
electronics

Article

Sensorless PMSM Drive Inductance Estimation Based on a
Data-Driven Approach

Gwangmin Park, Gyeongil Kim and Bon-Gwan Gu *

����������
�������

Citation: Park, G.; Kim, G.; Gu, B.-G.

Sensorless PMSM Drive Inductance

Estimation Based on a Data-Driven

Approach. Electronics 2021, 10, 791.

https://doi.org/10.3390/electronics

10070791

Academic Editor: Ahmed Abu-Siada

Received: 15 February 2021

Accepted: 19 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Energy Engineering, Kyungpook National University, Daegu 41566, Korea; gmpark00@knu.ac.kr (G.P.);
ruddlf0222@naver.com (G.K.)
* Correspondence: bggu@knu.ac.kr

Abstract: In the permanent magnet synchronous motor (PMSM) sensorless drive method, motor
inductance is a decisive parameter for rotor position estimation. Due to core magnetic saturation, the
motor current easily invokes inductance variation and degrades rotor position estimation accuracy.
For a constant load torque, saturated inductance and inductance error in the sensorless drive method
are constant. Inductance error results in constant rotor position estimation error and minor degrada-
tions, such as less optimal torque current, but no speed estimation error. For a periodic load torque,
the inductance parameter error periodically fluctuates and, as a result, the position estimation error
and speed error also periodically fluctuate. Periodic speed error makes speed regulation and load
torque compensation especially difficult. This paper presents an inductance parameter estimator
based on polynomial neural network (PNN) machine learning for PMSM sensorless drive with a
period load torque compensator. By applying an inductance estimator, we also proposed a magnetic
saturation compensation method to minimize periodic speed fluctuation. Simulation and experi-
ments were conducted to validate the proposed method by confirming improved position and speed
estimation accuracy and reduced system vibration against periodic load torque.

Keywords: sensorless control; magnetic saturation; inductance variation; polynomial neural network
(PNN); group method of data handling (GMDH); noise; vibration; harshness (NVH)

1. Introduction

Permanent magnet synchronous motors (PMSMs) are largely applied to home appli-
ances and automotive motors owing to their high efficiency and lightweight features. For
a high performance PMSM drive, a rotor field-oriented control method is widely used.
In this method, accurate position information of the rotor must be identified in real time.
However, because of realistic problems, such as inability to mount, cost, and faulty situa-
tion of sensors, studies are actively being conducted on sensorless control methods that
estimate rotor position and speed without a directly mounted position sensor [1–6]. The
synchronous reference frame model-based sensorless control method is largely classified
into current model-based and extended electromotive force (EMF)-based methods [2,3].
Currently, the latter method is commonly used because of its fast-tracking capability using
the arc-tangent calculation.

To estimate the rotor position, the model-based sensorless control method utilizes
motor parameters of inductance, resistance, and back EMF constant. Hence, motor param-
eter errors deteriorate the position estimation error and, as a result, degrade the control
performance of the system. Particularly in environments where the motor drive is directly
exposed to a periodic load torque, such as pumps, home appliance compressors, and vibra-
tion suppressors injecting counter motor torque, the control performance can be significantly
compromised. In these cases, the effects of load torque fluctuation can be counteracted by
analyzing the load pattern and applying a proper compensation current [7–9]. However,
using this load torque compensation method reduces the effects of fluctuating load torque,
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and the magnitude of compensation torque current is increased. This leads to a secondary
problem in speed estimation error due to magnetic saturation. The core saturation invokes
inductance reduction, which creates an inductance parameter error in rotor position estima-
tion by the sensorless control method. If the load torque is constant, the torque current and
the inductance parameter error from the core saturation are constant values and the rotor
position estimation error is constant. This constant rotor position error does not invoke a
speed estimation error; it only invokes minor degradations such as a less optimal torque
current. However, when the load torque has a periodic component, the inductance parame-
ter error has a periodic fluctuation and periodic components in the speed error and position
estimation error occur. The periodic speed error results in difficulty in speed regulation and
load torque compensation. As a result, severe mechanical noise and vibrations still exist. If
a proper compensation method considering this problem is not implemented, mechanical
instability of the entire system as well as noise, vibration, and harshness (NVH) problems
could be present. By accurately estimating the actual value of inductance, the accuracy of
sensorless speed control can be improved [10–13].

To compensate for the magnetic saturation problem, inductance estimation studies
have been conducted with mathematical models, such as a flux observer [13–17]. However,
the sensorless drive method utilizes an identical PMSM model to estimate the rotor position.
The model-based flux observer utilizes the estimated rotor position and speed from the
sensorless drive method. Hence, the inductance estimator is sensitive to the back EMF
constant and drive output voltage error. Even with a well-tuned back EMF constant, the
estimated inductance could worsen system stability and speed estimation error, particularly
for periodic load torque fluctuation.

