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Abstract: A realistic performance assessment of any wireless communication system requires the
use of a fading channel model that reflects its main characteristics. The traditional Rayleigh and
Nakagami-m models have been (and still are) the basis of most theoretical research on wireless
technologies today, even for emerging technologies, such as millimeter-wave communications (mm-
Wave). In this article, we show that the fluctuating multiple-ray (FMR) and κ-µ shadowed models
had a better fit (i.e., lowest mean square error statistical test) to field measurements in outdoor envi-
ronments at 28 GHz than the conventional channel models. Therefore, these generalized models are
feasible alternatives that can be used as a benchmark when evaluating communication performance
in mm-Wave scenarios.

Keywords: generalized fading channels; mm-Wave; κ-µ shadowed; fluctuating multiple-ray model

1. Introduction

The increasing demands for new wireless applications/services and the rapid growth
of connected intelligent “things” (also known as the internet of things (IoT) [1]) will saturate
the capacity of current mobile communication systems in the coming years. Building on this
background, network designers and researchers search for novel emerging technologies to
ensure ultra-high data rates, energy efficiency, ultra-wide radio coverage, and connectivity,
as well as ultra-low latencies and high reliability [2]. In this context, the fifth generation of
wireless networks (5G) emerges as a solution to satisfy these strict requirements through
intelligent and environmentally friendly technologies [3]. The key to 5G communications’
successful operation will be unifying different technologies that coexist in the same envi-
ronment. Among these 5G technologies, the following stand out: massive multiple-input
multiple-output (MIMO), heterogeneous networks (HetNets), non-orthogonal multiple
access (NOMA), full-duplex (FD) transmission/reception, direct beamforming (BF), and
millimeter-wave (mm-Wave) communications [4,5].

Specifically, mm-Wave communication has attracted broad interest in academia and
industry, as it will the very crowded and scarce spectrum of current networks to be
overcome [6]. In this sense, several research studies have focused on mm-Wave commu-
nications, where the taking of empirical measurements of the propagation channels of
wireless communication systems has been carried out by both industrial and research
groups [7–9]. However, the basis of most theoretical research on mm-Wave communica-
tions uses the Rayleigh and Rician distributions as channel models to capture small-scale
fading in non-line-of-sight (NLOS) and line-of-sight (LOS) scenarios [10]. Recently, in [11],
the small-scale fading cumulative distribution function (CDF) obtained from an empirical
28 GHz outdoor measurement demonstrated that Rician fading was more suitable than
Rayleigh, even for NLOS environments. An exhaustive analysis of the results in [11,12]
shows that the traditional fading models (Rayleigh, Rician, and Nakagami-m) fail to accu-
rately capture the random fluctuations suffered in the dominant components of the received
signal. Furthermore, since the mm-Wave radio channel's propagation characteristics are
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different from those of frequency bands below 3 GHz, most of the existing characteristic
channel measurements and models are not relevant for the mm-Wave bands. Therefore,
fundamental knowledge of mm-Wave channel propagation features, including accurate
and reliable fading channel models, is essential for developing 5G mobile communica-
tions [13]. To overcome these limitations in the small-scale channel characterization in the
mm-Wave bands, new fading channel models have been proposed in recent years. In this
context, based on the small-scale fading measurements given in [11], the authors in [14]
prove that the fluctuating two-ray (FTR) fading model provides a much better fit than the
conventional fading models at 28 GHz outdoor mm-Wave bands. In [15], the researchers,
through indoor mm-Wave measurement campaigns, provide strong evidence that the two-
wave with diffuse power (TWDP) channel model is more accurate than the Rician model in
characterizing mm-Wave indoor channels at 60 GHz. The results in [16] demonstrated that
the statistical TWDP model is a suitable channel model for mm-Wave train-to-infrastructure
wireless communications. The TWDP channel model has also successfully been applied in
recent publications to model vehicle-to-infrastructure channel measurement data in the
mm-Wave band [17,18]. Recently, other popular stochastic fading models were investigated
in [19] to characterize propagation conditions encountered in mm-Wave communications.
Specifically, measurement campaigns were carried out in various indoor mm-Wave sce-
narios with frequencies ranging from 55 to 65 GHz for LOS and NLOS conditions. The
findings in [19] reveal that the α-µ, η-µ, and κ-µ fading channel models are satisfactory for
modeling short-term fading in the mm-Wave band. Other interesting results for modeling
small-scale fading in mm-Wave communications can be found in [20–22]. In our work, we
focus on two fading channel models to characterize mm-Wave scenarios in 5G networks
and beyond. We briefly describe each of these models in the following: (1) κ-µ shadowed
model [23]: In this fading model, the received power signal is structured by a finite sum of
multipath clusters. Each cluster is modeled by a dominant component and scattered diffuse
waves. All the specular components are subject to the shadowing fluctuation caused by
obstacles or human body movements, and (2) fluctuating multiple-ray (FMR) model [24]:
In this channel model, the receiver signal can be expressed as a superposition of multiple
dominant waves, plus additional waves associated with diffuse scattering. In addition, a
fluctuation in the amplitude of the dominant rays is assumed. This fact is due to blockage
by obstacles or by various electromagnetic disturbances.

