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Abstract: Here we reviewed the last evidence on the application of electroencephalography (EEG)
as a non-invasive and portable neuroimaging method useful to extract hallmarks of neuroplasticity
induced by virtual reality (VR) rehabilitation approaches in stroke patients. In the neurorehabilitation
context, VR training has been used extensively to hamper the effects of motor treatments on the
stroke’s brain. The concept underlying VR therapy is to improve brain plasticity by engaging users
in multisensory training. In this narrative review, we present the key concepts of VR protocols
applied to the rehabilitation of stroke patients and critically discuss challenges of EEG signal when
applied as endophenotype to extract neurophysiological markers. When VR technology was applied
to magnify the effects of treatments on motor recovery, significant EEG-related neural improve-
ments were detected in the primary motor circuit either in terms of power spectral density or as
time-frequency domains.

Keywords: virtual reality; EEG; rehabilitation; stroke

1. Advanced Neurorehabilitation Systems for Recovering Patients with Stroke

Stroke is the third most frequent cause of worldwide death [1]. The great challenge
of the survivors of stroke is to address the long-term consequences as sensory, motor,
cognitive, and visual impairments. These neurological deficits are the main rehabilitation
targets since these reduce the ability of individuals to perform activities of daily living
(ADL) [1].

The International Classification of Functioning, Disability, and Health (ICF) [2] pro-
duced a transition from an exclusive neurophysiological focus to an inclusive rehabilitation
perspective [3], based on the classification of three levels of human functions: (1) body level
(physiological function and anatomical parts), (2) whole person (action and task execution
by an individual), and (3) person in a social context (participation in a life situation) [4].
This approach ensures the improvement of quality of life (QOF) and the performance of
ADL [5].

Advanced technology is increasingly being applied in neurorehabilitation to potenti-
ate conventional treatments, reduce neurological disability, and improve global functions.
A heavy limitation in conventional rehabilitation programs could be a reduced and inade-
quate dose of rehabilitation therapy, in terms of intensity and repetition of exercises. In
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stroke patients, lower-limb impairment impacts the mobility domain of QOF, whilst upper
limb dysfunction negatively impairs all ADL activities.

Virtual Reality (VR) is one of the most utilized advanced neurorehabilitation technolo-
gies for increasing motor and cognitive abilities in stroke patients. VR is a computer-based
technology that allows users to interact with a multisensory simulated environment, re-
ceiving ‘real-time’ feedback on specific performance (Figure 1). It is well recognized that
feedback plays an important role in skill acquisition, mediating experience-dependent
plasticity [6]. Especially in motor learning, feedback must be proposed not just at the end of
the action but during movement performance. VR technologies promote this rehabilitation
approach allowing a task-oriented training that maximizes frequency, intensity, and repeti-
tion of exercises, simultaneously enabling the immersive sensation [7]. This technology
has emerged as a new approach to the treatment of stroke, since by simulating real-life
activities, stroke patients can work on self-care skills in a setting that is usually impossible
to create in a hospital environment [8].
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Figure 1. Virtual Reality application on a neurological patient in a rehabilitation setting at
Institute S’Anna.

As stated by Bowman and colleagues [9,10], a successful VR neurorehabilitation
setting cannot be realized without the sense of presence and immersion, since the ultimate
goal of the VS-related rehabilitation approach is to transfer abilities and skills acquired to
real-world performance [11].

(a) The sense of presence is the most important component differentiating the VR from
the other device [12,13]. VR allows the users to be in a virtual environment (VE)
rather than in the place in which is located. Sanchez-Vives & Slater [14] claims that to
be “present” means to transfer the consciousness in the VEs. It depends on different
converging characteristics: the modality in which the user is represented in the VE,
the number and quality of feedback, user’s characteristics (i.e., age, gender), and
VE characteristics (how much realistic it is). In the simulation of a sensory-motor
experience, the VEs recreate as close as possible a real situation, inducing the brain
system to reactivate the underlying neural networks for the expected effect as in a
real environment.

(b) Immersion is an objective property of the system that aims at generating a sense
of presence as human subjective response. The degree of perceived immersion is
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dependent on technology. Finally, a high level of immersion does not guarantee a
corresponding level of presence, while a higher sense of presence generates a deeper
emotional response [15].

After applications in psychological treatments (i.e., exposure therapy for patients with
phobia) and surgical training, VR expanded its borders acquiring a pivotal role in the
rehabilitation fields (i.e., physical and cognitive treatments, ADL training, occupational
therapy, speech therapy) and also in telerehabilitation [16]. About 20 years ago, VR began
to be applied in rehabilitation, lying its rationale on the active learning provided by the
immersion as a simulation of real life [17]. Additionally, it is worth noting that the learning
of new motor tasks depends on the feedback originated from the performance. This
concept has grounded the rationale of VR application [16]. The use of this technology
represents an opportunity to reach a new, useful, and more aimed rehabilitation protocol,
combining VR with conventional therapy [18]. In particular, the enriched environments of
VR, encouraging and motivating a higher number of repetitions, train stroke patients to
solve problems by learning new skills [19]. Furthermore, the continuous challenge provided
by new modified tasks encourages and motivates the active participation of the patients to
handle with VR equipment, reducing the therapist’s supervision and assistance [16].

