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Abstract: In this article, the question of how to sample the square amplitude of the radiated field in
the framework of phaseless antenna diagnostics is addressed. In particular, the goal of the article
is to find a discretization scheme that exploits a non-redundant number of samples and returns a
discrete model whose mathematical properties are similar to those of the continuous one. To this end,
at first, the lifting technique is used to obtain a linear representation of the square amplitude of the
radiated field. Later, a discretization scheme based on the Shannon sampling theorem is exploited to
discretize the continuous model. More in detail, the kernel of the related eigenvalue problem is first
recast as the Fourier transform of a window function, and after, it is evaluated. Finally, the sampling
theory approach is applied to obtain a discrete model whose singular values approximate all the
relevant singular values of the continuous linear model. The study refers to a strip source whose
square magnitude of the radiated field is observed in the Fresnel zone over a 2D observation domain.

Keywords: phase retrieval; nonlinear inversion; phaseless antenna diagnostics; discretization scheme;
sampling approach

1. Introduction

In the framework of inverse problems in electromagnetics [1–7], the inverse source
problem plays an important role. The latter is a classical problem of the electromagnetic
literature [8–12] which consists in recovering the source current from the observation of its
radiated field. From the mathematical point of view, the inverse source problem requires to
invert a linear integral operator, called a radiation operator, that relates the density current
J with the radiated electric field E.

Despite the performances of electronic instrumentation are continuously improved, in
some contexts the measure of phase information may be not accurate. Hence, it is worth
addressing the problem of reconstructing the source current from amplitude-only data of
the radiated field [13–20]. Such a problem falls into the realm of phase retrieval, and it can
be formulated as recovering the density current J from the quadratic model:

|TJ|2 = |E|2 (1)

where T stands for the radiation operator.
One of the most popular algorithms to find a solution consists in the minimization

of a cost functional obtained by the least-squares problem associated to Equation (1)
(see [21,22]). Since the functional to be minimized is quartic, such a method may suffer
from the local minima problem.

Different studies have shown that a crucial parameter in the analysis and cure of
local minima is played by the dimension of data space M, which represents the number of
independent functions that allow expressing the data with a given degree of accuracy [23].
According to such studies [21,24,25], once the number of unknowns N has been fixed,
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the functional to be minimized becomes more and more similar to a convex one when
the dimension of data space M increases. Hence, it will exist a particular value of the
dimension of data space such that the functional is free from traps. It is worth noting that
the question of quantifying the minimum value of M that ensures the convergence of the
least-squares approach is still an open point, since such a value has been found only for
some particular mathematical models [24–27].

In light of the previous discussion, the first aim of this paper is that of evaluating the
dimension of data space M and establishing how such quantity is related to the geometrical
parameters of the configuration.

Once the dimension of data space will be evaluated, the second goal of this article is
that of providing an efficient discretization of the continuous model shown in Equation (1).
This study is motivated by the fact that the square amplitude of the radiated field cannot
be continuously collected over the observation domain; accordingly, it is of great practical
interest to find a discretization scheme that:

• requires a non-redundant number of measurements;
• allows to obtain a discrete model that shares the same mathematical properties of the

continuous one.

Such a discretization scheme would bring a series of advantages. On one hand, it
would reduce the acquisition time to measure the data, and the memory requirements
to store them on the other, it would decrease the computational burden to perform
the inversion.

Regarding the sampling of the radiated field E, standard sampling schemes for the case
of planar, cylindrical, and spherical scanning are described respectively in [28–30]. Despite
this, such strategies are not efficient since they require to acquire a number of samples
that may be significantly higher than the dimension of data space. Indeed, especially at
microwave and millimeter frequencies, the number of required measurements may become
extremely high.

In order to reduce the number of measurements, during the years a different sampling
scheme (mostly based on a spatially varying spacing) have been developed. Some of them
exploit the concept of local bandwidth [31–33], others use an adaptive procedure [34–36],
still others optimize some metrics related to the singular values decomposition of the
radiation operator [37–42]. In addition to those just mentioned, further sampling techniques
used in antenna applications are described in [43–47].

A particularly interesting discretization scheme is the sampling theory approach
developed in [45,46]. The latter, under the hypothesis that the operator TT† is convolution
and band-limited (with T† denoting the adjoint operator of T ), provides not only an
efficient sampling of the radiated field (or in other words the grid of points where the data
must be collected) but also a strategy to discretize the linear model TJ = E.

