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Abstract: The objectness measure is a significant and effective method used for generic object
detection. However, several object detection methods can achieve accurate results by using more
than 1000 candidate object proposals. In addition, the weight of each proposal is weak and also
cannot distinguish object proposals. These weak proposals have brought difficulties to the subsequent
analysis. To significantly reduce the number of proposals, this paper presents an improved generic
object detection approach, which predicts candidate object proposals from more than 10,000 proposals.
All candidate proposals can be divided, rather than preclassified, into three categories: entire object,
partial object, and nonobject. These partial object proposals also display fragmentary information
of the objectness feature, which can be used to reconstruct the object boundary. By using partial
objectness to enhance the weight of the entire object proposals, we removed a huge number of useless
proposals and reduced the space occupied by the true positive object proposals. We designed a neural
network with lightweight computation to cluster the most possible object proposals with rerank
and box regression. Through joint training, the lightweight network can share the features with
other subsequent tasks. The proposed method was validated using experiments with the PASCAL
VOC2007 dataset. The results showed that the proposed approach was significantly improved
compared with the existing methods and can accurately detect 92.3% of the objects by using less than
200 proposals.

Keywords: objectness detection; fixation prediction; salient object segmentation; detection rate (DR)

1. Introduction

Studies in cognitive psychology and neurobiology showed that humans can perceive
objects before identifying objects. However, humans’ first glances of an object usually focus
on a certain partial detail, while the rest of the details of the object remain unperceived.
Considering this behavior, we utilized a mechanism similar to the visual perception of
humans. When a camera captures a frame, the number of objects included in the image
must be counted before categorizing the objects. Generally, image windows are used
to represent regions where objects are detected. Object detection and recognition have
been research hotspots in recent years. Great endeavors have been made to meet actual
applications. The results of these endeavors were used as basis to introduce several
standardized databases, such as ImageNet and the Pascal Visual Object Classes (VOC) [1].
Since the datasets contain a rich variety of objects, conferring additional challenges for the
detection and recognition systems, the variability of the object categories is intractable and
must be solved. In particular, the different object categories demonstrate varied degrees of
deformation in the images. On the one hand, the natural structure of the objects varies—
that is, living creatures, such as dogs, are more deformed than human-made machines,
such as airplanes. On the other hand, different object locations lead to various viewing
distances and angles in the same image; such that rigid objects can display deformations
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in various view angles, whereas deformable objects appear rigid at a certain distance.
Despite the significant advances made in object detection, many state-of-the-art detection
techniques use category classifiers to estimate the image windows in a sliding window
framework [2,3]. This sliding window technique entails high computing costs when a
large number of object classes exist or when the applied classifiers evaluation costs ate
high [4]. To address this limitation, scholars have developed numerous detection methods.
For instance, techniques based on multistage cascade architectures have been proposed;
in the early stages of detection, a larger portion of the bad bounding box hypotheses are
filtered compared with the accurate ones [5]. Hence, a small set of windows can estimate
costly classifiers. However, this technique is unsuitable for huge datasets in various object
categories because a huge number of windows are generated in each image. Objectness
is presented as a value to describe the likelihood of an image window overwriting an
object [6]. This insensitivity can be regarded as a feature of objectness, because general
objects contain a well-defined closed boundary and center when resizing into a small
fixed size. As predicted, an objectness measure that deals with specific classifiers in each
category must be used. The region-based convolutional neural networks (R-CNNs) and
Fast R-CNN [7] achieve significant performance in object detection. When ignoring the
computing time of proposals, the speed of object detection approaches real-time with Fast
R-CNN deep networks. The time consumption of the proposals becomes a problem to be
solved in detection systems. In addition, the properties of computational efficiency and
accuracy of detection must also be considered. Therefore, high object detection rate (DR),
high computational efficiency, and good generalization ability need be considered in a
general object detection method.