As a parameter estimator, a data-driven approach based on soft computing method
can be used since estimation can be done with the selected input data while excluding any
model parameters. In comparison to mathematical model-based methods, data-driven
approaches, such as machine learning approach, are more appropriate to learn the pre-
dictive model for unknown parameter estimation [18]. With a recursive training process,
the input data errors, which include inverter output voltage error, current sensor offset,
and various nonlinear components, can be excluded. Moreover, this method can learn
parameters faster and more accurately in a nonlinear relationship where the input and
output relationship, or functional type of the model, is uncertain. In particular, the poly-
nomial neural network (PNN)-based group method of data handling (GMDH) estimates
output parameters with a polynomial expression of multiple layers. It has fast calculating
speed, good real-time performance, and excellent accuracy. Moreover, it has many advan-
tages when applied to an embedded system compared to a neural network, fuzzy logic,
etc. It could effectively reduce estimated parameter errors by training the network as it
combines multiple input/output data to dynamically estimate the collections of necessary
factors [19,20]. Recent studies have applied machine learning to the motor control system
to exploit these advantages. However, to our knowledge, there has been no attempt to
apply PNN-based machine learning for the prediction of sensorless control parameters and
compensation control because of difficulty in implementation, optimization, etc. [21,22].
In particular, if the design factors are not properly selected when applying a PNN-based
learning method to a nonlinear system, the control characteristics of the system could be
degraded, and the entire system can become unstable if an unexpected disturbance or
fault occurs. Therefore, it is necessary to design and optimize a suitable method for the
sensorless nonlinear system and to have a quick-response control strategy when errors or
faults occur during parameter estimation.

Comparing to the conventional model-based inductance estimation, the PNN-based
estimation has the following list of major advantages for a PMSM sensorless system. Firstly,
the PNN-based learning method is suitable for complex nonlinear models—it can reduce
the cost for a fine tuning of a variety of PMSM sensorless systems. Secondly, the PNN-base
learning method accurately estimate the unknown parameter and compensates without
delay or distortion. Hence, it performs better than the other methods in terms of root mean
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square error (RMSE) and correlation coefficients. Thirdly, it can be easily adaptable to
various operating load condition including step, periodic, and random profiles with the
learning process.

In this paper, the q-axis inductance estimation method for a sensorless PMSM drive is
studied to minimize rotor position and speed error and compensate external periodic load
torque variation. To minimize the uncertainty based on magnetic saturation and improve
real-time control performance, we proposed a PNN-based compensation method using
a GMDH algorithm to estimate the q-axis inductance and perform compensation control
for magnetic saturation. In addition, to reduce the estimation error and improve control
accuracy, an optimization learning of the q-axis inductance parameter was conducted
with respect to various load torque patterns. To effectively respond to fault situations,
such as unexpected disturbances or errors in estimated values, the position error was
also estimated and monitored in real time. A software simulation was performed on a
sensorless PMSM drive to validate the proposed PNN-based compensation method and
confirm the result of the control performance. Through the experiment, we confirmed that
sensorless speed estimation error is reduced with PNN-based inductance and frequency
response characteristics of the system. The NVH performance was also improved.

2. Extended EMF-Based Sensorless Control

Figure 1 shows a space vector diagram of a PMSM. Note that α-β, d-q, and γ-δ represent
two axes in the stationary reference frame, the synchronous reference frame, and the estimated
frame for a sensorless control, respectively. θe is the difference between the actual rotor position
θ and the estimated rotor position θ̂. ω and ω̂ denote the actual and the estimated rotor speed,
respectively. The voltage equation in d-q synchronous frame is given by[

vd
vq

]
=

[
Ra + pLd −ωLq

ωLq Ra + pLd

][
id
iq

]
+

[
0

ωψ

]
, (1)

where Ra, Ld, Lq, and ψ represent the stator resistance, the d-q axes inductance, and the
back EMF constant, respectively; p is a differential operator; vd, vq, and id, iq are the stator
voltage and current in the d-q synchronous reference frame, respectively.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 19 
 

 

Figure 1. Space vector diagram of a permanent magnet synchronous motor (PMSM). 

 

Figure 2. Block diagram of position estimator using extended electromotive force (EMF)-based 

sensorless control [2]. 

3. Compensating Method for Magnetic Saturation 

3.1. Analysis of Inductance Saturation Effect on Sensorless Control 

For precise rotor position estimation in sensorless control, the accuracy of 

parameters, such as resistance and inductance in (2), is important. In a system with a large 

periodic load, such as a pump or compressor, if the error between the actual 𝑞 -axis 

inductance (𝐿𝑞 ) and the estimated 𝑞 -axis inductance ( �̂�𝑞 ) increases due to magnetic 

saturation, the estimated rotor position becomes inaccurate. Considering the error 

between the actual value and the estimated value due to magnetic saturation, (2) can be 

