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Abstract: Deep learning-based methods have achieved good performance in various recognition
benchmarks mostly by utilizing single modalities. As different modalities contain complementary
information to each other, multi-modal based methods are proposed to implicitly utilize them. In
this paper, we propose a simple technique, called correspondence learning (CL), which explicitly
learns the relationship among multiple modalities. The multiple modalities in the data samples are
randomly mixed among different samples. If the modalities are from the same sample (not mixed),
then they have positive correspondence, and vice versa. CL is an auxiliary task for the model to
predict the correspondence among modalities. The model is expected to extract information from each
modality to check correspondence and achieve better representations in multi-modal recognition
tasks. In this work, we first validate the proposed method in various multi-modal benchmarks
including CMU Multimodal Opinion-Level Sentiment Intensity (CMU-MOSI) and CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-MOSEI) sentiment analysis datasets. In addition,
we propose a fraud detection method using the learned correspondence among modalities. To
validate this additional usage, we collect a multi-modal dataset for fraud detection using real-world
samples for reverse vending machines.

Keywords: deep learning; pattern recognition; multi-modal learning; classification

1. Introduction

Advances in deep learning [1,2] have shown state-of-the-art performances in var-
ious recognition tasks [3–5]. Thanks to open-sourced deep learning frameworks [6–8],
commercial applications [9,10] based on deep learning are made possible.

On the other hand, individual sensors have limited information, and different sen-
sors have complementary information to provide. Therefore, multi-modal systems with
multiple sensors have been developed to exploit the complementary information [11–14].
For example, RGB camera sensors provide rich information under sufficient lighting
but may fail during night-time. Therefore, thermal imaging sensors and LiDAR sensors
can be used for a more robust autonomous driving system [12]. In action recognition
tasks [15–17], initial approaches use RGB image sequences and optical flow sequences as
model inputs, as RGB images provide contextual information and optical flow images pro-
vide motion information. To combine the two modalities, a naive and effective approach,
called late-fusion, is to ensemble two separate model outputs. A recent dataset [18] for ac-
tion recognition has shown that some actions are only recognizable with an audio modality.
Apart from naive multi-modal approaches in which individual models are trained for each
modality, there are studies using a single model with multi-modal inputs. A pioneering
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work [19] proposes a model with multi-modal inputs for multiple tasks, including image
and text inputs, classification, detection, translation and captioning tasks. Although the
final performances are weaker than the state-of-the-art of each task, it is a proof-of-concept
for utilizing multi-modal inputs.

While the aforementioned tasks can achieve high performance with single-modality
inputs, sentimental analysis tasks [20,21] require the use of multiple modalities. Sentimental
analysis is a task performed to predict the sentiment of a person in a given video clip.
Three heterogeneous modalities can be used for this task: RGB frames, an audio sequence,
and spoken sentences. The CMU Multimodal Opinion Sentiment and Emotion Intensity
(CMU-MOSEI) dataset [21] provides samples to explicitly show that the modalities are
complementary and thus are essential to accurately classify those samples. As a result,
recent studies [21–23] propose ways to fuse multi-modal inputs to utilize complementary
information in multiple modalities.

Multiple modalities can also be used for fraud detection. Face anti-spoofing is a
widely-known task to identify forgery inputs. The face anti-spoofing benchmarks [24,25]
use RGB, depth and IR sensors to identify fake inputs for face identifications. A single-
modality system can be easily fooled. In a famous incident, called “facegate” [26], a printed
face on a paper or a 3D mask was able to fool an RGB-based system. On the other hand,
simultaneously fooling multiple modalities is much more difficult, and we propose a simple
method to detect fake data using the learned correspondence among multiple modalities.

Inspired by a recent study in self-supervised learning [27], we propose a correspon-
dence learning scheme to exploit the relationship among multiple modalities. The corre-
spondence is defined according to whether the multiple modalities are taken from the same
sample—that is, the modalities from the same sample have positive correspondence; when
one or more modalities are taken from a different sample, the modalities have negative
correspondence. The overall process is illustrated in Figure 1. Each modality has its own
feature extractor, and correspondence learning is added as an auxiliary task on top of the
original task. After the feature extraction, we synthesize negative correspondence samples
by swapping features from other samples and train a sub-network to predict the correspon-
dence of given features. Positive correspondence samples are the un-swapped, original
paired features. In this way, the sub-network is trained to predict the correspondence
among modalities, and the extracted multi-modal features contain information about the
correspondence with each other. We empirically show that correspondence learning can
significantly improve the performance of models with multi-modal inputs in sentimental
analysis benchmarks. In addition, the learned correspondence among modalities can be
used for fraud detection, and we can effectively filter out fake inputs. As camera modality
is frequently used as inputs, we focus on preventing look-alike frauds in reverse vending
machine cases. Nevertheless, the idea can easily be extended to other situations. In the
reverse vending machine dataset, the naive joint learning may not fully utilize multi-modal
information, so we additionally use an attention mechanism to keep the performance on
par with the conventional approach and simultaneously detect fraud inputs. Please note
that this is an extended version of our conference paper [28].