In light of the above considerations, in this paper, we investigate the performance of
both the FMR and κ-µ shadowed fading channel models to fit the field measurement in
mm-Wave communications. Two important points related to the fading models mentioned
above are highlighted: (1) The number of channel models obtainable from the κ-µ shadowed
distribution as particular cases is abundant, as shown in ([23] Table I).In particular, the
κ-µ and η-µ that have proven to be suitable for modeling mm-Wave channels are special
cases of the κ-µ shadowed model; (2) the FMR encompasses the popular general models—
namely, TWDP and FTR, which are the most widely used to model the propagation
channel in mm-Wave frequencies. Based on the open literature and to the best of the
authors’ knowledge, the κ-µ shadowed and FMR fading models’ performance in fitting
experimental measurements in mm-Wave communications is still unexplored.

In addition to the main contribution, we compare the new generalized channel models’
performance with that of traditional fading models generally used in the literature (e.g.,
Rayleigh, Rice, Nakagami-m) to evaluate mobile communication systems’ behavior in
mm-Wave bands. Based on the results presented in this paper, we show that classical
fading channel models lack the versatility to model propagation characteristics in mm-
Wave environments. Conversely, the FMR and κ-µ shadowed channel models provide an
excellent fit to channel measurements of a 28 GHz communication system. The remainder
of this paper is organized as follows. Section 2 presents a brief overview of the FMR,
and the κ-µ shadowed fading distributions are given. In Section 3, the fading parameters
of the κ-µ shadowed and FMR models are adjusted to the empirical measurements of
communications at 28 GHz given in [11] through the use of a learning algorithm—namely,
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particle swarm optimization (PSO). Section 4 shows illustrative numerical results and
discussions. Finally, concluding remarks are provided in Section 5.

Notation: Throughout this paper, f(·)(z) and F(·)(z) denote the probability density
function (PDF) and the CDF of a random variable Z, respectively. E[·] is the expectation
operator, and |·| is the absolute value. In addition, Γ(·) denotes the gamma function [25]
(Equation (6.1.1)), Υ(·, ·) is the lower incomplete gamma function [25] (Equation (6.5.2)),
Γ(·, ·) is the upper incomplete gamma function [25] (Equation (6.5.3)), 1F1(·, ·, ·) is the
confluent hypergeometric function [25] (Equation (13.1.3)), Lz(·) denotes the Laguerre
polynomial of z order [25] (Equation (22.2.13)), (·)(·) is the Pochhammer symbol [25] (Equa-
tion (6.1.222)), and Φ2(·, ·; ·; ·, ·) is the bivariate confluent hypergeometric function [26]
(Equation (4.19)).

2. Preliminaries

Here, we begin by reviewing the main statistics (i.e., PDF and CDF) of the κ-µ shad-
owed and FMR fading channel models.

2.1. FMR Channel Model

In this model, the envelope, R, of the signal can be structured as a superposition of
N multipath waves arising from dominant reflections and L additional waves associated
with diffuse scattering, so

R =

∣∣∣∣∣ N

∑
n=1

√
ξVn exp(jθn) +

L

∑
l=1

Vl exp(jθl)

∣∣∣∣∣, (1)

where Vn exp(jθn) denotes the n-th specular component with amplitude Vn and a uniformly
distributed random phase θn ∼ U [0, 2π), and ξ represents the random fluctuation in the
specular components, which follows a Gamma random variable (RV) with scale param-
eter ms and E{ξ} = 1. On the other hand, based on the assumption that L → ∞, the
diffuse components follow a Gaussian RV, i.e., ∑L

l=1 Vl exp(jθl) ≈ Vd exp(jθd). Hence, Vd is
Rayleigh distributed with E{|Vd|2} = 2σ2 = Ω.