reorganized for the extended back EMF, 𝑒𝛾 and 𝑒𝛿, which are expressed as 

[
𝑒𝛾

𝑒𝛿
]  = [

𝑣𝛾

𝑣𝛿
] − [

𝑅𝑎 + 𝑝𝐿𝑑 −𝜔�̂�𝑞

𝜔�̂�𝑞 𝑅𝑎 + 𝑝𝐿𝑑

] [
𝑖𝛾
𝑖𝛿
] + [

Δ𝑒𝛾

Δ𝑒𝛿
]  (4) 

where Δ𝑒𝛾 = −𝑝Δ𝐿𝑑𝑖𝛾 + 𝜔Δ𝐿𝑞𝑖𝛿  and Δ𝑒𝛿 = −𝑝Δ𝐿𝑑𝑖𝛿 − 𝜔Δ𝐿𝑞𝑖𝛾 . Note that Δ𝐿𝑑 and Δ𝐿𝑞  are 

the parameter errors of 𝑑- and 𝑞-axes inductance, respectively, which are obtained by 

subtracting the estimated inductance from the actual inductance (Δ𝐿𝑑 = 𝐿𝑑 − �̂�𝑑, Δ𝐿𝑞 =

N
S

𝛽 − 𝑎 𝑖𝑠

𝛼 − 𝑎 𝑖𝑠

𝛾 − 𝑎 𝑖𝑠

𝛿 − 𝑎 𝑖𝑠

𝜃𝑒

𝜔

�̂�

𝜃

𝜃 
𝑑 − 𝑎 𝑖𝑠

𝑞 − 𝑎 𝑖𝑠

+

 ee ,

−
𝑣𝛾 + 𝜔𝐿𝑞𝑖𝛿 , 

𝑣𝛿 − 𝜔𝐿𝑞𝑖𝛾

 ii ,

ad RsL +





gs

g

+

 ee ˆ,ˆ











−−





e

e

ˆ

ˆ
tan 1

̂

−

ê ô
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Figure 1. Space vector diagram of a permanent magnet synchronous motor (PMSM).
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Ignoring the difference between the estimated speed and the actual speed, (1) can be
converted to the γ-δ axes estimated by the extended back EMF. Then, the voltage equation
can be represented as [2][

vγ

vδ

]
=

[
Ra + pLd −ωLq

ωLq Ra + pLd

][
iγ

iδ

]
+

[
eγ

eδ

]
, (2)

where eγ = −Eex sin θe, eδ = −Eex cos θe, and Eex = ω
[(

Ld − Lq
)
id + ψ

]
−
(

Ld − Lq
) diq

dt .
vγ, vδ, iγ, iδ, eγ, and eδ are the stator voltage, the current, and the extended back EMF in
the γ-δ estimated synchronous reference frame, respectively, which includes rotor position
error. Using eγ and eδ, the rotor position error can be calculated as

θ̂e = tan−1

(
−

θ̂γ

θ̂δ

)
∼= −

êγ

Eex
. (3)

As shown in Figure 2, the estimated speed ω̂ can be obtained through the PI controller
that takes the estimated rotor position error θ̂e as an input. Finally, the rotor position θ̂ can
be estimated by integrating the estimated speed.
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Figure 2. Block diagram of position estimator using extended electromotive force (EMF)-based sensorless
control [2].

3. Compensating Method for Magnetic Saturation
3.1. Analysis of Inductance Saturation Effect on Sensorless Control

For precise rotor position estimation in sensorless control, the accuracy of parameters,
such as resistance and inductance in (2), is important. In a system with a large periodic load,
such as a pump or compressor, if the error between the actual q-axis inductance (Lq) and
the estimated q-axis inductance (L̂q) increases due to magnetic saturation, the estimated
rotor position becomes inaccurate. Considering the error between the actual value and the
estimated value due to magnetic saturation, (2) can be reorganized for the extended back
EMF, eγ and eδ, which are expressed as[

eγ

eδ

]
=

[
vγ

vδ

]
−
[

Ra + pLd −ωL̂q
ωL̂q Ra + pLd

][
iγ
iδ

]
+

[
∆eγ

∆eδ

]
(4)
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where ∆eγ = −p∆Ldiγ + ω∆Lqiδ and ∆eδ = −p∆Ldiδ − ω∆Lqiγ. Note that ∆Ld and ∆Lq
are the parameter errors of d- and q-axes inductance, respectively, which are obtained
by subtracting the estimated inductance from the actual inductance (∆Ld = Ld − L̂d,
∆Lq = Lq − L̂q). The rotor position error is influenced by the inductance error.