The paper contributes in the following ways:
1. We propose correspondence learning (CL), a novel and simple technique to explicitly

learn the relationship among modalities;
2. In sentimental analysis benchmarks, we show that CL significantly improves perfor-

mances with the simple auxiliary correspondence learning task;
3. In the garbage classification task, we show that single-modality-based models are vul-

nerable to fraud inputs and unseen class objects (out-of-distribution), and the learned
correspondence can be used for fraud detection with high detection rates. We also
show that the material classification is possible with non-contact ultrasound sensors.
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Figure 1. Overall architecture of the proposed correspondence learning approach. In the figure, two different modalities are
shown in two colors (blue/green), and three samples are given for training. The overall architecture consists of three parts: a
feature extractor, classifier and correspondence classifier. The training process consists of two parts: (1) each modality input
in each sample is given to the modality-specific feature extractor (written as CNN), (2) multi-modal features are concatenated
and trained with the ground-truth labels and are used as positive correspondence samples (top), while shuffled samples
are used as the negative correspondence pairs (bottom). Note that there are two losses used: the cross-entropy loss for
classification, and the binary cross-entropy loss for correspondence learning.

2. Related Works

After the success of deep learning in single modality tasks [1,2] with a large scale
dataset [3], a number of datasets have been proposed with multiple modalities in action
recognition [15,16,18], sentiment analysis [20,29] and face anti-spoofing [24,25]. In action
recognition datasets, there are three different modalities to be used: visual (RGB sequence),
motion (optical flow) and audio. Until recently, only visual and motion modalities have
been used, and a common approach is to train one model for each modality and ensemble
via late-fusion [30]. The two modalities are crucial yet complementary to each other: the
visual modality contains the contextual information, and the the optical flow modality
contains the motion information. A recent study [31] shows that the complementary in-
formation can be partially distilled from motion to visual modality, and the single visual
modality can achieve comparable results to the two-stream approaches. While modalities
may share information on the target task, there are fundamental differences in different
modalities: RGB sensors cannot defend against 3D masks in face identification [25] and
some actions can only be recognized with audio modality [18] (e.g., snapping), while
some sentiments can only be expressed via tone(audio), words(language) or facial expres-
sions(visual) [29].

A widely-used approach for multi-modal recognition is late-fusion [30], in which
one model is trained for each modality and the predictions from multiple modalities are
combined. While aligning visual and motion modalities is straightforward [32], as they
are similar in terms of spatial characteristics, aligning heterogeneous modalities, such as
visual, word and audio, requires sophisticated techniques [21–23]. The proposed corre-
spondence learning can be used as an auxiliary task along with any of the fusion methods.
It can be regarded as semi-supervised learning with self-supervision from cross-modal
correspondence. In the experiments, we show that the auxiliary task of CL can improve
the performance.

Methods to fool deep learning models, or adversarial attacks [33–35], have been
actively developed to identify the vulnerability of the deep learning models and make them
robust. Adversarial samples are easy to synthesize with minimal noises that are not visible



Electronics 2021, 10, 800 4 of 16

to human eyes [34]. Surprisingly, the adversarial samples can be extended to the physical
world, and adversarial patches can fool the recognition models [35]. A real world case [26],
in which a face recognition system was fooled by pictures, indicated the vulnerability of
single modality inputs. To mitigate this issue, several benchmarks have been proposed to
detect fraud inputs [24,25]. Previous approaches on fraud detection (i.e., face anti-spoofing)
are only applicable with spatially-aligned image modalities. In contrast, our proposed
method is simple and widely applicable without any constraints on the inputs.

Several previous works have tried to exploit cross-modal correspondence [27,36].
SoundNet [36] uses a teacher–student framework to distill the discriminative information
from a visual model into an audio model and achieves a new state-of-the-art in audio
classification benchmarks. Relja Arandjelović et al. [27] use the correspondence between
audio and visual modalities to train a cross-modal retrieval system, where images can
be retrieved with audio inputs, and vice versa. The proposed method in this manuscript
also exploits cross-modal correspondence, but it differs from all previous works in several
aspects. First, the previous works focus on using the learned correspondence for a specific
task. For example, Relja Arandjelović et al. [27] use the learned correspondence for sound-
image retrieval and sound localization in the given video frames. On the other hand,
we propose correspondence learning as an auxiliary feature for another task and aim to
improve the performance of the original task. In the fraud detection task, we can keep the
original task of garbage classification and add an important feature of fraud detection at the
same time with only a marginal overhead. Furthermore, in contrast to SoundNet [36], which
only distills the rich information from a visual modality to sound modality, the proposed
method jointly learns the correspondence among multiple modalities and automatically
learns information from other modalities.