Based on the region method, the object detection is divided into two substages. In
the first stage, the regional proposal generation network and deep convolution neural
network are combined to generate high-quality candidate proposals. In the second stage,
these candidate proposals need to be classified and refined. The region proposal phase can
eliminate most of the proposals with backgrounds, thus greatly reducing the search space of
the object detection. Using very deep CNNS [8,9], the Fast R-CNN pipeline [7], has recently
shown high accuracy on the mainstream target detection benchmark [10–13]. A multistage
training process (e.g., [14,15]) is usually used for the joint operation of region proposal
generation and postdetection. In Fast R-CNN [10], the region-based subnet repeatedly
evaluates the positive and negative signs of thousands of regions to generate detection
scores. Faster R-CNN and detection network share full image convolution features, which
makes it possible to propose regions with almost no cost. Recently, R-FCN [14] attempted to
make Faster R-CNN’s per ROI unshared calculation shareable by position-sensitive scoring
maps. However, R-FCN still requires a regional proposal generated by the region proposal
network [10]. A popular technique for classification models is to use a bag-of-words
model [16–18] that transforms documents into vectors where each word in the document
is assigned a score. To ensure the accuracy of detection, the images are resized to a large
enough size in all methods (usually the shortest edge is 600 pixels). When the images are
feed into the deep network, both in the training time and the inference time, it is quite a
waste of resources and time.

More than 1000 proposals containing true positive object windows are obtained by
using the existing proposal methods. The weight of each proposal is weak and cannot
distinguish object proposals. In order to obtain the advantages of the traditional proposal
generation methods and the effective representation ability of CNNs, we present an im-
proved proposal method to search for objects in an image. The existing object proposal
methods divide all proposals into object and nonobject proposals. However, we observed
that some nonobject proposals that covered or were located around object proposals display
objectness features (Figure 1). To efficiently obtain accurate detection results, we divide
all proposals into three categories: object, partial object, and nonobject proposals. We
also demonstrate how partial object proposals can be used to increase the weight of the
entire object proposals and reconstruct the boundary of the object. In contrast with the
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state-of-the-art techniques, our method for model classification not only achieves objectness
discrimination but also reduces the search space of the true positive object proposals.

The first thing to consider is that the network does not have too many computations.
Secondly, the improved training process can be implemented in an end-to-end manner.
Since the statistics of all the proposals are lightweight and easy to calculate, we can share
the convolution features with other networks through joint training. In this paper, we
combined our module with the famous Fast R-CNN [7] detection framework. The proposed
module connects behind the last layer of the neural network, like VGG16 [9]. Therefore, by
sharing the basic convolutional layer, our optimized network can achieve more efficient
optimization effects with subsequent object detection network.

To evaluate the performance of the algorithm, we use the PASCAL VOC2007 dataset.
The experiment results show that our technique exhibits significant improvements com-
pared with previous methods. Our method uses only 200 proposals in each image and
achieves a detection recall rate of 80.4% and 67.9% for the intersection over union (IoU) 0.5
and 0.7, respectively. The experimental results show that our method can generate high
quality proposals when the number of proposals is limited. Additionally, the proposed
method can accurately detect 92.3% of the objects by using fewer than 200 proposals.

The remaining part of this paper is organized as follows. Section 2 describes re-
lated works. Our method is presented in detail in Section 3. Then, Section 4 shows the
experimental results. Finally, Section 5 reveals our conclusion.
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Figure 1. Proposals classified by existing methods: ranking proposals based on objectness detection
scores (red and blue, respectively, represent the proposals with entire object, nonobject, partial object).

2. Related Works

Three categories of related models are presented considering the mechanism of human
visual perception, in which the location of a potential object is first determined before
identifying the object. In this section, we briefly discuss the three models, respectively,
fixation prediction, salient object segmentation, and object proposal generation.

2.1. Fixation Prediction

Ko, J.; et al. [19] propose a fixation prediction method using the hybrid saliency-based
attention model for calculating the saliency of the eye movement behavior of humans in
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the computer vision community. Further studies with patch-based or pixel-based [20]
features are utilized in fixation prediction models. Harel et al. [21] introduced the feature
map surrounded by the normalized center, which is used for the highlighted part of the
object. Fixation prediction has greatly contributed to object recognition in recent years.
However, the models cannot accurately detect all general object proposals.