However, the sampling approach is suitable only for linear problems; hence, it cannot
be directly applied in the case of phaseless measurements. With the aim to overcome this
issue, the lifting technique [23] can be exploited to recast the quadratic model in (1) as a
linear one. Once a linear representation of |E|2 has been obtained, the sampling theory
approach can be fruitfully employed to efficiently discretize the continuous model.

Let us stress that the direct applicability of the sampling theory approach is limited
to the cases where the operator involved in the correspondent eigenvalue problem is
convolution and its kernel is a band-limited function. Hence, when such an operator
does not fulfill these properties, the sampling theory approach cannot be directly applied.
In such cases, indeed, it can be employed only after a warping transformation has been
exploited to recast the kernel of the operator involved in the correspondent eigenvalue
problem as a band-limited function of a difference type [48–50].

The study developed in this paper will be done with reference to a 2D geometry
consisting of a strip electric current observed on an extended observation domain in
Fresnel zone.
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The paper is organized in the following manner. In Section 2, the geometry of the
problem and the correspondent radiation operator are introduced. In Section 3, at first, the
lifting operator is defined; after, its analytical properties are studied. In Section 4, the dimen-
sion of data space is estimated. In Section 5, a discrete model that approximates the relevant
singular values of the lifting operator is provided. A section of conclusions follows.

2. Geometry of the Problem

Let us consider a 2D scalar geometry consisting of a source whose density current
J(x) = J(x) îy is supported on the set [−a, a] of the x-axis and directed along the y−axis
(see Figure 1). Such current radiates an electric field E(r, θ) = E(r, θ) îy in a homogeneous
medium whose wavenumber β is given by β = 2π

λ with λ denoting the wavelength.

Figure 1. Geometry of the problem.

The square magnitude of the electric field |E|2 is observed in the Fresnel region on a 2D
domain that extends along the polar coordinates (r, θ) on the set [rmin, rmax]× [−θmax, θmax].

For the considered geometry, the radiated electric field E can by expressed by the equation

E(r, u) = TJ(x) (2)

where u = sin(θ), and the radiation operator T is such that

T : J ∈ L2(SD) −→ E ∈ L4(OD) (3)

with L2(SD) denoting the space of square-integrable functions on SD = [−a, a], and
L4(OD) indicates the space of functions whose amplitude to the fourth power is integrable
on the set OD = [rmin, rmax]× [−umax, umax].

Under the paraxial Fresnel approximation, Equation (2) can be explicitly written as

E(r, u) = T J(x) =
1√
βr

e−jβr (1+ 1
2 u2)

∫ +a

−a
e−j β

2r x2
e jβux J(x)dx. (4)

3. Study of the Lifting Operator

The first aim of this section is that of providing a linear representation of the square
magnitude of the radiated field |E(r, u)|2. The introduction of a linear model allows
addressing two important tasks. In particular,

1. it enables to estimate the dimension of data space by exploiting a singular values approach;
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2. it allows finding a discrete model that shares the same singular values of the continu-
ous one.

With the aim of obtaining a linear representation of |E(r, u)|2, the lifting technique can
be exploited. The latter adopts a redefinition of the unknown space to recast the quadratic
model |TJ|2 = |E|2 as a linear one. In particular, a linear model is obtained by rewriting
Equation (1) in the form below

|E(r, u)|2 =
(
TJ
) (

TJ
)∗

=
1
βr

∫ +a

−a

∫ +a

−a
e j β

2r (x2−x2) e−jβu(x−x) J(x) J∗(x)2 dx dx (5)

and, by considering as unknown the function

F(x, x) = J(x) J∗(x). (6)

In such a way, the integral operator A which links the unknown function F(x, x) with
the data function |E(r, u)|2 is linear. The latter is known in the literature as the lifting
operator and it is defined as

A : F ∈ L2 (SD× SD) −→ |E|2 ∈ L+
2 (OD) (7)

where

AF =
1
βr

∫ +a

−a

∫ +a

−a
e j β

2r (x2−x2) e−jβu(x−x) F(x, x) dx dx. (8)

Accordingly, the square magnitude of the radiated electric field can be expressed as

|E(r, u)|2 = A F(x, x). (9)

Once that linear representation of |E|2 has been achieved, our goal is that of addressing
the tasks mentioned in points 1 and 2. To this end, it is necessary to introduce the adjoint
operator A† and to explicit the auxiliary operator AA†. Indeed, as well known, the singular
values of A are equal to the square root of the eigenvalues of AA† [51].