We propose correspondence learning (CL), which is an auxiliary task of classifying
whether modalities are coming from the same sample or not. CL is inspired by repre-
sentation learning [27] using visual and audio modalities. To show the efficacy of CL
for multi-modal recognition tasks, we utilize CL in two multi-modal sentiment analysis
benchmarks [20,29] with several state-of-the-art baselines. In addition, the learned corre-
spondence among modalities can detect any inconsistency among modalities, which can
be an indication of fraud inputs. Thus, we propose a method and dataset to detect fraud
samples without any fraud samples in the training set.

3. Method: Correspondence Learning

In this section, we explain the motivation, the concept and the detailed implementation
of the proposed correspondence learning approach.

3.1. Motivation and Initial Observations

Multiple modalities contain rich information that partially overlap and are partially
complementary to each other. For example, in the garbage classification introduced in the
following sections, the high-level class information can be contained in the RGB image of
the object and also in the non-contact ultrasound signals, but in two different aspects; that
is, the RGB images contain appearance information of the class, and the ultrasound signals
contain material information. The two aspects are complementary to each other, so a
multi-modal recognition model is expected to fully exploit the complementary information
across all modalities and utilize the dynamic relationship among modalities.

For the proposed garbage classification task, we expect the multi-modal model to
exploit the relationship among modalities: if the appearance is an aluminum can, then the
ultrasound signal should contain a metallic characteristic. There should be shared knowl-
edge distilled among different modalities, and this can be partially trained by learning
the correspondence of the modalities; that is, learning whether the modalities are from
the same sample or not. In addition, this correspondence idea can be simply extended to
fraud detection tasks. If there are negative relationships, then we expect the model to have
lower confidence regarding the prediction. However, due to a common phenomenon of
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deep neural networks—i.e., over-confidence [37]—the model outputs confident predictions
regardless of the inter-modality relationship. In our initial experiments for the garbage
classification task, we observe that a confidence thresholding cannot achieve satisfactory
results in fraud detection.

To this end, we propose an auxiliary correspondence learning task for multi-modal
recognition tasks. We show that the auxiliary CL can improve multi-modal recognition
tasks and can be effectively used for fraud detection.

3.2. Multi-Modal Correspondence Learning

In this section, we explain how correspondence learning is implemented. As an exam-
ple, we assume there are two modalities, illustrated in Figure 2. Note that correspondence
learning is a binary classification task to predict whether the multiple modality features
are extracted from the same data. The features from the same sample are positive pairs for
correspondence learning; the features from different samples are negative pairs. Note that
the positive pairs are already given in the data, and the negative samples are generated
by simple shuffling; no extra data are required for the proposed correspondence learning.
Multi-modal models usually have modality-specific feature extractors and merge the fea-
tures or predictions afterwards. When the target task includes fraud detection, we can treat
the unmatched pairs as an extra class, and the implementation is straightforward; if it is
used as an auxiliary task, we can simply add a branch to the network and train the branch
to learn the binary classification of positive and negative correspondences.

Modality 1
features

Modality 2
features

Sample 1

Positive 
correspondence

Negative 
correspondence

Sample 2 Sample 3 Shuffled 1 Shuffled 2 Shuffled 3

Figure 2. An illustration of the sample generation process for correspondence learning. Two modali-
ties are shown, and the feature pair from the same sample (the leftmost three columns) is regarded as
positive correspondence; after shuffling, the feature pair for which features are not from the same
sample is regarded as negative correspondence. Note that all feature pairs are used for the auxiliary
correspondence learning, and only the leftmost three feature pairs are used to train the original task.

Specifically, in this work, when we choose to add an auxiliary task of CL, we add an
auxiliary model after using modality-specific feature extractors. The feature pairs may be
sampled from the same object or synthetically paired by shuffling. The model design is
very simple: concatenate all modality features and apply a multi-layered perceptron. The
predicted correspondence score is normalized with the sigmoid function. The hidden layer
sizes are identical to the input feature size for design simplicity.

p(yij) = Classi f ierCL(concat( f1[i], f2[j])) (1)

LCL = − 1
N ∑

i,j
BCE(p(yij), yij), where yij =

{
1 if i == j
0 otherwise

(2)

As shown in Equation (1), i and j are random indices in the minibatch, and the
concatenation is done in the channel dimension. Equation (2) shows how we calculate
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the losses for the correspondence learning. i, j are the indices of the samples for different
modalities. The correspondence loss is a simple binary cross entropy, where the label
indicates whether the modality features are sampled from the same data point or not.

The correspondence loss LCL, is added to the original task’s loss as below:

Ltotal = Ltask + αLCL (3)

Ltask is the original loss for each task. α is a hyper-parameter used to tune the magni-
tude of the correspondence loss. We have tuned α by a simple grid search from 0.1 to 1.0
for each task. As a simple yet comprehensive explanation, Algorithm 1 shows the pseudo
code of the method explained above. Note that the original task part (upper part of the
code) can be adapted to any kind of task, and the method can be easily extended to more
than two modalities. Throughout this paper, we assume that there are two modalities for
simplicity.