As reported by a Cochrane Review of Laver et al. [8], the post-stroke upper limb
rehabilitation mediated by VR has a significantly better effect only when applied with
conventional therapy. This claim has also been confirmed by Turolla et al. [16], who claimed
that combining conventional treatment with VR is a more effective way to recover upper
limb motor function with respect to conventional therapy alone. As concerns lower limbs,
similar effectiveness was reported applying VR therapy [17]. Finally, Sarfo et al. [20] in
a systematic review reported that telerehabilitation, when combined with virtual reality
systems, has better (or similar) beneficial effects on motor and mood disorders of stroke
patients compared with conventional face-to-face therapy. Finally, encouraging data were
also reported by Agostini et al., [21] about VR application on anomia dysfunctions [22] in
stroke patients. However, the full potential of VR applications in healthcare remains to be
explored [14]. To stimulate and encourage VR applications as an alternative and/or com-
plementary treatment in a rehabilitation setting, Tieri et al. [23] highlight the importance of
VEs as a valid instrument to enhance implicit learning during robot-assisted rehabilitation
and to increase the level of compliance in neurological patients [24], while the exploitation
of the augmented feedback during motor/cognitive tasks can facilitate the reacquisition of
motor abilities [16]. Moreover, it should be considered that the employment of VR applica-
tions may have a positive influence also on the Healthy System in terms of optimization of
professional resources [16].

2. Looking for Endophenotypes of Recovery: The Electroencephalography

Endophenotypes are measurable subclinical heritable biological markers or behavioral
traits that are internal phenotypic expressions of a genotype. Endophenotypes could
be neuroanatomical, cognitive, or neurophysiological [25]. Identifying endophenotypes
may be more useful in the identification of biological pathways related to those specific
rehabilitation treatments, which might help to narrow the targets for potentially more
effective interventions.

The concept underlying VR therapy is to improve brain plasticity by engaging users
in multisensory training. Electroencephalography (EEG) is a non-invasive neuroimaging
technique proposed as one of the most ecological tools useful to extract evidence of neuro-
plasticity in real-time [26,27]. Together with other techniques, such as functional magnetic
resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), EEG can
provide different elements of neuronal information through VR rehabilitation programs.

EEG has several advantages especially in a VR environment since this neuroimaging
tool is portable, relatively inexpensive, and easy to use with high temporal resolution [28].
Furthermore, new generation systems might also be wireless, which is ideal for the VR
environment [28,29]. The optimal temporal information provided by EEG is strongly rec-
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ommended, especially in protocols involving real-time neurofeedback and for monitoring
of brain activities during VR tasks. Again, EEG is much less expensive, and its high tem-
poral resolution (compared to other methods, such asfMRI and fNIRS) makes EEG ideal
for real-time analysis and for monitoring brain oscillation during VR intervention. In this
respect, EEG has overcome many of the fMRI and fNIRS limitations, becoming the best
candidate for monitoring stroke patients in a VR setting.

Generally, EEG data can be used either for evaluating the presence of neural plasticity
in stroke patients before and after neurobehavioral treatment or as neurofeedback for
brain-computer interface (BCI) systems. Indeed, the most common brain signal activity
(EEG rhythms) used with BCI paradigms in stroke patients is related to motor planning
and execution [30]. During a motor attempt, the temporal pattern of the Alpha rhythm
(8–12 Hz) over the sensorimotor cortices desynchronizes. This rhythm is considered an
indirect indication of the action observation network and reflects the general sensorimotor
activity. When these EEG signatures change in the Beta rhythm (12–30 Hz) in the form of
event-related desynchronization, they indicate that motor action is executed [31].

It is well known that the preparation, the execution, and also the imagination of
the movement produce an event-related desynchronization (ERD) on sensorimotor areas
in the alpha and beta bands [31,32]. In particular, the ERD in the form of EEG power
reduction [33] (the so-called mu-rhythm (8–13 Hz) or the value of the BOLD signal below
the baseline level [34]) is observed on the contralateral sensorimotor areas during the
preparation of the movement and extends bilaterally with the start of the movement. This
phenomenon is similarly observed during hand motor imagery to the pre-movement ERD
and seems to be locally restricted to the contralateral sensorimotor areas [32]. Recently,
Porcaro and colleagues [33] have shown that higher desynchronization in both contralateral
and ipsilateral sensorimotor areas is related to the performance of the movement during a
visuomotor task. This effect was most evident in the ipsilateral component, suggesting the
importance of the ipsilateral sensorimotor area during accurate movements.

Several reviews summarize the state-of-art of BCI combined with EEG technology for
extracting neurofeedback useful to develop advanced neurorehabilitation approaches [35].
However, the present review is focused on the application of EEG signal as an endopheno-
type of neural changes induced by VR-related behavioral treatments on stroke patients.

3. EEG Reveals Neurophysiological Correlates of Neurorehabilitation with VR

Neurophysiological changes associated with VR neurorehabilitation is still relatively
a new field of study, starting with preliminary evidence on behavioral tasks in healthy
controls [36]. Today, the current usage of EEG in VR therapy is to monitor and provide
augmented feedback regarding regions of cortical activation during motor and cognitive
tasks [37,38].