The FMR model in (1) encompasses very important fading channel models as particu-
lar cases. For instance, the FMR model reduces to the N-wave with diffuse power (NWDP)
distribution when ξ becomes deterministic, i.e., ms → ∞. A complete list of popular fading

channel models derived from the FMR model can be found in ([10] Table I) . Let γ
∆
= γ0R2

be the instantaneously received signal-to-noise ratio (SNR) through an FMR fading channel,

where γ0
∆
= PT/N0 is defined as the transmit SNR, with PT being the transmit power and

N0 being the mean power of the additive white Gaussian noise. According to [24], the PDF
and CDF of the received SNR of the FMR model can be expressed as

fγ(γ) =
1
γ

exp
(
−γ

γ

) ∞

∑
z=0

CzLz

(
γ

γ

)
, (2)

Fγ(γ) =
∞

∑
z=0

Cz

z

∑
k=0

(−1)k

k!

(
z
k

)
Υ
(

k + 1,
γ

γ

)
, (3)

where the corresponding fading parameters (i.e., the power, number, and amplitudes of
the specular components) are embedded in the coefficient Cz, and γ is the average received
SNR, given by

γ = γ0E
[

R2
]
= γ0

(
N

∑
n=0

V2
n + Ω

)
, (4)
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where N is the number of dominant components. In addition, the Cz coefficient can be
computed recursively by [24]

Cz =
z

∑
k=0

(−ϑ)k

k!

(
z
k

)
u(2k)

N+1, (5)

wherein ϑ =
(

∑N
n=0 V2

n + Ω
)−1

, and

u2k
j =

k

∑
a=0

(
k
a

)2
u(2a)

j−1 v(2k−2a)
j , for j = 2, . . . , N + 1, (6)

where the initial value is set as u2k
1 = v2k

1 , and

v2k
j =


V2k

j (ms)k

mk
s

, for j = 1 . . . N,

(1)k(Ω)k, for j = N + 1.
(7)

2.2. κ-µ Shadowed Channel Model

The κ-µ shadowed model considers a signal composed of clusters of multipath waves
propagating in a nonhomogeneous environment. Within each cluster, the multipath waves
have scattered diffuse waves with identical power and a specular component with certain
arbitrary power. The envelope signal of the κ-µ shadowed RV can be expressed as [23]

R =

√√√√ µ

∑
i=1

(Xi + ξ pi)
2 + j(Yi + ξqi)

2, (8)

where µ is the number of the multipath clusters, and Xi and Yi are mutually independent
zero-mean Gaussian RVs with σ2 variance, i.e., E{X2

i } = E{Y2
i } = σ2. Hence, the total

power of the scattered components for each cluster is 2σ2. Moreover, ξ pi + ξqi represents
the dominant component of the i-th cluster with a power given by p2

i + q2
i , where pi and

qi are real numbers. The κ parameter defined as the ratio between the total power of the
dominant components and the total power of the scattered waves can be computed as
κ = d2/(2σ2µ), where d2 = ∑

µ
i=1 p2

i + q2
i . The specular components for each cluster are

subject to the same common shadowing fluctuation, denoted by the random amplitude ξ,
which follows a Gamma RV with scale parameter mk and spreading parameter E{ξ} = 1.
The classical fading channel models that are included in the κ-µ shadowed distribution

can be found in ([23] Table I). Again, let γ
∆
= γ0R2 be the instantaneous SNR for the signal

under the κ-µ shadowed model. So, the PDF and CDF of the RV γ are given as in [23] by

fγ(γ) =
µµmmk

k (1 + κ)µ

Γ(µ)γ(µκ + mk)
mk

exp
(
−µ(1 + κ)γ

γ

)(
γ

γ

)µ−1

1F1

(
mk, µ,

µ2κ(1 + κ)γ

γ(µκ + mk)

)
, (9)

Fγ(γ) =
µµ−1mmk

k (1 + κ)µ

Γ(µ)(µκ + mk)mk

(
γ

γ

)µ

Φ2

(
µ−mk, mk; µ + 1;−µ(1 + κ)γ

γ
,−µ(1 + κ)mkγ

Ω(µκ + mk)

)
, (10)

where γ is the average SNR of the RV γ, i.e, E{γ} = γ. Finally, the PDF of the RV ξ, which
follows a Gamma distribution, is given by [24]

fξ(x) =
mmi

i xmi−1

Γ(mi)
exp(−mix), (11)
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where mi for i ∈ {s, k} denotes the shadowing severity index of either the FMR or the κ-µ
shadowed fading channels, respectively. Here, it is worth pointing out that shadowing
effects are a paramount factor to be taken into account in the performance analysis of
dense networks or mm-Wave communications. Based on these channel characteristics,
the κ-µ shadowed fading model finds applicability in several real-world applications,
including underwater acoustic communications (UAC), body-centric fading channels,
unmanned aerial vehicle (UAV) systems, land mobile satellite (LMS), device-to-device
(D2D) communications, and 5G heterogeneous cellular systems [27].