The adjoint operator A† is usually defined as

A†(·) =
∫ rmax

rmin

∫ +umax

−umax

1
βr

e−j β
2r (x2−x2)ejβu(x−x) (·) du dr (10)

where (·) denotes the function of the variables (r, u) on which the adjoint operator acts.
In Appendix A, the integral operator AA† is introduced and a closed-form expression

of its kernel is provided.
Differently from what is done in Appendix A, here, a weighted adjoint operator Aw is

exploited. The latter can be expressed as

A†
w(·) =

∫ rmax

rmin

∫ +umax

−umax

w(x, x)
βr

e−j β
2r (x2−x2)ejβu(x−x) (·) du dr (11)

where w(x, x) represents a weight function.
On the one hand, the use of a weighted adjoint will allow simplifying the mathematical

discussion and on the other, it will bring a change of the singular values of the lifting
operator. Despite this, such changes will affect only the dynamics of the singular values
but not the critical index at which they become negligible. Hence, for our purposes, the
effect brought by the weight function can be neglected.

Anyway, the main difference with what is done in Appendix A is that, here, the kernel
of the operator AA†

w will be expressed as a double integral and not as the square amplitude
of a one-dimensional integral. This new representation of the kernel of AA†

w will suggest
to introduce a change of variables or better a warping transformation that allows rewriting
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it like the Fourier transform of a constant function defined on a two-dimensional finite
domain. On the basis of such discussion, it follows that:

• the eigenvalues of AA†
w can be computed in closed-form by resorting to the Slepian

Pollak theory;
• the kernel of AA†

w will be not only convolution but also band-limited, hence, the
sampling theory approach will be fruitful to find a discretization of the correspondent
eigenvalue problem.

Note that the idea of exploiting a warping transformation with the aim to recast the
kernel of an operator like the Fourier transform of a window function has been already
exploited in other recent works [48–50].

In order to formalize the above discussion from a mathematical point of view, let us
explicit the operator AA†

w. The latter is given by

AA†
w(·) =

∫ rmax

rmin

∫ +umax

−umax
H(r, ro, u, uo) (·) du dr (12)

where:

H(r, ro, u, uo) =
1

β2rro

∫ +a

−a

∫ +a

−a
w(x, x) ej β

2 (
1
ro −

1
r )(x2−x2)e−jβ(uo−u)(x−x)dxdx. (13)

Now, let us divide the integration domain S = [−a, a]× [−a, a] as made below

S = S1 ∪ S2

where S1 = {(x, x) ∈ S : x 6= x}, S2 = {(x, x) ∈ S : x = x}.
Since S2 is a null set with respect to the Lebesgue measure, the kernel H(r, ro, u, uo)

can be computed by performing the integration only on S1. This means that

H(r, ro, u, uo) =
1

β2rro

∫∫
S1

w(x, x) ej β
2 (

1
ro −

1
r )(x2−x2)e−jβ(uo−u)(x−x)dxdx. (14)

With the aim to express the kernel through a Fourier Transform relation, it is possible
to introduce the following transformation

X1 = x− x

X2 =
x2 − x2

rmax
.

(15)

The latter is injective and continuously differentiable on S1 and, it allows rewriting
the kernel of AA†

w in the following form

H(r, ro, u, uo) =
1

β2rro

∫∫
Σ1

w(X1, X2) e j β
2 (

rmax
ro
− rmax

r )X2 e−jβ(uo−u)X1

∣∣∣∣ ∂(x, x)
∂(X1, X2)

∣∣∣∣dX1dX2 (16)

where

• Σ1 denotes the new domain in which the original integration domain S1 is mapped by
trasformation (15),

•
∣∣∣ ∂(x,x)

∂(X1,X2)

∣∣∣ = − rmax

2X1
is the Jacobian determinant of the transformation.

Let us remark that, despite
∣∣∣ ∂(x,x)

∂(X1,X2)

∣∣∣ being singular for X1 = 0, such point does not
belong to the integration domain Σ1. Hence, the integrand in (16) is free from singularities.