As said before, VR can magnify the effects of several neurorehabilitation approaches [39],
mainly those based on robotic devices. In a recent study, Calabrò et al. [40] investigated
the neural basis of motor functional recovery of the lower limbs in 24 stroke patients who
underwent Lokomat treatment with (experimental group) or without VR (control group).
EEG signals were recorded using a Brain-Quick System from a standard 19 electrodes
headset for 10 min while performing Lokomat training. EEG analysis consisted of the
computation of the power spectral density (PSD) and the temporal frequency (TF) analysis
to evaluate Event-related-spectral perturbations. Spectrum analysis was carried using
a standard fast Fourier transform (FFT) algorithm within ϑ (4–7 Hz), µ (8–12 Hz), β
(12–30 Hz), low-γ (Lγ) (31–45 Hz), and high-γ (Hγ) (46–70 Hz) bands and related to the
phases of the gait cycle [41]. After an intervention period lasting 2 months, the experimental
group underwent Lokomat rehabilitation with VR showing higher motor recovery of the
lower limbs with respect to patients not using VR technology. This behavioral improvement
was mirrored by underlying neural changes as detected by EEG. Indeed, the experimental
group after treatment was characterized by stronger event-related spectral perturbations
in the high-γ and β bands and more evident activation of premotor, precuneus, and
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associative visual areas with respect to the control group. Moreover, the authors also found
that the magnitude of γ-band modulation was significantly correlated with the clinical
improvement and the improvement in muscle strength, and it was paralleled by a more
selective µ/β-band modulation concerning the temporal patterns of activation across the
gait cycle.

Considering neurorehabilitation of upper limbs, Comani et al., [42,43] have tried to
monitor the neural activity during a novel rehabilitation system based on the combination
of a robotic device with VR. This is called Trackhold (PERCRO, Pisa, Italy), a passive
robotic device [44] working in combination with a VR system and synchronized with high
resolution EEG for the simultaneous recording of kinematic and functional data. This
robotic system has seven degrees-of-freedom and is designed to improve the recovery of
movements involving the wrist, the elbow, and the shoulder. The VR training applications
simulate simple visuo-motor coordination tasks. Subjects interact online with the VR
training applications by moving the Trackhold’s end-effector and observe the changes
occurring in the VEs in real time on a 22-in LCD monitor. EEG-related cortical activity
was recorded using a head-cap with 128 Ag/AgCl electrodes concerning the execution
of every task during rehabilitation training. The sampling frequency was set at 1024 Hz.
Inverse source reconstruction was performed using the multiple sparse priors (MSP)
algorithm, and the estimated source activity was summarized as 3D images using a TF
contrast ranging from −2 to 2 seconds and from 8 to 30 Hz. The frequency range was
chosen due to the characteristics of motor-related cortical activity to include both alpha
and beta rhythms. In a first case-report study, Comani et al., [42] found that after the
application of the Trackhold three times per week for 4 weeks, a significant recovery of
the impaired upper limb was reported. EEG analysis revealed an initial bilateral over-
recruitment of the sensorimotor network, which significantly tended to be reduced at
the end of rehabilitation. The neural plasticity changes were mainly recorded in the
primary motor circuit involving also the cerebellum. TF analysis revealed a similar pattern
of recovery of normal oscillatory processing within the somatosensory network after
neurorehabilitation. In a second study [44] the effectiveness of the Trackhold system
was tested on a larger population of stroke patients, where the EEG-related functional
re-organization was monitored in association with motor patterns replicating activities of
ADL. After 13 rehabilitative sessions, researchers found very consistent motor recovery,
although a large heterogeneity in neurophysiological data was also noted. This is due to
the three “S” characterizing the stroke brain: the different Side, Size and Site of lesions,
which may strongly determine the reliability of the detected neural activity.

4. Conclusions

VR programs for stroke neurorehabilitation are based on the potential of brain neuro-
plasticity that allows the acquisition of new motor skills despite neurological injuries. As
stated by Saposnik et al., [45], the goal of VR therapy is to magnify these motor learning
skills in stroke patients by improving neurorehabilitation principles, such as providing
repetitive, graded intensity, and motivating task-specific training with real time multimodal
feedback of movements and performance. Thus, VR systems are designed to enhance con-
ventional rehabilitative treatments by providing a tool to deliver more specific, intensive,
and enjoyable therapy.

However, it is possible to improve the potential and applications of VR systems by
monitoring the effects of more targeted neurorehabilitation approaches with non-invasive
and portable neuroimaging methods, such as EEG. As claimed by Teo et al., [37] EEG signals
can be used to provide both feedback on location and level of brain activation, which can
be used by clinicians to set intensity, progression, and type of therapy. In this narrative
review, we have provided new insights on the brain neuroplasticity induced by these
advanced systems applied to stroke patients. Future studies about neuroplasticity induced
by different targeted and tailored neurorehabilitation approaches should be considered to
define the best VR programs useful to increase motor and functional recovery.
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