Algorithm 1 Pseudo code for the proposed method.

Require: Multi-modal inputs x1, x2 with minibatch size n, target labels t
# The original task for multi-modal classification
f1 = F1(x1)
f2 = F2(x2) . Extract feature for modality 1 and 2
ptask = Classi f ier(concat( f1, f2))
Ltask = CE(ptask, t) . Cross-entropy loss for the original task

# Proposed correspondence learning
ind = [0, 1, 2, . . . , n − 1]
ind1 = concat(ind, shu f f le(ind))
ind2 = concat(ind, shu f f le(ind)) . Half in the original order, and half shuffled
pCL = Classi f ierCL(concat( f1[ind1], f2[ind1]))
LCL = BCE(pCL, ind1 == ind2) . Learn if the features come from the same sample

Lall = Ltask + αLCL

4. Garbage Classification Task for Fraud Detection

In this work, we propose a multi-modal garbage classification task to evaluate the
robustness of multi-modal recognition systems against fraud inputs. Three different
modalities are recorded for each sample: an RGB image, a non-contact ultrasound signal
and the weight. The dataset consists of three garbage types (can, PET and glass bottle)
and fraud examples. The task is to classify a given sample among three garbage types
and reject any fraud samples. The fraud samples are defined as visually similar samples
(VS) or non-target samples. VS samples are intentionally crafted to confuse the recognition
system, and non-target samples are any objects that are not included in the three classes.

A reverse vending machine (RVM) collects empty, recyclable containers from users
and gives out rewards. There are several products in operation, such as TOMRA [38],
RVM Systems [39] and Superbin [40]. Photos of commercial RVM systems are shown
in Figure 3. Previous systems often used UPC or bar code scanners to specifically identify
the incoming containers. However, such systems require a huge and up-to-date database
of containers and cannot handle deformed (crumpled) containers for which UPC or bar
codes are not identifiable. To handle such problems, we have built a simple vision-based
system with deep convolutional neural networks for garbage classification; it has shown
over 99% accuracy for classification. Previously built systems used image inputs only and
were vulnerable to fraud inputs such as look-alike samples.

Since an automated RVM gives back immediate rewards, it is crucial to not give a
false positive classification; that is, to identify a non-target object as one of the target class.
The system must reject any non-target inputs and ask the users to input target class objects.
If the system accepts non-target objects, this vulnerability may be abused by malicious
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users and can lead to huge losses for the company. This is a fundamental threat to the RVM
business model.

(a) (b)

Figure 3. Commercial reverse vending machines (RVM). (a) The RVM from TOMRA and Superbin.
(b) View from inside the RVM. Images are taken from TOMRA and Superbin’s official websites
(https://www.tomra.com, accessed on 23 February 2021, http://superbin.co.kr, accessed on 23 Febru-
ary 2021).

4.1. Hardware Settings

In this section, we introduce the data acquisition system and the types of databases
for our experiments.

The hardware setup for data acquisition is shown in Figure 4a,b. We used a single
pair of transmitter/receiver ultrasonic sensors (HG-M40TN2/HG-M40RN2, Hagisonic),
a USB webcam sensor and a 5 kg load cell sensor. We used a controller (compactRIO-9036,
National Instruments) to trigger and receive raw signals of the ultrasonic and load cell
sensors. We triggered the ultrasonic sensor transmitter every 200 ms and recorded the
raw input in the receiver at 1 mega samples per second. We recorded the load cell signal
simultaneously. We acquired the image data with the USB webcam. Everything was
controlled by the laptop computer. The controller and the USB webcam were connected to
the laptop.

4.2. Dataset Composition
4.2.1. Raw Material Samples

To build the databases for our multi-modal classification task, we acquired sensor
inputs from various objects using ultrasonic, camera and load cell sensors. There were
two types of databases: the raw material database in which the target objects had the same
shapes and different material types, as shown in Figure 4c,d; and the real object database,
in which the target objects were real world objects including our target class objects (can,
PET bottles, glass bottles), fraud inputs and non-target objects, as shown in Figure 5.
The raw material types were stainless steel, aluminum, poly-carbonate and polyvinyl
chloride. To learn material features that were robust to sizes and shapes, we made the
objects for the raw material database in various shapes and sizes. We used three shapes:
flat, cuboid and cylinder. Flat shapes had widths of 80 mm, 100 mm, 120 mm and 140 mm,
heights of 100 mm, 200 mm and 300 mm, and 3T of thickness. Cuboids had square
bases with 50 mm, 75 mm and 100 mm sides and 100 mm, 200 mm and 300 mm heights.
Cylinders had circular bases with 50 mm, 75 mm and 100 mm diameters and 100 mm,
200 mm and 300 mm heights.

https://www.tomra.com
http://superbin.co.kr
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(a) (b)

(c) (d)

A system for ultrasonic inputs

Ultrasonic transducer pair (transmitter and receiver)

An RGB image sensor

A computer for data collection

A simulated RVM environment.
RGB/ultrasonic/weight sensors are installed.