3. Empirical Validation

In this section, we introduce the methodology used to validate the goodness of fit
between the theoretical CDFs of the fading models and the empirical measurements of the
small-scale fading for mm-Wave outdoor communications in the 28 GHz band. Details on
the specific measurement configuration can be found in [11]. As in [11], we use the CDF
envelope of the received signal for performance comparisons between different fading
channel models. Furthermore, the mean square error (MSE) was adopted to define the
error factor, ε, in order to quantify the goodness of fit between the empirical data and the
theoretical CDFs, denoted by F̂r(·) Fr(·), respectively. Therefore, mathematically, ε can be
formulated as

ε
∆
= min

θ

1
M

M

∑
i=1

(
F̂
(

r(i)
)
− Fθ

(
r(i)
))2

, (12)

where

θ =

{
ms, Ω, Vn, for n = 1, . . . , N (FMR model)
mk, κ, µ, γ, for the κ-µ shadowed model.

(13)

F̂(·) is the empirical CDF data obtained from [11], and F(·) can be obtained from (3) or
(10) through a standard change of variables, i.e., Fr(r) = Fγ

(
r2). It is worth mentioning that

the error factor given in (12) is used to obtain the estimated parameters for the following
channel models: (i) Rayleigh, (ii) Nakagami-m, (iii) κ-µ shadowed, and (iv) FMR. Now, in
order to find the optimal values of the theoretical CDF fading parameters in (3) and (10) for
the different channel models, we use the iterative PSO algorithm. Next, we briefly describe
the background of PSO, which builds up the foundation for the proposed estimation of the
CDF parameters.

3.1. Overview of PSO

PSO is a learning technique based on the social behavior of birds flocking or fish
schooling—it is an evolutionary computing method focused on the biological form of
evolution [28].

In typical PSO, a set of candidate solutions called “particles” are placed in the search
space of some problem, and each evaluates the objective function (OF) at its current
location. Each particle defines its movement through the search space by using some
historical aspects of its own current and best locations with those of one or more swarm
members. The next iteration takes place after all the particles have moved, following the
same pattern. After a specified number of iterations, the swarm as a whole will likely
approach the OF’s optimal value, just like a flock of birds collectively foraging for food [29].

Each particle in the swarm comprises three components—namely, current position xi,
the previous best position pi, and the velocity vi. On each iteration of the PSO algorithm,
xi is evaluated in the OF. If xi is better than any that have been evaluated in the OF so
far, the coordinates of xi are stored in pi. The value of the best OF so far is stored in a
variable named pbesti for comparison on subsequent iterations. The aim is to keep finding
better xi and then updating pi and pbest. In addition, each particle interacts with some
other particles and is affected by the best global position, pg, found by any particle of its
topological neighborhood. A new xi is chosen by adding vi coordinates to xi, and the PSO
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algorithm operates by adjusting vi, which can be interpreted as a search step size. Each
particle’s velocity is iteratively adjusted so that the particle stochastically oscillates around
the pi and pg locations [29].

Based on the above, the velocity and position rules of each particle are given, respec-
tively, by [28]

vi ← wvi + c1U (0, 1)(pi − xi) + c2U (0, 1)
(

pg − xi
)
, (14)

xi ← xi + vi, for i = 1, . . . , pop, (15)

where pop is the size of the population, and U (0, 1) denotes random numbers sampled
from a uniform distribution on the interval [0, 1]. w is the inertia or habit term—the particle
continues to move in the direction in which it had previously moved. c1 is the memory—the
particle is attracted to the best location in its trajectory. c2 is the cooperation—the particle is
attracted to all particles’ best location in the swarm.

All parameters in the PSO algorithm, i.e., pop, number of iterations (iter), w, c1, and
c2, are fixed values at the beginning of the process. In this context, pop and iter are often
set empirically based on the difficulty of a problem at hand [29]. For our optimization
problem, several tests were carried out for different values of both pop and iter. Here, we
found that the minimum values for ensuring convergence were pop = 150 and iter = 50.
Concerning the w coefficient, high values (e.g., 2) correspond to a system where particles
perform extensive exploration. However, once the particles find the optimal possible
position, w should gradually decrease in each iteration to avoid leaving the desired solution
space [29]. Finally, c1 and c2, also known as acceleration coefficients, are typically set to
a value of 2.0 [30], although assigning different values to c1 and c2 sometimes leads to
improved performance [31]. Based on our exhaustive tests, we found that the configuration
c1 = c2 = 1 enhances our optimization problem’s convergence speed. An informative
flowchart with the steps for implementing PSO is given in Figure 1. Here, it can be observed
that, in the PSO algorithm, the search space is influenced by both the movements and
positions of the particles.
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Start

Set pop, iter, the number of variables, and
xi-vi with random positions and velocities.