2.2. Salient Object Segmentation

Salient pixels form blobs, which are noticeable in an image. Inspired by studies of
human eye movements [22], a selective visual attention is implemented from a bottom-up
perspective. Typically, the bounding box is scored in combination with some low-level
features, and then the selected bounding boxes have higher scores. To determine the
noticeable regions in an image, Liu et al. [23] presented a mixed measure involving bound-
ary and saliency information. Huang et al. [24] proved that existing fixation algorithms
provide poor results when the F-measures of a PR curve are benchmarked. MCG [25] is an
efficient image segmentation algorithm, which effectively utilizes multiscale information.
By exploring the combination space, the multiscale regional hierarchy is combined into an
object proposal. Palazzo et al. [26] introduced an overview of the features and performance
of recent salient object algorithms. Manen et al. [27] constructed a connected graph of the
image superpixel, then adopted the random version of the Prim algorithm to generate a
spanning tree with a large number of the expected edge weights. DeepMask’s [28] training
has two targets: firstly, the designed system outputs a categorically uncertain split mask,
and then the likelihood is obtained. To enhance the target segmentation of the feedfor-
ward network, a new top-down refinement method is proposed by Sharp mask [29]. The
proposed architecture can effectively generate high-fidelity object masks. To form the seg-
mentation hierarchy, Rantalankila et al. [30] proposed that the local search on superpixels
and then the graph segmentation at the intermediate level can be obtained by global search.
Although the methods [31–34] are successfully used in image scene analysis, a complicated
image containing numerous objects remains difficult to solve.

2.3. Objectness and Object Proposals

According to previous studies [35–39], the production of rough segmentations as
object proposals could lead to huge number of computations and requires 2–7 min per
image. To obtain efficient and precise prediction, a measured approach of the “objectness”
of a bounding box is presented by Alexe et al. [40]. The objecness score is calculated based
on the number of outlines completely contained in each bounding box. Zhang et al. [37]
introduced a cascading sorting support vector machine method to generate proposals
using oriented gradient features. Cheng et al. [41] proposed the binarized normed gradient
(BING) feature to quickly capture the objectness of an image proposal and generally
achieved more than 1000 proposals in a short span of time. In order to accurately locate
the objects in an image [6], it is necessary to refine the object proposals in postprocessing.
RPN [10] predicts the objectness score and the image CNN feature each position of the
object boundary. Zhang et al. [35] proposed an optimization method for object proposal
generation, which used superpixels to optimize the proposal box. Therefore, the system
accelerates the superpixel generation speed in MTSE with optimizational segmentation.
He et al. [42] proposed that object-oriented schemes with different directions, rather than
just the vertical boxes used in conventional methods.

Compared with other methods, our method builds a refinement network and has
good performance in object proposal generation evaluation and object detection evaluation
by reducing the true positive object proposal space to less than 200.

3. Materials and Methods

Human visual perception involves two cascades, wherein objects of the environment
are first perceived in the basic cascade, followed by identification of the objects found in the
succeeding cascade. Similar to this mechanism, computer vision relatively demonstrates
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the ability to perceive a hierarchical system. Compared with the method presented in [41],
we propose an approach to cluster proposals produced by other proposal generations
and reduce the range of true positives. Using the feature information in the deep neural
network [6], the objectness score of each box is recalculated.

3.1. Objectness Detection

Objectness always acts as a seal around the objects. When resizing windows to a fixed
size of 8× 8, the closed objectness boundaries slightly change. This characteristic is a feature
particularly used to describe the structure of objects. Although one object demonstrates
various visions in different illumination conditions and distances, the normed gradients
eliminate the effects of the environment and maintain the uniformity of the entire object.
We first resize the original image into 28 kinds of scales to make sure target windows
contain different sizes of objects and then compute the normed gradients of each scale
image. When we search the resized window pixel by pixel, each predefined 8 × 8 region
contains 64 values of normed gradient that are defined as the 64D normed gradient feature.
Changing object position and scale minimally influences objectness structure because the
objectness normed gradient feature is compact and insensitive to changes in translation.

