 features reflect different characteristics of
capacity related to deterioration, we obtained a high RUL prediction accuracy. In addi-
tion to data acquired during battery manufacturing, data from actual operation reflecting
environmental factors and load characteristics can be integrated during training, thus se-
curing accurate results under different conditions. Accordingly, this study can be further
improved. For instance, we aim to predict capacity fade and RUL using partial data during
charging and discharging and other battery storage devices such as supercapacitors and
Li-S. Further research and development in this area can shorten the battery development
period, prevent accidents during battery operation, and improve battery preservation.
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