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Abstract: To realize deep learning techniques, a type of deep neural network (DNN) called a convo-
lutional neural networks (CNN) is among the most widely used models aimed at image recognition
applications. However, there is growing demand for light-weight and low-power neural network
accelerators, not only for inference but also for training process. In this paper, we propose a training
accelerator that provides low power and compact chip size targeted for mobile and edge computing
applications. It accelerates to achieve the real-time processing of both inference and training using
concurrent floating-point data paths. The proposed accelerator can be externally controlled and
employs resource sharing and an integrated convolution-pooling block to achieve low area and
low energy consumption. We implemented the proposed training accelerator in an FPGA (Field
Programmable Gate Array) and evaluated its training performance using an MNIST CNN example in
comparison with a PC with GPU (Graphics Processing Unit). While both methods achieved a similar
training accuracy of 95.1%, the proposed accelerator, when implemented in a silicon chip, reduced
the energy consumption by 480 times compared to the counterpart. Additionally, when implemented
on an FPGA, an energy reduction of over 4.5 times was achieved compared to the existing FPGA
training accelerator for the MNIST dataset. Therefore, the proposed accelerator is more suitable for
deployment in mobile/edge nodes compared to the existing software and hardware accelerators.

Keywords: training accelerator; neural network; CNN; AI chip

1. Introduction

Deep learning is a type of machine learning based on artificial neural networks. An
artificial neural network (ANN) is a neural network whose structure is modeled based on
the human brain. A convolution neural network (CNN) extends the structure of an ANN
by employing convolutional filters and feature map compression layers called pooling
to reduce the need for a large number of weights. Recently, a great deal of research has
been conducted in optimizing and modifying CNNs to target many applications such as
image classification [1], object detection [2], and speech recognition [3], and good results
have been reported. Such CNN techniques are already widely used in the industry, and
they are expected to penetrate daily life, such as with autonomous driving [4] and home
automation [5].

Recently, the development of IoT (Internet of Things) products and smartphones
has been remarkable, consequently leading to a growing demand for CNN accelerators—
not only for high-speed servers but also mobile/edge devices. The requirement of high
accuracy and high speed in CNN applications such as image recognition, classification,
and segmentation led the extensive research effort in developing high-speed CNN accel-
erators [6–9]. However, most accelerators are targeted for either high-speed servers for
training large CNNs or low-power compact NPU (Neural Processing Unit) for the inference
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operations of pretrained CNN models. The traditional accelerators for high speed tend to
consume too much power for mobile and edge application.

To overcome this, many energy-efficient CNN accelerators for inference that are
better suited to mobile/edge devices have been researched [10,11]. Some researchers have
proposed software accelerators and compression techniques for the inference operation
of deep learning models on mobile devices [12,13]. Most CNN inference accelerators
download pretrained weights (parameters) that are calculated in advance by utilizing
available trained datasets. Training involves more complex and resource-demanding
processing, such as in the case of gradient-based learning for the image classification of
MNIST [14]. For training in mobile/edge devices, therefore, using a general-purpose
CPU (Central Processing Unit) or GPU (Graphics Processing Unit) is not realistic due
to large size and poor energy efficiency. There have been many attempts to develop
hardware accelerator architectures for the training of neural networks [13,15–19]. On-
device training, in edge nodes, is getting increasingly common due to privacy concerns,
improved performance-to-power ratios, and reduced bandwidths [13,17,19]. Another
motivation for implementing edge nodes that are capable of training lies in their ability
to perform online training (or even self-training) for improved accuracy [20,21]. Some
existing architectures are not suitable for implementation in edge nodes due to their large
size [15,19], multi-FPGA implementation [16], or low energy efficiency [13,19]. Therefore,
there is a need for an energy-efficient learning accelerator for mobile/edge devices that can
output high accuracy with fewer layers.