IronAluminium Acryl Plastic

Aluminium

Iron

Plastic

Figure 4. The hardware setup for data acquisition and raw materials used for the material database.
(a) Overview of the setup. From left: the box for object placement, the power supply, the controller
and the laptop. Ultrasonic, camera (RGB) and load cell sensors are attached to the box. (b) Inner-
upper side of the box, where LED bars, ultrasonic transmitter/receiver and the camera sensor were
attached. (c) Flat shapes and (d) cuboid and cylinder shapes.

(b) (c)(a)

Figure 5. Captured images in the dataset. (a) is a target class sample of a can. (b) is a visually similar
fraud sample of printed can. (c) is a non-target sample of glove.

4.2.2. Real World Targets and Fraud Samples

In order to evaluate the robustness of any multi-modal approach against fraud inputs,
we collected as many real world samples as possible to ensure the diversity of the target
class objects. We acquired real-world garbage samples from a local recycling facility.
In total, 167 cans, 141 PET bottles and 228 glass bottles were collected with a multi-modal
system. In addition, we collected fraud inputs to validate the robustness of a multi-modal
recognition system, including visually similar (VS) samples and non-target samples. Note
that the fraud inputs were only included in the validation set.

VS samples can be viciously manipulated to confuse the recognition system. We
assumed that the visual information is easy to confuse and collected 60 visually-similar
samples by printing out the target class objects. As shown in Figure 5, the printed objects
were realistic enough to “fool” a deep neural network system. Our initial experiment
showed that a model using image inputs was able to reject 8.3% of the VS samples, leaving
the rest of the VS samples to be mis-classified.
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Although not viciously manipulated, non-target samples can also be potentially mis-
classified with high confidence. Therefore, we collected 29 non-target samples, with the ob-
jects used in our daily life, such as paper cups, gloves, plastic bags, human arms or clothes.

The classification was very trivial, and the final accuracy was 98.0% using only the
image modality. At the same time, the rejection rates of VS and non-target samples were
8.3% and 6.9%, respectively. The limitation of single-modality recognition is clear and is
discussed in the experiment section, along with the efficacy of the proposed correspon-
dence learning.

5. Experiment Setups
5.1. Datasets

The proposed method was evaluated with state-of-the-art approaches in multi-modal
recognition tasks. First, we used CMU Multimodal Opinion-Level Sentiment Intensity
(CMU-MOSI) [20] and CMU-MOSEI [29] sentiment analysis datasets with Tensor Fusion
Networks (TFN) [22] and Multilogue-Net [23]. Second, the correspondence learning
technique was applied to fraud detection in garbage classification, while no fraud samples
were available during training.

5.2. CMU-MOSI and CMU-MOSEI Dataset

The CMU Multimodal Opinion-Level Sentiment Intensity (CMU-MOSI) dataset is a
collection of YouTube videos in which people express their opinions on various subjects.
In total, 93 videos were collected, and the spoken words were transcribed and aligned
with the video with multiple verification stages. In total, 2199 sentiment segments were
extracted, and each segment was annotated with one of seven sentiments from highly
negative to highly positive. The intensity of each sentiment was also annotated. The dataset
was split into 52 training videos with 1151 segments, 10 videos with 296 segments and
31 videos with 752 segments. The CMU Multimodal Opinion Sentiment and Emotion
Intensity (CMU-MOSEI) dataset [29] consists of 3228 monologue videos from YouTube.
In total, 1000 unique identities are included in the dataset. A total of 22,676 sentences
were extracted from the videos. The annotation method for sentiments was identical to
CMU-MOSI dataset, but has five classes. In addition, the CMU-MOSEI dataset includes
emotion annotations of happiness, sadness, anger, fear, disgust and surprise, along with
likely annotations. The training, validation and test sets comprised 16,216, 1835, and
4625 sentences, respectively.

In our following experiments, we first reproduced the baseline performances using
official implementations of the state-of-the-art methods on CMU-MOSI and CMU-MOSEI
and showed the efficacy of CL. We focused on the sentiment analysis performance, and the
binary performance indicated the classification between positive and negative sentiments.
Except for the mean absolute error (MAE) metric, higher scores for all metrics indicate
better results.

5.3. Baseline for the Garbage Classification Task

In this section, we briefly explain the baseline settings for the garbage classification
task for fraud detection. The network design comprised three parts: feature extractors,
attention layers and the classifiers. In addition, if not otherwise specified, the networks
were trained with the Adam optimizer, with a learning rate of 1 × 10−4.