At this point, let us choose the weight function w(X1, X2). By fixing

w(X1, X2) =

( ∣∣∣∣ ∂(x, x)
∂(X1, X2)

∣∣∣∣ )−1

= − 2X1

rmax
(17)
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it results that

H(r, ro, u, uo) =
1

β2rro

∫∫
Σ1

ej β
2 (

rmax
ro −

rmax
r )X2 e−jβ(uo−u)X1 dX1 dX2. (18)

Equation (18) shows that the kernel of AA†
w can be seen as the Fourier transform of a

constant function defined on the set Σ1. The shape of the set Σ1 is depicted in Figure 2 .

Figure 2. Shape of the integration domain Σ1 and of the smallest rectangular that encloses it.

As seen from Figure 2, the integration domain Σ1 is not rectangular. However, since
the area of Σ1 does not differ significantly from the area of the smallest rectangular that
encloses Σ1, H(r, ro, u, uo) can be evaluated by integrating on the smallest rectangle that
includes the set Σ1. The latter is made up by all the points (X1, X2) belonging to the
rectangular set [−2a, 2a]× [−a2/rmax, a2/rmax].

By performing the integration on such domain, it results that

H(r, ro, u, uo) ≈
8a3

β2rmax

1
rro

sinc
(

βa2

2

(
1
ro
− 1

r

))
sinc(2βa(uo − u)). (19)

Accordingly, the operator AA†
w can be expressed as

AA†
w(·) ≈

8a3

β2rmax

∫ rmax

rmin

∫ +umax

−umax

1
rro

sinc
(

βa2

2

(
1
ro
− 1

r

))
sinc(2βa (uo − u)) (·) du dr. (20)

From (20), it is evident that the operator AA†
w becomes more similar to a convolution

operator if s = rmax/r is set. In fact, by doing this, it follows that

AA†
w(·) ≈

8a3

β2r2
max

∫ smax

smin

∫ +umax

−umax

so

s
sinc

(
βa2

2rmax
(so − s)

)
sinc

(
2βa(uo − u)

)
(·) du ds (21)

where smin = 1, smax = rmax/rmin.
The last equation provides an approximated form of the operator AA†

w which will be
used in next sections to estimate the dimension of data space, and to find a discrete model
that shares the same mathematical properties of the continuous one.

4. Estimation of the Dimension of Data

In this section, an analytical evaluation of the dimension of data space is provided.
Different methods can be exploited to achieve this task, here, an SVD-based approach
that allows estimating the dimension of data space by counting the number of significant
singular values of the lifting operator A is exploited [52].
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As is well known, the singular values of A, {σm}, are related to the eigenvalues of
AA†, {λ′m}, by the equation

σm(A) =
√

λ′m(AA†). (22)

However, only the eigenvalues of AA†
w are known in closed-form. For such a reason,

at first, it will be solved by the eigenvalue problem

AA†
w vm = λm vm (23)

where λm and vm are respectively the eigenvalues, and the eigenfunctions of AA†
w. After,

through a numerical analysis, it will be checked that the number of relevant eigenvalues of
AA†

w is essentially the same as the number of relevant eigenvalues of AA†.
To evaluate the eigenvalues of AA†

w, let us explicit Equation (23) as below

8a3

β2r2
max

∫ smax
smin

∫ +umax
−umax

so

s
sinc

(
βa2

2rmax
(so − s)

)
sinc

(
2βa(uo − u)

)
vm(s, u) du ds = λmvm(so, uo). (24)

By fixing

ṽm(s, u) =
vm(s, u)

s
, (25)

Equation (24) can be recast as

8a3

β2r2
max

∫ smax
smin

∫ umax
−umax

sinc
(

βa2

2rmax
(so − s)

)
sinc

(
2βa(uo − u)

)
ṽm(s, u) du ds = λmṽm(so, uo). (26)

The eigenvalues of (26) were computed in closed-form in [53], and they are given by

λm(AA†
w) = λ

(u)
m1 λ

(s)
m2 (27)

where λ
(u)
m1 and λ

(s)
m2 denote the eigenvalues of the Slepian–Pollak operators whose kernels

are respectively sinc ( 2βa (so − s) ) and sinc
( βa2

2rmax
(so − s)

)
.