Evaluate the objective function (OF) for each particle

Compare a particle’ s OF evaluation with its pbesti . If the
current value is better than pbesti , then set pbesti equal to
the current value and pi equal to the current location xi .

Compare the OF evaluation with the pop-
ulation’s previous overall best to obtain pg

Update the velocity and position according to:
vi ← wvi + c1U (0, 1)(pi − xi) + c2U (0, 1)

(
pg − xi

)
xi ← xi + vi

Is the stopping
criterion met?

Stop

yes

no

Figure 1. Basic flowchart of PSO.

3.2. Optimization Procedure

Based on the procedure given in Figure 1, we implement the PSO method inAlgorithm 1 to
solve the formulated optimization problem in (12) for each fading channel model. Specifically,
we set the following parameters: (i) Rayleigh: µ = 1, κ → 0, mk → ∞, γ = γRay;
(ii) Nakagami-m: µ = mnaka, κ → 0, mk → ∞, γ = γnaka. For notation convenience,
we denote vectors by lowercase bold letters and matrices by uppercase bold letters.

For informative purposes, we detail the procedure to obtain the generalized fading
models’ OF below.

From (3), the envelope CDF of the FMR distribution, i.e., Fθ(r) = Fγ

(
r2), is given by

Fθ(r) =
∞

∑
z=0

Cz

z

∑
k=0

(−1)k

k!

(
z
k

)
Υ
(

k + 1, ϑr2
)

. (16)

Note that by substituting (16) in (12), the optimization problem is given in terms
of well-known functions in the communication theory literature (e.g., lower incomplete
gamma function). By truncating (16) up to the first T1 terms, this yields

FTr
θ (r) =

T1

∑
z=0

Cz

z

∑
k=0

(−1)k

k!

(
z
k

)
Υ
(

k + 1, ϑr2
)

. (17)
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The truncation error of FTr
θ (r) to the first T1 terms can be expressed as

ε(Tr) = Fθ(r)− FTr
θ (r). (18)

Here, the number of terms needed in (18) to achieve a 10−2 accuracy was T1 = 28.
Concerning the κ-µ shadowed model, departing from (10), the envelope CDF distribution,
i.e., Fθ(r) = Fγ

(
r2) is given by

Fθ(r) =
µµ−1mmk

k (1 + κ)µ r2µ

γµΓ(µ)(µκ + mk)mk
Φ2

(
µ−mk, mk; µ + 1;−µ(1 + κ)r2

γ
,−µ(1 + κ)mkr2

γ(µκ + mk)

)
. (19)

Unfortunately, there are no mathematical packages available in MATLAB or Mathe-
matica Wolfram to compute the bivariate confluent hypergeometric function, Φ2(·, ·; ·; ·, ·).
To overcome this issue, we resort to an alternative representation of Φ2(·, ·; ·; ·, ·), expressed
as [23] (Equation (34))

Φ2(b, d; c; w, z) =
∞

∑
k=0

(b)kwk

k!(b)k
1F1(d; c + k; z). (20)

Here, by substituting (20) into (19), and then by truncating the resulting expression
up to the first T2 terms, we get

FTr
θ (r) =

µµ−1mmk
k (1 + κ)µ r2µ

γµΓ(µ)(µκ + mk)mk

T2

∑
k=0

(µ−mk)k

(
− µ(1+κ)r2

γ

)k

k!(µ−mk)k

× 1F1

(
mk; µ + 1 + k;−µ(1 + κ)mkr2

γ(µκ + mk)

)
. (21)

Applying the truncation error, i.e., substituting (19) and (21) into (18), the number of
necessary terms to achieve a relative error of less than 2% is T2 = 45.