5.3.1. Feature Extractors

For the image modality, we used ResNet-18 up to stage 4 as the feature extractor,
followed by a global average pooling layer. A linear layer was added at the end and output
a 1D feature vector of size 512. For the ultrasound modality, we used time–frequency
data in the range (30 kHz, 50 kHz) as input. The feature extractor consisted of four 1D
convolutions with a kernel size and stride of [(201, 5), (51,1), (51,1), (51,1)] with ReLU.
Similar to the image feature extractor, a linear layer was added at the end and output a 1D
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vector of size 512. For the weight modality, we used one-hot encoding where the bin size
was 3 g per bin and the maximum weight was 600 g. The feature extractor consisted of
three linear layers, where the hidden sizes were [512, 512, 512] with batch normalization
and ReLU.

5.3.2. Attention Module

Features from different modalities were fed into the attention layers for feature refine-
ment. The attention layer generated gates for each modality feature. The attention module
consisted of three linear layers with output sizes [1536, 1536, 1536, 1536]. The last output
was normalized with a sigmoid layer. The normalized output was divided into three
vectors, and the three vectors were regarded as attention vectors for three modalities. Each
modality feature vector was multiplied with the attention vector for feature refinement.
There are two types of attention: cosine similarity and joint attention. When generating
cosine attention for one modality feature, the other two modalities were used as inputs.
Cosine similarity attention was generated by the element-wise multiplication of the two
modality features. The joint attention was generated by MLPs where all features were used
as the input. This simultaneously generated an attention map for all modalities. A sigmoid
layer was used to normalize the attention gates’ range to [0, 1]. Each modality feature was
multiplied with the generated attention map for feature refinement.

5.3.3. Classifiers

The refined modality features were concatenated and fed into the joint classifier.
The joint classifier was a four-layer multilayer perceptron (MLP) with batch normalization
and ReLUs, with hidden sizes of [768,768,768]—the last output was the number of target
classes. When we used the synthesized negative correspondence class, one extra class was
added. In order to train each modality feature well, we also assigned separate classifiers
for different modalities. In this way, even when a negative correspondence class instance
was fed into the network, we could train separate branches with the real labels of each type
of modality data. Note that for the fraud detection task, we used an extra class instead
of an auxiliary task or model. This simplified the final prediction, as we only needed to
choose the argmax of the final four class predictions; if we chose an auxiliary model, then
we may have needed to choose a good threshold for the binary classification task. Each
modality-specific classifier contained three linear layers with hidden sizes of [256,256]; the
last output was the number of target classes. For modality-specific classifiers, we were not
able to use the extra negative correspondence class.

Since neural networks are not usually designed for fraud detection, we used a heuristic
method of fraud detection. Neural networks are usually trained with known classes and are
not aware of unseen class instances. In classification networks, the output is softmax
normalized and the answer is the maximum-likelihood output. In order to detect fraud
inputs, we used a heuristic threshold for the likelihood: when the maximum-likelihood
output was below the threshold, we regarded the input as a fraud input. In addition,
in cases in which a negative correspondence class was used for training, the test inputs
classified as the negative correspondence class were also regarded as fraud inputs.

6. Experiment Results
6.1. CMU-MOSI and CMU-MOSEI

In this section, we summarize the experimental results in the two sentiment analy-
sis tasks. Two baselines were used for the CMU-MOSI dataset: Tensor Fusion Network
(TFN) [22] and Deep Multimodal Multilinear Fusion with High-order Polynomial Pool-
ing (HPFN) [41]. We used the official implementations (https://github.com/Justin1904/
TensorFusionNetworks, accessed on 23 February 2021), (https://github.com/jiajiatang000
0/HPFN, accessed on 23 February 2021) to reproduce the baseline performances and added
correspondence learning. Similarly, we reported CMU-MOSEI results using a strong base-
line Multilogue-Net [23] and its official implementation (https://github.com/amanshenoy/

https://github.com/Justin1904/TensorFusionNetworks
https://github.com/Justin1904/TensorFusionNetworks
https://github.com/jiajiatang0000/HPFN
https://github.com/jiajiatang0000/HPFN
https://github.com/amanshenoy/multilogue-net
https://github.com/amanshenoy/multilogue-net
https://github.com/amanshenoy/multilogue-net
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multilogue-net, accessed on 23 February 2021) for reproduction. The hyper parameter α
in Equation (3) was searched from 0.1 to 1.0 with 0.1 intervals. Since we used the official
implementation provided by the authors [22,41], the single best performance was reported
after the grid search on α. We report the binary classification and regression results.

As shown in Tables 1 and 2 in both datasets and all baselines, correspondence learning
resulted in significant performance improvements in the classification tasks. CL helped
the model to learn representations that were more helpful for discriminatory tasks more
effectively. Note that there are overheads in correspondence learning during training,
as there are some auxiliary layers and an additional loss to be used. However, the auxiliary
parts can be removed during evaluation, so there is no overhead during testing.

Table 1. CMU Multimodal Opinion-Level Sentiment Intensity (CMU-MOSI) experiment results. All
the results are reproduced, except for TFN we are using the performance from the original paper.
MAE: Mean Absolute Error.