Figure 3 shows a comparison of estimated rotor position error according to the voltage
error of the γ-δ axes extended back EMF. Note that θ̂′e and E′ex are the estimated rotor
position error and the extended EMF due to the γ-axis extended back EMF error (∆eγ),
respectively. θ̂

′′
e and E′′ex are the estimated rotor position error and extended EMF due to the

δ-axis extended back EMF error (∆eδ), respectively. In Figure 3a, when the extended back
EMF, eγ and eδ, are constant without error, the estimated extended EMF coincides with the
d-q synchronous reference frame. However, when the variation of the γ-δ axes’ extended
back EMF occur due to an inductance variation, as a result, the estimated rotor position
error varies, as shown in Figure 3b. Typically, since the δ-axis extended back EMF, eδ,
includes the back EMF voltage, it is larger than the γ-axis component (eγ � eδ). Hence, the
γ-axis extended back EMF variation has a dominant effect on the estimated rotor position
error and estimated speed compared to the δ-axis component when the magnitudes of ∆eγ

and ∆eδ are the same.
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Figure 3. Comparison of estimated rotor position errors (a) without and (b) with the voltage error of
the γ-δ axes extended back EMF.

In Figure 4, simulation plots of ωL̂qiδ and pL̂diγ are shown under a periodic load
torque (16.6 Hz). Since Lq and iδ are conventionally larger than Ld and iγ, respectively,
ωL̂qiδ has a much larger magnitude than pL̂diγ in Figure 4. In the same manner, the
dominant component of ∆eγ = −p∆Ldiγ + ω∆Lqiδ is ω∆Lqiδ, and it can be assumed that
∆eγ ≈ ω∆Lqiδ. Hence, if the q-axis inductance Lq is accurately estimated, the rotor position
error and speed error can be minimized. However, since Lq is easily saturated by the q-axis
current, it makes rotor position estimation difficult. This is especially true under a periodic
load torque; the q-axis current has a periodic variation to regulate the motor speed. The
periodic q-axis current creates periodic q-axis inductance variation from core magnetic
saturation. As a result, the rotor position error has a periodic component and, moreover,
speed error exists.
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Figure 4. Simulation results of ωL̂qiδ and pL̂diγ, where ω = 314.16 rad/s, L̂d = 1.5 mH, and
L̂q = 2 mH.

3.2. Model-Based Inductance Estimation Method

In most conventional model-based inductance estimation methods, the inductance esti-
mated by a model-based observer is fed back to the sensorless controller and compensates
the magnetic fluctuation [13–17]. From (1), the differential components can be ignored by
assuming a steady-state condition. Then, the d- and q-axes inductance can be represented as

Lq =
−vd + Rsid

ωiq

Ld =
−vq + Rsiq + ωψ f

ωiq

. (5)

Figure 5 shows a block diagram of the q-axis inductance estimator based on (5). In
this parameter estimator model, a low-pass filter is required to minimize undesired high-
frequency noise and ripple. However, a time delay and a DC offset due to the integral
function are inevitable when applying the low-pass filter. Therefore, in a system exposed
to a large amount of dynamic load, a compensator, such as a time delay compensator, is
required. In addition, the angular speed, which is a variable estimated by the sensorless
control observer, is reused for estimating the inductance parameter. Thus, when the
estimated speed errors increase, the estimated inductance becomes inaccurate and the
speed control also becomes unstable.
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Figure 5. Schematic illustrating the conventional compensation method for magnetic saturation.

Figure 6 shows the simulation results of the step response with the observer model-
based inductance estimator. If a transient load is applied in this system, a time delay and
DC offset occur, resulting in more than 5% error compared to the actual value.
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Figure 6. Step response simulation results of observer model-based inductance estimation.

4. Proposed Inductance Estimation Method

With the model-based q-axis inductance estimation method, it has a limitation that the
estimation error could worsen system stability and accuracy, since the estimator is sensitive
to errors of inverter nonlinearity, rotor position, and motor parameters. The PNN-based
estimation method studied in this study is in the form of a “black box” in which everything
such as voltage/current errors are already included, and the errors can be minimized by
repetitive training.

4.1. Data-Driven Approach for Inductance Estimation

On the one hand, since both the extended EMF sensorless control and the model-
based inductance estimation utilize the same motor dynamics, the response speed of the
estimated rotor position and inductance are partially contradicted, and a time delay is
created. On the other hand, the PNN-based machine learning method predicts a system
equation by selecting input variables, partitioning input/output variables, and defining
partial expressions. Thus, even if the relationship of the input/output variables is nonlinear
or the function type of the model is not specified, partial expressions can be hierarchically
combined to obtain the estimation equation accurately and without a time delay. Therefore,
this method can be easily implemented in an embedded system.

The PNN-based algorithm is a multilayered network with a certain structure deter-
mined through training. Not only are the nonlinear dynamics expressed as a mathematical
model, but the polynomials are also characterized by higher order terms without insta-
bility problems. The general connection between the input and output variables can be
expressed by a complicated polynomial series in the form of the Volterra series, known as
the Kolmogorov–Gabor polynomial [19]:

y = a0 + ∑m
i=1 aixi + ∑m

i=1 ∑m
j=1 aijxixj + ∑m

i=1 ∑m
j=1 ∑m

k=1 aijkxixjxk + · · · , (6)

where x is the input into the system, m is the number of inputs, and a is a coefficient. The
a0 coefficient is added as a constant offset for the function. It can be used to offset noise or
error in the system [23,24].