We also use a two-stage cascaded SVM as in [37] to train the normed gradient model.
First, linear SVM is utilized for a single model w with truth object window and random
background window; w has high weights along the boundary and will split objects from the
background. Second, each window size possesses different correlation coefficient learning
from a linear SVM. As such, we obtain the filter scores and re-sort the proposals by using
Equation (1). The large weights along the w borders can help to separate an object from
its background. We found that w captures a more complex and natural a priori than the
hand-designed central surround pattern. Lower object areas tend to be obscured from
above object. Therefore, the w places less confidence in the lower areas.

w =
N

∑
k=1

βkxk (1)

where N denote the total number of basis vectors, xk ∈ {−1, 1}64 is a basis vector, βk ∈ R
presents the coefficient to each basis vector. To approximate w, we present Equation (2) in
terms of a set of basis vectors xk = x+k − x+k , where x+k ∈ {0, 1}64.

〈w, y〉 ≈
N

∑
k=1

βk(〈x+k , y〉 − 〈x+k , y〉) (2)

To calculate and binarized the normed feature, we use Equation(3) to approximate H
with top M binary bits of the BYTE values.

H =
M

∑
j=0

28−jyj (3)

where H is the 64D normed feature.
The filter score of binary normed gradient features S can be estimated by Equation (4).

S ≈
N

∑
k=1

βk

M

∑
j=1

28−j(2〈x+k , y〉 −
∣∣∣yj

∣∣∣) (4)

3.2. Objectness Detection Constructing Object Boundary with Partial Object Proposals

When generating an object proposal, we need to be concerned about whether the
boundaries are contained precisely, rather than the pixels inside the object. By observation,
the good bounding boxes are those that tightly cover the boundaries of an object. When
the boundaries of a proposal do not intersect with any the edge points, we can assume that
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the proposal contains no objects. On the other hand, the proposal has not yet reached the
boundaries of the object. In all of these cases, the proposal needs to be modified to push it
toward the real object boundaries. Therefore, we suggest refining the proposal using the
point closest to the proposed boundary as a fast and weak indicator of the object boundary.

In each window scale, the 8 × 8 binary normed gradient feature that shifts by one
step represents a new proposal, and each proposal corresponds to a score of objectness
detection (Equation (4)). The results show that more than 10,000 proposals are predicted.
The key challenge is how to screen and reduce the range of true positive object windows in
all proposals. We rank all proposals basing on objectness detection scores; meanwhile, red
blue and yellow circles are used to represent the predicted proposals. To efficiently and
rapidly estimate the proposals, we utilize the nonmaximum suppression for removing the
useless proposals. Subsequently the scope of the ranking is decreased to 1500.

After filtering the scores of the proposals, the most possible proposals are distributed
in the front of the ranking. When we display the 64D normed gradient feature region of
1500 proposals in the original gradient image, the proposals in the first 400 spots in the
ranking mostly bear heavy weights and are surrounded by pixels; each of these proposals
is represented by a red circle. The yellow points represent the proposals that partly display
objectness and belong to the middle part of the ranking. The end part of the ranking shows
low objectness in the original gradient image.

We presume that objectness detection can not only separate object proposals from
nonobject proposals but can also separate partial object proposals. Therefore, to verify
our presumption, we use three proposals: entire object inside, partial object inside, and
nonobject inside. We determine the statistical distribution of each type of proposal in the
ranking. Figure 2 shows that most of the entire objects, partial objects, and nonobjects are
distributed in the rankings as follows: 0:400, 0:800, 700:1500.
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3.3. Clustering the Most Possible Proposals