On the other hand, in order to obtain the empirical results presented in [11] (Figure 6),
i.e., F̂(·) in (12), we use the WebPlotDigitizer. For instance, with the software’s help, the
empirical data corresponding to the CDF for the LOS case comprise two vectors of the
same length M (see (12)). The first vector (V1) denotes extracted values in decibels (r-axis),
and the second (V2) represents empirical CDF values on a linear scale. Then, by replacing
the empirical data vectors in the OF given in (12), this yields

ε
∆
= min

θ

1
M

M

∑
i=1

(
V(i)

2 − Fθ

(
10V(i)

1 /20
))2

, (22)

where Fθ(·) is given by (17) or (21) depending on the fading model at hand. In this context,
for the FMR model, after putting (17) into (22), the elapsed time in the PSO method for
estimating the fading parameters, i.e., θ, takes some minutes (e.g., ≈12 min for LOS and
≈13 min for the NLOS case). Likewise, after inserting (21) into (22) for the κ-µ shadowed
case, the average time demanded by the PSO algorithm for adjusting θ is several minutes
(e.g., ≈22 min for LOS and ≈25 min for the NLOS case).

Finally, we provide a quick explanation of the functions implemented in Algorithm 1.
The PSO function returns the following results: (1) fobest: minimum value of the objective
function, i.e., ε, in (12); (2) xgbest: optimal values of the fading parameters (e.g, µ, κ, mk, γ
for the κ-µ shadowed model) of the the theoretical CDF that minimize (12). It is worth
pointing out that the number of optimal values returned by the PSO algorithm depends on
the fading channel model. For instance, for the Nakagami-m case, the number of optimal
values returned in xgbest is two, namely, µ̂naka and γ̂naka.
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Algorithm 1 PSO

1: function OBJECTIVEFUNC(X)
2: db← −18 : 3 : 5 . Signal level vector in dB
3: xm← 10db/20

4: ym← F̂r(·) . Empirical data [11] (Figure 6)
5: Fr(r; θ)← Equation (17) or Equation (21) . Substituting Fr(r) = Fγ(r2) and θ is given by (13).
6: aux = length(X(:, 1))
7: for jj← 1 to aux do
8: YP(jj, :)← Fr(db; X(jj, 1), X(jj, 2), X(jj, 3), X(jj, 4))
9: end for

10: Y← 1/aux ∗ |sum((ym− YP)2)| . Objective Function, i.e., ε, given in Equation(22)
11: return Y
12: end function
13: function PSO
14: iter ← 50 . Number of iterations
15: pop← 150 . Set population size
16: c1← 1 . Weighting coefficient for personal best position
17: c2← 1 . Weighting coefficient for global best position
18: w← 2 . Set inertia weigh
19: var ← 4 . Set number of variables (i.e., fading parameters)
20: varmin← [θmin] . Set min values
21: varmax ← [θmax] . Set max values
22: for i← 1 to var do . Set initial position
23: X(:, i)← (varmax(j)− varmin(j)) ∗ rand(pop, 1) + varmin(j) ;
24: end for
25: fitness← OBJECTIVEFUN(X) . Evaluation of the objective function (OF)
26: [ f obest, idxbest]←min(fitness) . f obest: min value of the OF; idxbest: index of the min OF
27: xgbest← X(idxbest, :) . best values that minimize the OF
28: fpbest← fitness
29: XPBEST← X
30: V← zeros(pop, var) . Set initial velocity of the particles
31: for i← 1 to iter do
32: V← w ∗V + c1 ∗ rand(pop, var) ∗ (XPBEST− X) + c2 ∗ rand(pop, var) ∗ (xgbest− X); . Update particle

velocity
33: X← X + V . Update particle positions
34: fitness← OBJECTIVEFUN(X) . Update the value of the OF
35: . MEMORY
36: XPBEST(find(fitness < fpbest), :)← X(find(fitness < fpbest), :);
37: fpbest(find(fitness < fpbest), :)← fitness(find(fitness < fpbest), :);
38: . COOPERATION
39: [ f obest, idxbest]←min(fitness)
40: xgbest← X(idxbest, :)
41: . Decrease inertia weigh
42: w← w ∗ 0.7
43: end for
44: return f obest, xgbest
45: end function

4. Numerical Results and Discussion

This section first shows how the fading parameters of the κ-µ and FMR fading models
affect the PDF’s shape. All PDF curves are presented as a function of the envelope r; these
can be easily derived from (2) and (9) by a simple change of variables, i.e., fr(r) = 2r fγ

(
r2).