For most applications that can be represented by quadratic forms for input variables, a
GMDH algorithm can be used as a predictor for estimating the output of nonlinear complex
systems. The output of each quadratic neuron is calculated as

z(x1, x2) = a0 + a1x1 + a2x2 + a3x2
1 + a4x2

2 + a5x1x2, (7)

where ai(i = 0, 1, . . . , 5) are the weight coefficients of the quadratic neuron to be learned,
and zi is intermediate output variables of each quadratic neuron. The coefficients ai are
obtained from linear regression analysis and a recursive algorithm, which minimizes errors
of checking data in each layer.
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To train a GMDH network with inputs, one must consider the combinations of all possible
input pairs. To obtain the value of the coefficients for each model, one must solve a system of
Gaussian normal equations. When the system has more than three variables (neurons), the
coefficient of nodes in each layer can be expressed by

A =
(

XTX
)−1

XTZ

where
Z = [z1, z2, · · · , zm]

T ,

A = [a0, a1, a2, a3, a4, a5],

X =


1 x1p x1q x1px1q x2

1p x2
1q

1 x2p x2q x2px2q x2
2p x2

2q
...

...
...

...
...

...
1 xmp xmq xmpxmq x2

mp x2
mq

.

(8)

The unknown coefficients ai are determined to minimize the difference between actual
output and the determined one, zi, for each pair of xmp, xmq using the first equation of (8)
and linear regression analysis.

Thus, the output of each polynomial can be calculated as

Z = A×X. (9)

To evaluate the goodness of fit of the partial description of the checking dataset, one
can obtain the linear regression performance index Rk as

Rk =

√√√√∑m
i=1(yi − zi)

2

∑m
i=1 y2

i
, k = 1, 2, · · · 1

2
m(m− 1). (10)

The main function of GMDH is based on the forward propagation of a signal through
nodes of the net, similar to the principal used in classical neural nets, as shown in Figure 7 [25].
Every layer consists of simple nodes that each perform their own polynomial transfer function
and pass their output to nodes in the next layer.
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Figure 8 shows the diagram of the multilayered GMDH neural network model. The
multilayer algorithm in a GMDH-type neural network builds a multilayer feed-forward
neural network structure. Nodes in the hidden layers are developed for each layer that
represents functions of every possible combination of two inputs to that layer. The com-
bination of these terms that gives the lowest root mean square (RMS) error is kept as the
transfer function of the neuron. By utilizing the external criterion, such as the lowest
RMS error, the surviving neurons are then passed on to a new layer of the network. This
continues to choose only optimal model (neuron) that supplies the best possible RMS error,
or the network has reached a designer defined layer limit [24]. The basic steps involved in
GMDH modeling are as follows [26]:
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Step 1. Select input variables X = { x1, x2, . . . , xm}. Divide the available data into
training and checking data sets. Before applying the algorithm, the inputs and output
are normalized.

• Inputs (candidates) are chosen as follows:

1. x1: a-axis current, ia [A]
2. x2: b-axis current, ib [A]
3. x3: c-axis current, ic [A]
4. x4: γ-axis current, iγ [A]
5. x5: δ-axis current, iδ [A]
6. x6: γ-axis voltage reference in synchronous reference frame, vγ [V]
7. x7: δ-axis voltage reference in synchronous reference frame, vδ [V]
8. x8: γ-axis voltage reference in stationary reference frame, vα [V]
9. x9: δ-axis voltage reference in stationary reference frame, vβ [V]

• Outputs (estimated models) are defined as follows:

1. ŷ1: q-axis inductance, Lq [H]
2. ŷ2: position error, θe [rad]

Step 2. Separate data into two sets called the “training data set” and the “checking data
set.” Construct new variables Z = {z1, z1, . . . , zm} in the training data set and construct
the regression polynomial for the first layer by forming the quadratic expression that
approximates the output y.

Step 3. Identify the contributing nodes at each hidden layer according to the value of
the root mean square (RMS) error. Eliminate the least effective variable by replacing the
columns of X (old data) by the new columns of Z.
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Step 4. The GMDH algorithm is carried out by repeating Steps 2 and 3 of the algorithm.
When the errors of the checking data in each layer stop decreasing, the iterative computation
is terminated.

The next step is to evaluate the output of each polynomial using the data points in the
checking data. The output of each polynomial can be calculated using (9).

4.2. Sensorless Control Method with the Proposed Inductance Estimation Method

For data-driven approach-based parameter estimation, the sensorless controller was
designed to estimate the inductance using a PNN algorithm and to follow the actual system
output reference value. PNN design parameters were optimized to minimize RMS errors
and deviations from the reference values. Considering the computational speed of the
processor, the number of GMDH multilayers was set to ≤ 5. To cope with various load
patterns, sufficient learning was performed on transient inputs, such as periodic functions
of sine, step, and nonperiodic random functions. In addition, to prevent misoperation or
decrease in accuracy of sensorless control because of inaccurate estimation of the parameter
or unexpected problems, we configured the controller to perform additional monitoring
and error detection by estimating the value of position error in real time.