Since the sequences {λ(u)
m1 } and {λ(s)

m2} are relevant respectively until the indexes

Mu =
4
π

β a umax + 1 Ms =
βa2

2π

(
1

rmin
− 1

rmax

)
+ 1, (28)

it results that the eigenvalues of the problem (26) and, consequently, the eigenvalues of the
operator AA†

w are significant until the index

M = Mu Ms. (29)

Let us recall that the kernel of the operator AA†
w has been computed by integrating

on the smallest rectangular that encloses Σ1. For such a reason, the scalar M is not exactly
equal to the number of relevant eigenvalues of AA†

w but it represents an upper bound.
In the first part of this section, the eigenvalues behavior of AA†

w has been found,
however, the actual singular values of A are equal to the square root of the eigenvalues
of AA†. This means that only an approximation of the singular values of A given by the
square root of the eigenvalues of AA†

w is known.
Now, by means of numerical experiments, it is checked that actual singular values of

A and its approximated version computed starting from the eigenvalues of AA†
w become

negligible at the same index.
As a test case, a configuration in which a = 10λ, umax = 0.5, rmin = 25λ (smax = 4),

rmax = 100λ and (smin = 1) is considered. With reference to such a configuration, in
Figures 3 and 4 the actual singular values of A and their approximation in the sense clarified
above are sketched in natural scale and in dB. In particular, the blue, red, and black
diagrams sketch respectively:
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• the square root of the eigenvalues of the approximated version of AA†
w provided by (21),

• the square root of the eigenvalues of AA†
w,

• the square root of the eigenvalues of AA†.

As can be seen from Figures 3 and 4, the square root of the eigenvalues of Operator
(21) exhibits a multi-step behavior and it is relevant until index M = Mu Ms = 164.

However, our aim is to predict the critical index at which the actual singular values
of A become negligible. By observing the behavior of the actual singular values (black
diagram in Figures 3 and 4), it is evident that the singular values beyond index M = 164
are surely negligible while those before are almost all significant if the noise level is not
so high. This implies that the use of the weighted adjoint changes only the dynamics of
the singular values but not the critical index at which they become negligible. For such a
reason, it is possible to state that M = Mu Ms is an upper bound for the dimension of data
space that is very close to its actual value.

Figure 3. Singular values of A, and their approximation.

Figure 4. Singular values of A, and their approximation in dB.
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5. Sampling Approach

In this section, the problem of how to discretize the continuous model AF = |E|2 in
such a way that the discrete model approximates the most important singular values of the
continuous model is addressed.

Since the singular values of A are the square root of the eigenvalues of AA†, this task
can be recast as finding a proper discretization of the eigenvalue problem

AA† v′m = λ′m v′m (30)

where v′m stands for the eigenfunctions of AA†.
For the sake of simplicity, instead of discretizing Equation (30), a discretization of

the eigenvalue problem AA†
w vn = λm vn that approximates all the relevant eigenvalues

of AA†
w will be found. Afterwards, by means of some numerical simulations, it will be

checked that the discretization scheme adopted for the operator AA†
w works also for AA†.

As shown in Section 4, by fixing ṽm(s, u) = vm(s, u)/s, the eigenvalue problem
AA†

w vm = λm vm can be recast as∫ smax

smin

∫ umax

−umax
H̃(s, so, u, uo) ṽm(s, u) du ds = λmṽm(so, uo) (31)

where

H̃(s, so, u, uo) =
8a3

β2r2
max

sinc
(

βa2

2rmax
(so − s)

)
sinc

(
2βa(uo − u)

)
. (32)

The continuous model in (31) involves a convolution operator with a band-limited
kernel, accordingly, it can be discretized by exploiting the sampling theory approach
developed in [45,46].

A key role in the discretization process is played by the sampling frequency. Since
the bandwidth of the kernel function with respect to the variables uo and so is given
by Wu = 2βa and Ws = βa2/2rmax, the sampling steps ∆u and ∆s to be used in the
discretization process must satisfy the conditions

∆u =
π

χ Wu
=

π

2χβa
∆s =

π

χWs
=

2πrmax

χβa2 (33)

where χ ≥ 1 is an eventually oversampling factor.
The application of the sampling theory approach provides the following discrete model

L ṽm = λmṽm (34)

where

• L is a matrix made up by the scalars Lpqij given by

Lpqij =
∫ smax

smin

∫ umax

−umax
H̃(s, sop , u, uoq) sinc

( π

∆s
(s− si)

)
sinc

( π

∆u
(u− uj)

)
du ds (35)

• ṽm is the vector whose elements are the samples of the eigenfunction ṽm(u, s).