Despite the growing need for fast/low-power solutions for training of deep neural
networks (DNNs) on mobile devices [22], only real-time inference solutions using dedicated
hardware units and processors are now common. This is because the computing and
memory resources are very limited to train deep learning models on mobile devices.
To this end, research on mobile high-speed/low-power training hardware for DNNs is
experiencing its dawn. Currently, such low power DNN training hardware is suffering
from issues of poor learning accuracy. The complexity and difficulty of developing mobile
training hardware have significantly increased because such hardware needs to support
self-training functions such as semi-supervised [23] and unsupervised learning beyond
supervised learning. The goal of this research was to act as a step towards developing a
chip that has the capability of updating model weights while being deployed in a mobile
environment. The update of weights was carried out to improve personalization to the
user/environment, resulting in an improved accuracy.

The training process of CNNs typically consists of three steps: (1) inference (IF)
(2) backpropagation (BP), and (3) weight gradient update (GU). These three steps are
repeated using a large amount of data to get highly accurate weights. Some studies have
reported the evaluation of embedded hardware architectures optimized for OPENCL
(Open Computing Language) and neural networks (NNs) to enable learning [24]. However,
it is difficult to apply such embedded hardware to mobile/edge devices, because their
embedded software requires high speed CPUs that often incur high power consumption.
Moreover, most of the previous low power accelerators aimed at inference [25] only im-
plemented integer operators [26] to optimally handle quantized integer weights, so they
lacked floating-point (FP) operations. However, training processes require FP operations to
process a wide range of numbers. To calculate such values, the authors of [27] implemented
an accelerator employing FP operators. However, it consumes excessive power in FP
calculations because it needs to cover a wide dynamic range of intermediate values.

In this paper, we present an energy-efficient CNN training accelerator for mobile/edge
devices. The key contributions of this paper are as follows.

1. We designed an accelerator architecture that can conduct both inference and training
at the same time in a single chip.

2. We present a design and verification methodology for the accelerator architecture and
chip implementation by converting a high-level CNN to a hardware structure and
comparing the computation results of the hardware against the model.
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3. We designed an architecture that shares floating point units (FPUs) to reduce the
power consumption and area.

4. We designed a backpropagation architecture that can calculate the gradient of the
input and weight simultaneously.

5. We integrated convolution and pooling blocks to improve performance and reduce
memory requirements.

Section 2 briefly describes the basic principles and behavior of CNNs. Section 3
discusses the design of the CNN accelerator and the improvements. Section 4 shows the
experimental results of the designed accelerator, and finally Section 5 gives the conclusions
of this paper.

2. Background

CNN is an abbreviation for a convolutional neural network and refers to a structure
that has layers that perform convolution and pooling operations. The convolution operation
extract the characteristics of the data. Much research is currently underway using CNN
structures because they promise high accuracy for image processing and classification
applications.

Figure 1 shows an example CNN structure used for classification, which includes
one convolution, one pooling, and two fully-connected (FC) layers. Here, each layer
serves a specific purpose in obtaining a classification result. The convolution layer extracts
features to produce a feature map, and the pooling layer reduces the size of the feature
map. Finally, the FC layer produces the classification result based on the features found in
the feature map.
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Figure 1. An example convolutional neural network (CNN) classification structure.

Our CNN structure targeted the MNIST dataset, with 10 classes representing hand-
written digitals of 0–9. Therefore, the output data length was reduced to ten after passing
through the two FC layers, which were stored in the output classification memory. Here,
each data element of the memory represents the probability of corresponding class among
the digits 0–9. The highest value among the ten data elements is most likely the correct
answer. If, for example, the seventh value in the memory has the largest value, it is de-
termined that digit 6 is provided as the input image. Section 2.1 discusses training in
general for CNNs, Sections 2.2–2.4 discuss the operation of various layers in CNNs during
inference and training, and Section 2.4 discusses the operation of the Softmax activation
and cross entropy loss functions in CNNs.