Table 1 shows a comparison of RMS error and the linear regression performance index
(R) of q-axis inductance (Lq) and position error (θe), which were estimated by PNN-based
learning for each combination of input variables using MATLAB. In Table 1, ia, ib, ic, vα,
and vβ are the a, b, c-phase current and stator voltage in the α-β stationary reference frame.
The lowest RMS error was found in Case 2, applying four neurons of the current iγδ and
voltage vγδ in the γ-δ reference frame as input parameters. However, both vγδ and iγδ

were calculated in the γ-δ estimated synchronous reference frame and learning proceeded
with these terms as input variables. As the estimated position error of the sensorless main
controller increased, the accuracy of parameter estimation can also be reduced. In Case 4,
α-β voltage in the stationary reference frame was used as input variables and the estimation
error of q-axis inductance was relatively small. However, the position error was represented
by the training result, which had a large RMS error and low linear regression performance.
On the other hand, in Case 3, three-phase currents and γ-δ voltage in the synchronous
frame were used as input variables. Although q-axis inductance and position error were
slightly larger than in Case 2, the effect of the γ-δ current from the rotor position error
could be minimized by using the three-phase currents directly measured in the current
sensors. Therefore, the regression and training for q-axis inductance and position error
were carried out in Case 3.

Table 1. Polynomial neural network (PNN)-based training results.

No. Input Variables for Training
q-axis Inductance, Lq Position Error, θe

RMS Error (%) R RMS Error (rad) R

Case 1 iδ, vγ, vδ 0.61 0.9976 - -
Case 2 iγ, iδ, vγ,vδ 0.57 0.9979 0.01242 0.8554
Case 3 ia,ib,ic,vγ,vδ 1.89 0.98713 0.01352 0.86149
Case 4 ia,ib,ic,vα,vβ 1.98 0.9753 0.01812 0.7406

Figure 9 represents q-axis inductance estimation error, a linear regression plot, and
error histogram of the PNN-based machine learning simulation with five input variables
selected in Case 3. The analysis results indicated sufficiently low RMS error (<2%) and
high linearity, R > 0.95. In Figure 9b,c, characteristics of estimation error are identified.
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Figure 10 shows a block diagram of the entire PMSM sensorless control system with
the proposed inductance estimation based on the PNN machine learning algorithm. The
PNN algorithm is used to derive a polynomial expression-based numerical model of the
inductance parameters through machine learning from multiple variable inputs, such as
the measured current and voltage reference. The inductance values that are estimated
through machine learning are fed back to the sensorless controller again and compensate
the magnetic fluctuation in real-time to reduce speed ripple. Comparing the position
error θe and θ′e from the sensorless position estimator and the PNN algorithm, one can
perform position estimation error monitoring and diagnosis. If the difference between these
values or an abnormal operation is detected, an error flag is transmitted to the sensorless
main controller. In addition, the gain factor of the PNN is adjusted to limit the magnetic
saturation compensation or to stop the system by gradually reducing its operating speed.
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Figure 10. Block diagram of the sensorless control system with a PNN-based inductance estimation.

5. Simulation and Experimental Results
5.1. Simulation Results

A software simulation was performed for an entire sensorless system to validate
the proposed PNN-based compensation method and to confirm results from position
estimation error and speed ripple. The parameters of the PMSM used in the simulations
were the same as the motors used in the practical experiments, as shown in Table 2.
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Table 2. Motor parameters.

Parameter p-Value Unit

Rated power 3 kW
Rated current 20 A

Winding resistance 0.3 Ω
Number of poles 6 -
Number of slots 27 -

d-axis inductance 1.5 mH
q-axis inductance 2.0 mH

The sensorless PMSM drive has a periodic load torque from the compression/charging
and exhaust/discharging stroke in the compressor and pump. If the periodic load torque
is not compensated by the PMSM torque, it invokes speed ripple, noise, and vibration.
Especially at a low speed, when vibration occurs, there is mechanical fatigue failure. The
periodic load torque can be compensated by applying a load torque compensator. However,
magnetic saturation occurs due to increasing compensation current, which degrades the
accuracy of sensorless speed control and the load torque compensator.

First, it is assumed that the periodic load torque is fully known and the δ-axis com-
pensation current depending on the load is expressed as the sum of the first frequency
component, IS, with constant amplitude and DC offset IDC:

iδ = ISsinωt + IDC (11)

where iδ is δ-axis compensation current, and ω is first frequency component of rotor speed.
The γ-axis compensation current is obtained from the δ-axis compensation current on

the basis of the rule of maximum torque per ampere. If the rotor position is correctly esti-
mated, even with varying inductance, the periodic load torque would be fully compensated
with (11). In the simulation, both the DC offset and the magnitude of the first frequency
component of the current were applied as 15 A: IS = IDC = 15 A. Figure 11 shows the
simulation plots of inductance and speed ripple generated by the load torque compensation
current during constant speed operation at 1000 rpm (16.67 Hz) and without the inductance
estimation. When the δ-axis current was controlled by a maximum amplitude of 30 A,
as shown in Figure 11a, the actual inductance changed, as shown in Figure 11b . When
the control was performed without compensating the inductance variations caused by
magnetic saturation, a high ripple of the estimated speed occurred, as shown in Figure 11c.