In Appendix B, all the mathematical steps that allow passing from the continuous
Model (31) to the discrete Model (34) are shown.

According to [45,46], apart for the truncation error in the sampling expansion, the
matrix L exhibits the same eigenvalues of the continuous model.

Let us point out that the dimension of matrix L and of the vector ṽm are equal to
the number of sampling functions M̃ used in the expansion of the kernel function and of
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the eigenfunctions. Since, in our case, only the sampling functions corresponding to the
samples falling into the set [−umax, umax]× [smin, smax] has been considered, it results that

M̃ = M̃u M̃s (36)

where
M̃u =

2umax

∆u
+ 1 =

4
π

χβ a umax + 1 (37)

M̃s =
χβa2

2π

(
1

rmin
− 1

rmax

)
+ 1. (38)

As can be seen from the Equations (36)–(38), if χ = 1 then the number of samples
M̃ which fall into the domain [−umax, umax]× [smin, smax] is exactly equal to M, the upper
bound to the dimension of data space provided in Section 4.

However, as specified before, our aim is that of finding an efficient discretization of
AA†. For such reason, it is verified if the sampling steps ∆u and ∆s used in the discretization
of AA†

w work also for AA†.
Figure 5 shows the eigenvalues of AA†, and those of the correspondent discrete

models obtained by using as sampling steps (∆u = π/Wu, ∆s = π/Ws) and (∆u =
π/(1.2 Wu), ∆s = π/(1.2 Ws)). As can be seen from Figure 5, a sampling frequency
exactly equal to the Nyquist rate is already sufficient to approximate the most important
eigenvalues of AA†; instead, a sampling frequency higher than the Nyquist rate allows for
also approximating the eigenvalues whose value is lower.

Figure 5. Comparison between the singular values of the eigenvalues of AA†, the eigenvalues of the
discrete model when χ = 1, the eigenvalues of the discrete model when χ = 1.2.

It is interesting to highlight that the sampling approach returns also the locations
where the phaseless data (the square amplitude of the electric field) must be collected. The
latter are given by all the possible couples (so, uo) such that

so = smin + p∆s with p = 1, 2, ..., M̃s (39)

uo = −umax + q∆u with q = 1, 2, ..., M̃u. (40)

Naturally, each couple (so, uo) is mapped in a couple (ro, θo). The latter can be easily
computed by remembering that uo = sinθo and so = rmax/ro. Since the relations linking
uo with θo, and so with ro are bot nonlinear, the uniform sampling in the variables (so, uo)
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is mapped into a spatially varying sampling in the variables (ro, θo). Such behavior is
confirmed also by Figure 6 which sketches the grid of the optimal sampling points in the
case χ = 1.

Figure 6. Grid of the optimal sampling points in the case χ = 1.

6. Conclusions

In this article, two issues which fall into the realm of phaseless inverse source problem
were addressed. The first one was that of estimating analytically the dimension of data
space by means of the singular value decomposition of the lifting operator. The second one
was that of introducing a strategy to collect the phaseless data. In particular, in regards
to the first point, a good upper bound to the dimension of data space is provided and
the relation between the dimension of data space, the frequency, and the geometrical
parameters of the configuration found. In regards to the second point, a discretization
strategy that allows obtaining a discrete model whose singular values approximate very
well the most important singular values of the lifting operator was introduced.