As mentioned in Section 3.1, more than 1500 proposals are obtained in an image. These
proposals contain entire objects, partial objects, and nonobjects. We compare the proposals
with the true locations of objects by using testing image annotations. If the proportion of
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the overlap of one proposal window and a truth object window is more than 80%, then the
proposal is marked as the most possible proposal. When the proposals containing entire
objects are all clustered in the first 200 spots in the ranking, this phenomenon becomes
advantageous in finding regions where the most possible proposals are distributed, thereby
reducing computing time. In fact, the most possible proposals are dispersed in the rankings.
To cluster the most possible proposals, we provide a method to enhance the weight of
objectness in the proposals and ensure that the most possible proposals are included in the
ranking. When we resize each proposal to the corresponding windows in an original image,
the corresponding object windows always cover or intersect with the small windows. The
small windows also contribute to constructing the parts of an object. If a corresponding
window contains or intersects with another window, then the score of the corresponding
window increases. We choose the most possible proposals as classes and randomly initialize
their respective central points. The intersecting proposals act as a data point vector. A
central point is a location at the same distance from each data point vector. This requires
us to predict the number of classes in advance. Then, we calculate the distance between
each data point and the center point and divide the data points into the category closest to
the center point. By recalculating the center point of each class, we achieve the new center
point. We repeat the above steps until the center position of each category is fixed after each
iteration; that is, the new most possible proposal position. Similarly, when we have a new
proposal, we use its center coordinate as a reference and calculate the minimum hamming
distance from the center point of each category we have obtained in the previous step,
attributing it to the nearest category. After recalculating the weight of the proposal and
re-sorting the score ranking, we obtain a new proposal ranking. All of the most possible
proposals are clustered and distributed in the first 200 proposals in the ranking.

Windows corresponding to the 8 × 8 region of the resized normed gradient maps
with high scores display the necessary objectness to construct an entire object in each scale,
given that the filter eliminates most of the 64D normed gradient windows with low scores.
Therefore, we use proposals that are distributed in 300 to 1000 in the ranking to determine
the regions where the objects are located in the original image and then transform the
image into a grey image. By projecting each grey images into a white image (value = 255),
we reveal the contours corresponding to the objects (Figure 3). This result proves that the
partial object proposals can be used to construct the outline of the entire object. Although
the true position of an object is lacking in some situations, we can still reconstruct the
object’s contour by using partial object proposals.
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3.4. Network Architecture

Our object detection system has two modules (Figure 4). We model the first module
with a deep fully convolutional network. The values in the convolutional layers mean the
number of channels. Ren [10] suggests that the proposal quality of RPN+VGG is better
than that of RPN+ZF. Inspired by this result, we use VGG as the deep fully convolutional
network. VGG is the basic network architecture which is widely used in deep learning. In
this paper the first module has 13 convolutional layers and 3 fully connected layers. The
second module is the region proposal network. Its input is an image with any size and its
output is a set of rectangular object proposals, each with an objectness score. When we
train an image with a car, we first need to perform multiscale scaling of the image to obtain
proposals of different sizes and angles. Then, using Bing to speed up the calculation of the
objectness of each proposal, we cluster the most possible proposals with the corresponding
position of the object. Finally, the reranking proposals are obtained. These rectangular
object proposals serve as inputs into the next network.
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Figure 4. Overview of our network architecture. The object detection system is composed of two modules. The proposed
network is designed to generate the initial boxes, and then input the clustered boxes into the branch of Fast region-based
convolutional neural networks (R-CNN) for classification.

After the 13th convolutional layer, we firstly connect a kernel size of 3 × 3 convo-
lutional layer, which reduces the number of channels from 512 to 128. Each initial box
will be sampled downward and fixed to the size of 8 × 8 feature map through the ROI
Pooling layer. The input feature grid map has the same width and height. ROI Pooling is
performed for the maximum pooling of each grid. It is then connected to a full connection
layer with 512 output neurons. Finally, by two branches of box regression and ranking the
objectness score is recalculated, as well as the positional offset of each box. Additionally,
the ranking branch then consists of two fully connected layers with two neurons, each of
which outputs a probability value of whether it is an object or not.

Following the multitask loss in Fast R-CNN [7], we minimize an objective function.
The loss function is:

Lobj(p, u) = −
[
1{u=1}logp1 + 1{u 6=1}logp0

]
(5)

where p is calculated by a softmax on the two outputs in a fully connected layer. If the
box is an object, the label u is 1. Otherwise, the label u is 0. Considering the learning of
coordinate offsets, the box regression layer is designed as a fully connected layer.
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The box regression values is predicted as described below:

tx = (x− xk)/wk, ty = (y− yk)/hk,

tw = log(w/wk), th = log(h/hk), (6)

t∗x =
(x∗ − xk)

wk
, t∗y = (y∗ − yk)/hk,

t∗w = log(w∗/wk), t∗h = log(h∗/hk),

where x and y are the central coordinates of the box. Similarly w and h are the box’s width
and height. The variables x denotes the predicted box. The variables xk and x* have a
similar definition; respectively, input box, and ground-truth box. The variable t* and t
denote the prediction target and the prediction tuple. When making location predictions
for boxes, consider this as a regression from a box to the ground-truth box boundary. The
box regression loss is defined as:

Lreg(ti, t∗i ) = R(ti − t∗i ) (7)

where R denotes the robust loss function which is defined in [7]. Then, joining Equation (5)
and Equation (6) the loss function is:

L(p, u, t, t∗) = Lobj(p, u) + λ· 1{u=1}Lreg(t, t∗) (8)

where the balance parameter λ is set as 1 in this paper.

4. Experiment

Based on recent works on general objectness detection, we evaluated our target
detection performance using the challenging Pascal VOC 2007 dataset. The dataset has
4952 images in 20 different categories. All the images are marked with boundary box
annotations (Figure 5). The PASCAL VOC 2007 has become a famous benchmark dataset
for general multiple-class object detection because it can be used for various objects, such
as humans and airplanes. The detection performance of each category is measured by
average precision. We need to detect all objects in the images regardless of the object
categories; hence, various categories and sufficient number of objects make PASCAL VOC
2007 suitable for our verification.

During the training, each stochastic gradient descent (SGD) requires 256 proposals
from an image. In each batch, half of the samples are positive and the other half are
negative. The initial learning rate is set to 0.001. After running 12 epochs, the learning rate
needs to be divided by 10. We run SGD for 16 epochs throughout the training process. Our
experimental training and testing take place on the GTX 970 GPU. All parameters of these
comparison methods are set to default values.

4.1. Proposal Quality Comparisons

The method proposed by Cheng [41] for general objectness detection can achieve more
than 1000 proposals with 96.2% DR. Each proposal has a filter score obtained from the
linear SVM as the 1D feature. We used testing image annotations to check the labels of the
proposals and rank their filter score (Figure 5). When we mark the entire object proposals
as red circles, the partial object proposals as yellow circles and the nonobject proposals as
blue circles in the rank chart, all circles are clearly distributed in three different regions of
the rank chart. Proposals with nonobject are useless and mostly found below the 1000th
rank. Every image generates around 10,000 proposals. Then, we use the proposed method
to exclude the proposals that are marked as partial objects and nonobjects. More than 8000
proposals are removed in each image. The standard recall-over-IoU performance is used to
evaluate our performance. Each method proposes 1000 bounding boxes and we test each
method’s recall with different IoUs. In order to explore the statistics of the object proposals



Electronics 2021, 10, 794 10 of 15

of each class, we combined the aspect ratio and size of the object proposal, and used the
weighted contour for scoring. Part-object proposals are chosen from a pool proposal with
80% to 35% overlap with some object and non-object proposals have no more than 35%
overlap with any object.
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Inspired by [43], we tried to use high IoU (0.7) for object detection and compared the
refinement methods of the different proposals. We selected edge boxes to generate the
initial proposals, and then input them into these optimization algorithms. Changing the
nonmaximum suppression parameter from 0.7 to 0.9, we also found that more edge boxes
could be obtained. Note that our method uses contour score to select 1000 proposals from
the selective search [44]. Additionally, they are significantly better than almost all of the
IoU’s 1000 proposals in the selective search report. Fewer proposals and higher detection
recall rates would be of great benefit for subsequent advanced applications. With just 100
proposals, we can implement 91.3% and 83.5% detection recalls, with IoU of 0.5 and 0.7.
We obtain a small amount of high quality object proposals. Selecting the good proposals
from all the proposals generated by the previous method is the goal of our method. The
goal of our method is to select the most possible proposal from all the proposals generated
by the previous method.