Figure 12 presents comparison plots of the estimated inductance values obtained from
the mathematical model-based method and the PNN-based machine learning method
under a periodic load torque. For the inductance estimated by the mathematical model-
based method, DC offset and time delay occurred. On the other hand, in the case of the
PNN-based learning method, good correspondence was observed between the estimated
values and the real values. The rotor position error, ∆θ̂e, and extended EMF error, ∆êγ,
could be easily obtained by applying the inductance variation ∆Lq, derived in the form of
a quadratic polynomial equation through machine learning into (3) and (4). In addition,
through the low-pass filter and integrator in Figure 2, the estimated speed ripple, ∆ω̂o, due
to magnetic saturation, could be obtained.



Electronics 2021, 10, 791 13 of 19
Electronics 2021, 10, x FOR PEER REVIEW 13 of 19 
 

 

(a) 

 

(b) 

 

(c) 

Figure 11. Simulation results when the load fluctuated at 16.7 Hz for (a) 𝛿-axis current, (b) 𝑞-axis 

inductance, and (c) estimated speed. 

  

(a) (b) 

Figure 12. 𝑞-axis inductance comparison of real, model-based, and PNN-based methods in (a) sine response and (b) step 

response. 

As shown in Figure 13, the estimated speed without compensation was compared 

with the two estimated speeds with feedback compensation for inductance variation on 

the basis of the model-based method and PNN-based method under the condition of 

constant speed (1000 rpm). In the uncompensated condition, the ripple of speed error was 

about ±15%, as shown in Figure 13a. On the other hand, when the model-based 

compensation was applied, the ripple was reduced to less than ±5%, and when the PNN-

based compensation was applied, it was reduced to approximately ±3%. In addition, as a 

comparison result in the frequency domain, the magnitude of the first to third order 

harmonic of the fundamental frequency (16.67 Hz) was high before applying 

compensation control, as shown in Figure 13b. However, after applying compensation 

C
u

rr
en

t[
A

]

0.1sec/div

0

10

20

30

−10

40

In
d
u

ct
an

ce
[H

]

0.1sec/div
1.5

2.5

2.5

3.0

S
p

ee
d

[r
p
m

]

0.1sec/div

900

1000

1100

1200

800

Lq(model-based)  Lq(real)

0.1sec/div

Lq(PNN-based)  

1.8

2.0

2.2

2.4

1.6

2.6

2.8

3.0

In
d

u
ct

an
ce

 [
m

H
]

Lq(model-based)  Lq(real)

0.1sec/div

Lq(PNN-based)  

1.8

2.0

2.2

2.4

2.6

2.8

In
d
u

ct
an

ce
 [

m
H

]

Figure 11. Simulation results when the load fluctuated at 16.7 Hz for (a) δ-axis current, (b) q-axis
inductance, and (c) estimated speed.
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Figure 12. q-axis inductance comparison of real, model-based, and PNN-based methods in (a) sine response and (b) step
response.

As shown in Figure 13, the estimated speed without compensation was compared
with the two estimated speeds with feedback compensation for inductance variation on
the basis of the model-based method and PNN-based method under the condition of
constant speed (1000 rpm). In the uncompensated condition, the ripple of speed error
was about ±15%, as shown in Figure 13a. On the other hand, when the model-based
compensation was applied, the ripple was reduced to less than ±5%, and when the PNN-
based compensation was applied, it was reduced to approximately ±3%. In addition, as
a comparison result in the frequency domain, the magnitude of the first to third order
harmonic of the fundamental frequency (16.67 Hz) was high before applying compensation
control, as shown in Figure 13b. However, after applying compensation control, it can



Electronics 2021, 10, 791 14 of 19

be seen that the magnitude was significantly decreased compared to the uncompensated
condition. In particular, the magnitude of the fundamental frequency was reduced by
approximately 85%.
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compensation in the (a) time domain and (b) frequency domain (FFT).

5.2. Experimental Results

Figure 14 shows the experimental configuration used in this study. Two hybrid vehicle
compressors were disassembled and manufactured as a test motor and a load motor. To
control each motor, we designed and implemented a dual inverter.
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Figure 14. Experimental configuration.