The analysis was performed in the case of a 2D scalar geometry consisting of a strip
electric current observed on a two dimensional observation domain in Fresnel zone.
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Appendix A

In this appendix, the operator AA† is introduced and a closed-form expression of
its kernel is provided. By virtue of the Definitions (8) and (10), the operator AA† can be
defined as below

AA†(·) =
∫ rmax

rmin

∫ +umax

−umax
H(r, ro, u, uo) (·) du dr (A1)

where

H(r, ro, u, uo) =
1

β2rro

∣∣∣∣∫ a

−a
e−j β

2 (
1
ro −

1
r )x2

ejβ(uo−u)xdx
∣∣∣∣2. (A2)

The integral (A2) cannot be expressed in terms of elementary functions. However, a
closed-form expression of such integral can be provided by resorting to the imaginary error
function which is usually denoted by erfi. Indeed, as shown in [54], it results that

∫
e jbxe jcx2

dx = − (−1)3/4√π e−j b2
4c

2
√

c
er f i

(
(−1)1/4 b + 2cx

2
√

c

)
+ const. (A3)

Accordingly, H(r, ro, u, uo) can be explicitly written as:

H(r, ro, u, uo) =
π

2β3
1

rro

1∣∣∣∣ 1
ro
− 1

r

∣∣∣∣∣∣∣ er f i
(
(−1)3/4 (p (uo − u)− q

))
− er f i

(
(−1)3/4 (p (uo − u) + q

))∣∣∣2
(A4)

where:

p =

√√√√ β

2
(

1
ro
− 1

r

) q =

√
β a2

2

(
1
ro
− 1

r

)
. (A5)

Now, if the variable so = rmax/ro and s = rmax/r are introduced, the operator AA†

becomes similar to a convolution operator. Indeed, the introduction of such variables
allows recasting the operator AA† in the following form

AA†(·) =
∫ smax

smin

∫ +umax

−umax
H(s, so, u, uo) (·) du ds (A6)

where smin = 1, smax =
rmax

rmin
, and

H(s, so, u, uo) =

π

2β3
so

s
1

|so − s|

∣∣∣ er f i
(
(−1)3/4 (p (uo − u)− q

))
− er f i

(
(−1)3/4 (p (uo − u) + q

))∣∣∣2 (A7)

with

p =

√
β rmax

2 (so − s)
q =

√
β a2

2 rmax
(so − s). (A8)

Equation (A7) provides a closed-form expression of the kernel of AA†. Despite this,
the eigenvalues of an operator with such kernel are not known in closed-form. Hence, the
investigation on the operator AA† does not allow one to evaluate analytically the singular
values of the lifting operator, and consequently, the dimension of data space.

Appendix B

In this appendix, how to derive the discrete model L ṽm = λmṽm starting from the
continuous Model (31) will be shown.
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Since the kernel and the eigenfunctions are band-limited functions with respect to the
variables (uo, so), they can be represented through the following Shannon sampling series:

H̃(s, so, u, uo) = ∑
p

∑
q

H̃(s, sop , u, uoq) sinc
(

π

∆so
(so − sop)

)
sinc

(
π

∆uo
(uo − uoq)

)
(A9)

ṽm(so, uo) = ∑
p

∑
q

ṽm(sop , uoq) sinc
(

π

∆so
(so − sop)

)
sinc

(
π

∆uo
(uo − uoq)

)
. (A10)

Despite the Shannon sampling series being made by an infinite number of terms, here,
only those sampling functions that correspond to samples falling in the set [smin, smax]×
[−umax, umax] are considered. By substituting Equations (A9) and (A10) in (31), it results that

∑
p

∑
q

∫ smax

smin

∫ umax

−umax
H̃(s, sop , u, uoq) ṽm(s, u) du ds sinc

(
π

∆so
(so − sop)

)
sinc

(
π

∆uo
(uo − uoq)

)

= ∑
p

∑
q

λmṽm(sop , uoq) sinc
(

π

∆so
(so − sop)

)
sinc

(
π

∆uo
(uo − uoq)

)
. (A11)

From the previous equation, it follows that ∀(p, q) ∈ N : sop ∈ [smin, smax],
uoq ∈ [−umax, umax]∫ smax

smin

∫ umax

−umax
H̃(s, sop , u, uoq) ṽm(s, u) du ds = λmṽm(sop , uoq). (A12)

Taking in mind Equation (A10), it is possible to rewrite the system (A12) as below:

∑
i

∑
j

∫ smax

smin

∫ umax

−umax

H̃(s, sop , u, uoq ) sinc
( π

∆s
(s− si)

)
sinc

( π

∆u
(u− uj)

)
du ds ṽm(si, uj) =

= λm ṽm(sop , uoq ) ∀(p, q) ∈ N : sop ∈ [smin, smax], uoq ∈ [−umax, umax].

(A13)

The linear system (A13) can be easily recast in the matrix form L ṽm = λmṽm.
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