In addition, for the FMR case, we define a power ratio parameter similar to the well-known

Rician K parameter, i.e., KN
∆
= ΩN

Ω , with ΩN = ∑N
n=0 V2

n being the total average power
of the specular components. Secondly, by using the MSE metric, we investigate which
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of the channel models’ theoretical CDFs best fit the experimental data of the envelope
CDF obtained in [11]. Specifically, the curves labeled as “measured” in the figures below
were obtained from [11] (Figure 6) by using software tools for extracting the underlying
numerical data from figure plots—we used WebPlotDigitizer to accomplish this task. In our
analysis, the channel models’ fading parameters (i.e., Rayleigh, Nakagami-m, FMR, and
κ-µ shadowed) were estimated in the previous section with the help of the PSO algorithm,
as shown in Table 1.

Table 1. Cumulative distribution function (CDF) fitting parameters for the line-of-sight (LOS) and
non-line-of-sight (NLOS) scenarios.

Distribution κ̂ µ̂ m̂k γ̂ m̂s N̂ K̂dB
N V̂n Ω̂ Scenario

Rayleigh 0 1 ∞ 0.9 - - - - -
Nakagami-m 0 2.01 ∞ 0.9 - - - - -

FTR [14] - - - - 2 2 19.03 ∆ = 0.583 1 LOS
κ-µ shadowed 8.45 0.48 1.25 1.6 - - - - -

FMR - - - - 0.84 3 0 [1 0.1 0.1] 0.8
Rayleigh 0 1 ∞ 0.95 - - - - -

Nakagami-m 0 1.81 ∞ 0.8 - - - - -
FTR [14] - - - - 2 2 15.14 ∆ = 0.883 1 NLOS

κ-µ shadowed 2.95 0.79 0.91 1.5 - - - - -
FMR - - - - 0.9 3 -6 [1 1 1] 8.7

For the sake of comparison, the theoretical CDF of the FTR given in [14] is also
included as a reference in our analysis. Notice that the FTR model is a particular case
of the FMR when the number of specular dominant components in (3) is equal to two,
i.e., N = 2. It is worth mentioning that in [14], the optimal values of the FTR model's
fading parameters were calibrated through the empirical measurements of [11] using the
Kolmogorov–Smirnov (KS) statistical tool.

Figures 2 and 3 plot the PDF curves for different fading parameter combinations of
both the κ-µ shadowed and FMR distributions. From all traces, the versatility of the fading
models mentioned above is clear. For instance, in Figure 2, we verify that the κ-µ shadowed
model provides a unification of a variety of important fading distributions, including
Rayleigh, Rice (Nakagami-n), Nakagami-m, Hoyt (Nakagami-q), Rician shadowed, κ-µ,
and η-µ distributions, to name a few (see ([23] Table 1) for more details). Because of the
κ-µ shadowed generality, this model can characterize small-scale fading, which appears
due to LOS or NLOS conditions, dominant specular components, and multipath clustering.
In Figure 3, we plot the PDF curves of the FMR model by varying the number of specular
rays for KdB

N = 10 dB, ms = 1.6, and Ω = 1. In addition, to seek readability, yet without
loss of generality, the amplitudes of successive rays are expressed in terms of the amplitude
of the first dominant component, that is, Vn = αnV1 for n = {2, . . . , N}, with 0 < αn < 1.
Considering this, we set: V1 = 1 and αn = 1 for n = {2, · · · , 6}. Here, it can be observed
that the FMR model exhibits an inherent multimodal behavior for small values of N.

Nevertheless, as the number of dominant components increases (e.g., N ≥ 6), the
central limit theorem holds, and the PDF curves reduce to unimodal distributions (e.g.,
Rician for N = 1 and Rayleigh for N = 0).
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Figure 2. Probability density function (PDF) curves of the κ-µ shadowed distribution for fixed γ = 1.
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Figure 3. PDF of the fluctuating multiple-ray (FMR) envelope for different numbers of dominant
specular waves (N).

In Figures 4 and 5, we compare the theoretical CDFs with the empirical CDF for
the cross-polarized LOS and NLOS scenarios described in [11]. From all curves in the
LOS scenarios, we observe that the κ-µ shadowed model is the one that best fits the
measured data, providing values closer to the true CDF than the other fading models. This
performance is because this channel model offers more degrees of freedom of adjustment
(i.e., µ, κ, mk, γ) compared to the conventional distributions. Notice that the κ factor for
the LOS case (κ = 8.45) is larger than that for the NLOS (κ = 2.95) scenario, as expected.
Based on this fact, we can infer that the Rayleigh and Nakagami-m models’ poor fit is
because, in these models, κ → 0. Furthermore, for the LOS scenario illustrated in Figure 4,
an interesting observation can be made: The theoretical CDF κ-µ shadowed model makes a
slight change in concavity (see the range from −10 to 5 dB) to continue the trend of the
empirical CDF curve.
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Figure 4. Empirical vs. theoretical CDFs of the received signal amplitude in LOS scenarios.
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Figure 5. Empirical vs. theoretical CDFs of the received signal amplitude in NLOS scenarios.