Figure 15a shows the q-axis inductance with magnetic saturation when δ-axis cur-
rent was controlled by a maximum amplitude of 30 A periodic signal during constant
speed operation at 1000 rpm. These conditions are the same as the simulation load condi-
tions. Figure 15b,c shows the speed error and the position error when controlling without
compensation of the inductance variation. In the experimental results, since the q-axis
inductance was controlled by a constant value under the uncompensated condition, the
amplitude of the speed error and position error were up to 15% due to magnetic saturation.
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Figure 15. Plots when the motor operated at 16.7 Hz without compensation for (a) q-axis inductance,
(b) speed error, and (c) position error.

Figure 16 shows a comparison of the experiment result with the model-based q-axis
inductance compensation method and with PNN-based compensation. When the model-
based compensation method was applied, the estimated q-axis inductance had a time delay
and some distortion compared to the actual inductance. On the other hand, the inductance
estimated by the PNN-based machine learning method almost tracked the actual value
completely. Therefore, it was confirmed that the ripple of the speed error was improved
by 3–4% when compensation control was performed on the basis of the PNN algorithm
and compared with the model-based compensation method. However, despite performing
calibration controls, the speed ripple of the experimental results was higher than that of
the simulation because of system vibration due to mechanical alignment problems and
electrical imbalance, which were not reflected in the simulation.

In addition, it could be confirmed that the estimated position error based on the PNN
algorithm was properly monitored in real time to appropriately respond to fault conditions,
such as large error in the estimated value or unstable system control.

To evaluate the dynamic NVH performance of motors for the compressor, we mounted
acceleration sensors on the motor housing, and real-time data were collected. In addition,
vibration data with or without compensation control under magnetic saturation conditions
were compared and analyzed. Figure 17 shows comparison results of the vibration magni-
tude without compensation and with feedback compensation based on the model-based
method and PNN-based method at a speed of 16.67 Hz (1000 rpm). For the condition
without compensation, the vibration magnitude was 77.58 dB in terms of the average value.
In the case of model-based compensation and PNN-based compensation, the average
values of vibration were 74.29 dB and 73.33 dB, respectively. Therefore, it was confirmed
that the vibration magnitude of PNN-based compensation was the lowest in both average
value and RMS value, and approximately 4 dB smaller than the uncompensated condition.
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Figure 16. Plots of speed, speed error, inductance, and position error when the motor operated at 16.7 Hz with the (a) model-based
method and (b) PNN-based compensation method.
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Figure 17. Frequency analysis of vibration measurement results (dB reference level = 1 × 10−6 [g]).

The vibration measurement results without compensation were compared to that
with PNN-based compensation using a color map and order tracking analysis in speed
sweeps from 0 to 2000 rpm under a periodic load torque, as shown in Figure 18. From
the order analysis results, we confirmed that the first order component, which is the
fundamental frequency component of the rotational speed, was dominant to the vibration
and magnitude of the vibration after compensation was significantly reduced from 0.095 g
to 0.070 g on the basis of the maximum value. Moreover, the vibration magnitude was
reduced in the second and third harmonics of the fundamental frequency component.
The vibration of the 18th order component, which is the cogging torque frequency due to
the number of poles and slots, was also improved. Therefore, it was recognized that the
vibration reduction effect of compensation control was relatively high in the low frequency
region since the first order component, which coincided with the load torque frequency,
acted as the main excitation source and caused vibration. In addition, it was determined
that the mechanical vibration component of the rotation frequency due to the influence of
mechanical alignment, runout, and unbalance still remained.
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Figure 18. Vibration order analysis based on a (a) colormap without compensation, (b) colormap with compensation, and
(c) order tracking results.

6. Conclusions

This paper analyzed the position and speed estimation error of a PMSM sensorless
drive caused by magnetic saturation. To compensate magnetic saturation, we proposed
a q-axis inductance estimation method with PNN machine learning. The learning model,
based on the PNN-based GMDH algorithm, was configured to correspond with a nonlinear
sensorless control system. Moreover, to effectively respond to fault situations, such as an
unknown disturbance or increased errors in the position error in the sensorless method,
we also estimated the position error and monitored it in real-time.

For each case of applying a compensator on the basis of the mathematical observer
model and the proposed PNN machine learning model, we compared and analyzed
the control performances through simulation and experiment. The experimental results
indicated that the model-based compensator had problems, including time delay and DC
offset, and estimation accuracy was further decreased when a dynamic transient load was
applied. However, in the case of the PNN-based compensator, the compensation control
performance was accurate and fast.

Through simulation and experimental results, we confirmed that the proposed com-
pensation method can be applied to obtain real-time estimation performance for parameters
that are relatively simple and accurate. In addition, by applying the proposed method
to a nonlinear sensorless system, we verified a more efficient improvement of the control
performance compared to the conventional method. Moreover, through a vibration test for
each speed/frequency, we confirmed that the sensorless control system with the proposed
compensation method showed clear NVH improvement in low-frequency regions, having
a large fluctuation of parameters compared with the uncompensated system. Because the
PNN-based estimator is adaptable to various operating conditions and is simple in design,
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it can be applied to various types of motors for parameter estimation and compensation by
performing simple training with appropriate load models.
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