4.2. Object Detection Performance

Based on image annotations, we marked the most possible entire object proposals
with red circles. Note that not all of entire object proposals are distributed together in
front of the ranking line; hence, we increase the weight of entire object proposals with
objectness of the partial object proposals. Our approach obtains a small set of high quality
proposals in dataset. Figure 6 shows that the most possible proposals are distributed in
the first 200 spots. The proposed approach can be used to avoid most windows with no
significance and thus save computation time. The Fast R-CNN network is retrained by
the first 200 proposals for each image. We train the VOC2007 TrainVal set with all these
methods and test them on the test set (Figure 7). The results are shown in Tables 1 and 2.
To measure the computing cost of a network, we typically use floating point operations
(FLOPs) as a metric. A floating point operation implies a multiplication and addition
operation. For each proposal, the FAST R-CNN branch has 120 million FLOPs in the fully
connected layers, while our branch only has 3 million FLOPs in the fully connected layers.
Therefore, the improved proposal branch will only increase the extra computation a little
bit. BING is simple, using advanced speed-up techniques to make the computational time
tractable. The runtime of our method for each image is about 0.23 s, which is very fast
when compared with the traditional proposal generation methods. Compared with the
original methods, i.e., Rath, GOP, MCG, and EdgeBox, the improved proposals improve
performance 12.8%, 33.6%, 25.1% and 27.2%, respectively. Under the same conditions,
our results showed a 1.2% improvement in performance compared with the state-of-art
Refinedbox [6]. Figure 6 shows the comparison of our method with other methods, namely,
Refinedbox, MCG, and GOP [44], which use more than 1000 proposals to obtain 97.8%
DR. By contrast, our approach can achieve 92.3% DR by using less than 200 proposals. If
we use 1000 proposals, the result will be higher than 98.6%. The behavior of these curves
demonstrates the excellent performance of the proposed approach over the other methods.

To ensure that the experimental results are meaningful and that statistical validation
is possible, we repeat the experiment 30 times with the same dataset of 20 categories. Here,
we randomly use different image detection initialization cores with a total of 30 kinds;
that is, for each image, we will obtain 30 score values as a group. In order to better verify
our results, we conduct paired t-tests on the results of each method, and eight groups of
comparison results are obtained, assuming that there is no difference in the results of the
object detection by different methods. Calculating the statistics, we obtain the score of each
method and the p value with our method in Table 3. According to the standard, p < 0.05 is
considered statistically significant. For quantitative analysis, the difference is statistically
significant, and it can be considered that the identification results of the two methods are
different.
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Table 1. Detection recall (%) using intersection over union (IoU) 0.5 thresholds on the VOC2007 test
set.

Method

Proposals IoU = 0.5
Time(s)

100 500 1000
EdgeBoxes 75.3 90.2 94.3 0.24

Endres 83.6 93.2 94.0 18.77
GOP 62.1 93.8 96.2 0.28
LPO 73.6 95.5 95.9 0.47
MCG 83.3 96.0 97.1 18.02
Rahtu 61.7 87.3 89.2 0.69

Refinedbox 89.2 97.3 97.8 0.31
Our method 91.3 98.4 98.6 0.23

Table 2. Thresholds on the VOC2007 test set.

Method

Proposals IoU = 0.7
Time(s)

100 500 1000
EdgeBoxes 61.1 83.2 86.7 0.24

Endres 59.6 78.3 80.3 18.77
GOP 35.2 74.5 83.6 0.28
LPO 48.3 76.5 82.8 0.47
MCG 59.8 81.3 85.2 18.02
Rahtu 46.2 68.2 72.3 0.69

Refinedbox 78.2 84.5 85.4 0.31
Our method 83.5 85.2 86.8 0.23

Table 3. Paired t-test with our method on the VOC2007 test set.
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5. Conclusions 

5. Conclusions

In this paper, we presented an improved approach for object proposals generation. By
classifying all of the candidate proposals into three categories, we enhance the weak weight
of entire object proposals and enable them to distinguish object proposals. This approach
can reduce the number of true positive object proposals from 1000 to less than 200 and
avoid insignificant computation. Since the network is easy to optimize, it is possible to
combine it with subsequent applications for training. The evaluation of the object detection
proves the effectiveness of this method. The experiments using the PASCAL VOC2007
dataset show that our approach achieves 92.3% DR of generic objects by using a small set
of candidate proposals. Since this method is processed for the small feature map generated
by subsampling in the backbone, when there are many small targets in the image, the
performance will be affected, such as the target detection method [45,46]. With a small
number of high-quality object proposals, we can do more advanced work in the future.
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