Method Binary Regression
Acc (%) MAE r

Random 50.1 1.86 0.057

TFN [22] 77.1 0.87 0.70
TFN [22] + CL 78.6 0.79 0.70

HPFN [41] 77.16 0.984 0.66
HPFN [41] + CL 77.97 0.995 0.63

Human 87.5 0.71 0.82

Table 2. CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) experiment
results. All the results are reproduced. CL: correspondence learning. MAE: Mean Absolute Error.

Method Binary Regression
Acc (%) MAE r

Multilogue-Net [23] 78.06 0.609 0.46
Multilogue-Net [23]+CL 80.19 0.605 0.48

6.2. Raw Materials with Ultrasound

Then, a single pair of non-contact ultrasonic sensors and a 1D CNN were used to show
that raw material classification is viable, especially when the objects are in various shapes
and poses. In our target task of reverse vending machines, the object material is important.
It has been shown that material classification is viable with ultrasonic signals [42,43], so we
decided to use ultrasonic sensors as a new modality.

However, the experiments conducted in [42,43] were highly controlled in that the
target objects were flat board shapes with the same pose and distance from the sensors.
In real-world cases, the target objects would be in various shapes, sizes and poses. There-
fore, we needed to show that ultrasonic signals still contained enough information in such
challenging cases.

In the experiment, we used the raw material dataset acquired in Section 4.1 with
various shapes, sizes and poses. The feature extractor and the classifier were the same as
those specified in Section 5.3. According to the result in Table 3, we empirically verified
that material classification is possible with a single pair of non-contact ultrasonic sensors
and a 1D CNN.

https://github.com/amanshenoy/multilogue-net
https://github.com/amanshenoy/multilogue-net
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Table 3. Raw material classification with ultrasound.

Material Type Accuracy (%) Material Type Accuracy (%)

Acryl 100.0 Aluminum 100.0
Aluminum 100.0 Plastic 91.6

Iron 100.0 Iron 91.8
Plastic 96.0

Avg acc 99.0 Avg acc 94.4

2D shapes 3D shapes

6.3. Fraud Detection Using Real-World Data

In this section, we show that our proposed model was able to learn to classify target
inputs and detect fraud inputs. First, we show the effects and the limitations of the naive
use of multi-modal inputs. Next, we show that the two proposed techniques achieved a
high fraud detection rate while maintaining high accuracy for target class objects.

6.3.1. Multi-Modal Inputs

When multiple modality inputs are used together, we expect a better performance of
DNNs in general. As shown in Table 4, the joint use of multiple modalities was able to
achieve a higher fraud detection rate for both visually similar inputs and non-target inputs.
The change in target class object accuracy was negligible. In terms of the fraud detection
rate (visually similar inputs and non-target inputs), the efficacy of multiple modalities can
be observed. Fraud inputs are all unseen classes for DNNs, and the features are different
from those of target class objects. We conjecture that multi-modal inputs will show more
differences in features compared to single modal cases. Therefore, multi-modal inputs
achieve a higher fraud detection rate.

Table 4. Classification results using multi-modal inputs in a real-world database. W denotes the
weight modality, target denotes the accuracy in target class objects in Figure 5, VS denotes the fraud
detection rate for visually similar fraud inputs, and non-target denotes the fraud detection rate for
non-target inputs.

Modality Target (%) VS (%) Non-Target (%)

Image (IMG) 98.0 8.3 6.9
Ultrasound (US) 82.3 15.0 6.9

IMG + US 96.5 15.0 6.9
IMG + US + W 97.5 18.3 13.7

6.3.2. Multi-Modal Attention

The purpose of multi-modal attention is to refine the concatenated multi-modal
features by self-attention. As all modality feature vectors are used to generate attention
masks for each other, we expect the network to learn better representations. As shown
in Table 5, multi-modal attention achieved a higher target class accuracy and a higher
fraud detection rate for both visually similar fraud inputs and non-target inputs. Generally,
improved performance indicates better representations. For fraud inputs, the inter-modal
relationships were different from those of target class objects. As for attention jointly using
multi-modal features, we suspect that the network detects fraud inputs using the changes
in the inter-modal relationship.
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Table 5. Classification results using correspondence learning and multi-modal attention in a real-
world database. CL denotes correspondence learning and Att denotes multi-modal attention.

Modality CL Att Target (%) VS (%) Non-Target (%)

IMG + US + W - - 97.5 18.3 13.7
IMG + US + W - X 99.5 21.7 20.7
IMG + US + W X - 81.8 86.7 93.1
IMG + US + W X X 94.0 91.7 93.1

6.3.3. Correspondence Learning

Correspondence learning explicitly trains the network to learn the correlation among
modalities, and a much higher fraud detection rate was achieved, as shown in Table 5.
However, there was a decrease in target class accuracy. We argue that the fraud detection
rate improved because the classifier learned the correlation between modalities through
correspondence learning. As fraud detection is crucial to the RVM business model, this
large improvement of the fraud detection rate is remarkable.