This flexibility of adjustment is because the mk parameter plays a key role in the
goodness of fit, as it enables the theoretical CDF to modify its concavity or convexity
(i.e., inflection points). On the other hand, for NLOS scenarios, it is clear that the FMR
model with N = 3 rays provides the best fit performance. In the same way as the κ-µ
shadowed distribution, the FMR model can also modify the concavity and convexity
of the theoretical curve through the ms parameter in order to achieve a better fit to the
measured data. Regarding the performance of the FTR model, it can be seen that this
distribution offers a better fit to the experimental data than the Rayleigh and Nakagami-m
counterparts. In short, from all curves, it is clear that the generalized fading channel models
provide a better fit than the classical models for modeling small-scale fading in mm-Wave
wireless links. On the other hand, it is worth mentioning that both the κ-µ shadowed
and FMR models are mathematically much more intricate than the traditional fading
channels. This aspect increases the computational cost of the PSO process for estimating
the CDF parameters (see Section 3.2). Therefore, we point out some ideas for overcoming
these mathematical limitations of generalized fading models in the following. The FMR
distribution has a comparable mathematical complexity to that of models obtained as
special cases, such as TWDP and FTR. Based on this, using either the FTR or TWDP would
not significantly improve the PSO’s performance in terms of time consumption. In light
of this, an interesting research field is the approximation of the FMR model by a finite
mixture of Nakagami-m distributions where the parameters can be adjusted by using
learning algorithms (e.g., unsupervised expectation maximization [32]). This fact will
undoubtedly improve the mathematical tractability of the FMR model. Concerning the
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κ-µ shadowed model, it is noteworthy that simple approximations of the the model can be
used with the aim of reducing the time required by the PSO method and the mathematical
complexity. In particular, the κ-µ shadowed CDF can be represented as (i) an infinite
series in terms of Laguerre polynomials [27], and (ii) an infinite [33] and finite [34] mixture
of gamma distributions. However, some constraints need to be considered when using
such approximations (e.g., only integer fading parameters and convergence issues in the
Laguerre polynomial). An alternative to these issues is that, as in the FMR case, the CDF
distribution of the κ-µ shadowed model can be approximated using learning algorithms.

Finally, Table 2 summarizes the MSE values for the statistical channel models in all
of the scenarios under study. From the tabulated results, it can be confirmed that the
best goodness of fit (highlighted in bold) between the empirical and theoretical CDFs is
achieved with the κ-µ shadowed and FMR models for the LOS and NLOS cases, respectively.
Finally, it is worth mentioning that in the current literature, several research works have
been developed under the premise of the use of both κ-µ shadowed and FMR models.
For instance, we can state the following: (1) heterogeneous 5G cellular systems over κ-µ
shadowed fading channels [27]; (2) physical layer security over κ-µ shadowed [35] and
FMR [36] fading channels; (3) cooperative networks over FTR channels [37]; (4) the next
mobile communications over FTR channels [38].

Table 2. Mean square error (MSE) between the theoretical and empirical CDFs for the LOS and NLOS
scenarios.

Fading Channel Model MSE Scenario

Rayleigh 0.1819 LOS
Nakagami-m 0.0893 LOS

FTR 0.0665 LOS
κ-µ shadowed 0.0013 LOS

FMR 0.0501 LOS
Rayleigh 0.0114 NLOS

Nakagami-m 0.0101 NLOS
FTR 0.0021 NLOS

κ-µ shadowed 5.3× 10−4 NLOS
FMR 2.7 × 10−4 NLOS

5. Conclusions

The lack of information on statistical channel modeling for future wireless commu-
nication networks has motivated researchers to carry out measurement campaigns to
understand the channels’ behavior in mm-Wave frequencies more accurately. This paper
has contributed to this research direction by investigating the goodness of fit between the
experimental CDFs and theoretical CDFs of traditional/generalized fading channel models
for LOS and NLOS scenarios. The fading models (i.e., κ-µ shadowed and FMR models)
that best fit the empirical data were chosen by using the MSE statistical tool. Based on
the numerical results, it was possible to verify that the generalized models—namely, the
κ-µ shadowed and FMR models—provides the smallest MSE estimation error compared
to the conventional models in all analyzed scenarios. All in all, we conclude that the
generalized fading models examined in this paper can be satisfactorily used in this hard
mm-Wave band.
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