The result agrees with the results from [44], as the network learns to accept modality-
matched inputs and reject negative correspondence inputs. Fraud inputs have negative
correspondence modalities since visually similar inputs have the visual appearance of
various classes but do not have matched ultrasonic or weight inputs.

6.3.4. Final Model

Finally, we combined all the techniques. The last row of Table 5 is the final model
we propose, in which all the proposed techniques are used. It achieved high accuracy
with a high fraud detection rate. When correspondence learning was used, the fraud
detection rate became very high, while the target class accuracy was the most compromised
value. The attention mechanism improved the fraud detection rate while maintaining
the target class accuracy. We argue that this was due to better feature learning resulting
from the multi-modal attention mechanism. When the two techniques were combined,
the final model preserved high accuracy while detecting most of the fraud inputs. This is a
remarkable improvement since fraud examples are hard to distinguish using only visual
modality only, as shown in Figure 5 and Table 4.

Lower target class accuracy may be a concern, but a slight compromise is not a problem
in the reverse vending machine task. Most mis-classifications are classified as negative
correspondence, and users will be asked to try again. As the single trial accuracy is 94%,
the success rate of multiple trials is high.

7. Conclusions

In this work, we propose correspondence learning (CL) for multi-modal object recog-
nition tasks. The block diagram in Figure 6 shows a general architecture of a multi-modal
recognition system with correspondence learning. In such systems, there are two bene-
fits of using CL: first, it can efficiently improve the recognition performance by learning
the cross-model relationship throughout the correspondence; second, the learned corre-
spondence can be used to effectively filter out fraud inputs. When improving the overall
performance, CL can be treated as an auxiliary task during training and can be removed
during inference, so there will be no extra cost for inference. When fraud inputs should be
detected, a minimal branch will be added at the very end of the network, so the inference
overhead is only a small multilayer perceptron.
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(1) acquiring data from 
multiple sensors

(2) extract features 
for each modality

objects sensors

Deep neural 
network 1

Deep neural 
network 2

Deep neural 
network 3

Correspondence 
classifier

Object classifier

(3) predict the correspondence of 
multiple modalities

(4) predict the class of the objects

fraud?

class?

Figure 6. Block diagram of the multi-modal system with correspondence learning.

The efficacy of CL in the two use-cases is empirically validated. First, we add CL to
state-of-the-art methods in sentimental analysis, where multiple heterogeneous modalities
are used. In the CMU-MOSI [20] and CMU-MOSEI [29] datasets, there are consistent
performance improvements across multiple baselines [22,23,41] and datasets. Second,
we collect a dataset for garbage classification and show the learned correspondence can
effectively filter out real-world fraud inputs. Since no previous works clearly show that
non-contact ultrasonic inputs can be used for material classification, we collected raw
materials and validated that the non-contact ultrasonic inputs contain sufficient informa-
tion for garbage classification. Next, we collected real-world samples comprising three
target classes (can/PET/glass) and two types of fraud inputs (visually similar and out-of-
distribution samples). In this dataset, the fraud detection rate of the baseline (without CL)
was very low (20.7% for out-of-distribution (OOD) and 21.7% for VS); with CL, we were
able to effectively identify both types of fraud inputs (93.1% and 91.7%, respectively).

Other than the improved performance, the advantages of CL are two-fold: first, the pro-
posed CL is lightweight and simple—CL can be easily integrated into any DNN-based
multi-modal systems and can be jointly trained in an end-to-end manner; second, the high-
performance fraud detection feature can be trained without any extra data collection for
fraud samples.

There are several limitations of the proposed CL which lead to future research direc-
tions. First, CL only exploits the mutual information contained among the input modalities.
While the proposed CL encourages the feature extractors to learn the mutual information
among modalities, encouraging non-mutual information can further improve the recogni-
tion performance by fully exploiting the each modality information. Second, in this work,
we only used real-world inputs for the fraud detection purpose. Recent adversarial attack
methods [33–35] have identified the vulnerability of deep neural networks, and methods
such as virtual adversarial training [45] have shown that adversarial inputs can be used to
improve the performance. As a future direction, correspondence learning can be extended
in combination with adversarial inputs to improve the robustness of the whole system.

8. Relevance to Electronics Journal

This manuscript is submitted for the special issue of “Deep Learning Based Object
Detection II”. As stated in the instruction, “This Special Issue will cover the most recent
technical advances in all deep learning-based object recognition aspects”, and the topics
include “Sensor fusion for object detection using deep learning”, and “Semi-supervised
learning for object detection”. Our proposed method is a generally applicable technique
for all deep learning tasks with multiple sensor inputs, and it can be seen as a semi-
supervised learning technique in which the learning signal comes from the cross-modal
correspondence. In conclusion, we consider that this manuscript fits the purpose of the
special issue.
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