2.1. Training in Convolutional Neural Networks

Most layers in convolutional neural networks involve manipulating the input data
based on the filter/weight parameters. Training is the automatic acquisition of the optimal
value of the weight and filter parameters from the training data. During training, the filter
and weight parameters are tuned to achieve the desired operation. The indicators used
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for the training of neural networks are called loss functions. The final goal of training is to
find the weight parameters that make the outcome of the loss functions the smallest. This
requires calculating the derivative (gradient) of the parameters. We repeated the process of
slowly updating the values of the parameters with the calculated derivative values as a
clue and explored the optimal parameters.

The training process is composed of two sub processes. Firstly, an input image is
applied to the network and the image is propagated forward to obtain a classification
output from the network. Secondly, the computed loss values are back-propagated to
update the weights and filter parameters. This process is repeated multiple times for an
available training dataset of images to reach optimal parameter values. Once a network is
fully trained, only forward propagation is carried out to classify images, and the process is
referred to as inference.

Computational graphs can be used to understand the process of forward and backward
propagation, as shown in Figure 2. In a computational graph, the calculation that proceeds
from left to right is called a forward propagation (forward), and the right to left calculation
is called a backpropagation (backward). In Figure 2, the black arrow explains the forward
process, and the red arrow explains the backward process.
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Firstly, in forward propagation, the input signal ‘x’ is manipulated by a function
f (x) to obtain output signal ‘y’, as represented by Equation (1). Next, in the backward
computational procedure, the signal Z is multiplied by the local gradient ( ∂y

∂x ) of the node
and then transfers it to the next (left) node. Here, the local gradient is the derivative of the
expression in Equation (1), used during inference process.

y = f (x) (1)

2.2. Fully Connected Layer

Most neural networks use an FC layer due to its generic nature, as the FC layer does
not make any assumption on the nature of the input data. Each FC layers contains several
neurons/nodes, each of which accepts all inputs and performs a weighted sum. Therefore,
each neuron is capable of learning to identify features beyond spatial coherence. The fully
connected layer, as a whole, multiplies all the weights and all the inputs to produce the
result. Since all inputs and neurons meet, it is called a fully connected layer.

During inference (forward) operation, the FC layer works the same way as matrix
multiplication. The output result is produced by multiplying the input X and weight W
matrices, as shown in Figure 3a. Assuming an FC layer with ten inputs and ten neurons
(outputs), the required weight matrix size is 10 × 10 (100 weight parameters).
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Figure 3b shows the backward process of the FC layer, where the produced loss value
is L. It is also convenient to represent the backward process using matrix multiplication, as
expressed by Equations (2) and (3). Equation (2) is used to calculate gradient of input, while
Equation (3) is used to calculate gradient of weight. Here, WT represents the transpose of
weight matrix W. The gradient of input (∂L/∂X) is propagated backward to previous (left)
layers, while the gradient of weights is used to update the weights in this layer.

∂L
∂X

=
∂L
∂Y

· WT L (2)

∂L
∂W

= WT · ∂L
∂Y

(3)

2.3. Convolution Layer

The convolution layer convolves the input image with a set of filters to detect the
characteristics of an image. Each filter activates when its corresponding feature is found at
a spatial position in the input image. As a result, a feature map that highlights spots where
the corresponding feature is found in the input image is produced.

The convolution operation is performed by applying a filter to the input data. Figure 4
shows an example of a convolution operation. The convolution operation applies the
filter to the input data while moving it at regular intervals (stride). In each stride, the
corresponding elements of the input image and the filter are multiplied together. The
intermediate products are added together and stored, as shown in Figure 4 (steps 1–9). In
each step of Figure 4, the process of multiplication and accumulate (MAC) is often carried
out in nine steps of single multiplication-accumulation (fused multiply–add: FMA). For
example, the calculation in Figure 4-(1) calculates as shown in Equation (4):

1 × 1 + 1 × 0 + 1 × 1 + 0 × 0 + 1 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 1 × 1 = 4 (4)

The result is then stored in the corresponding place of the output memory. Performing
this process in all locations completes the convolutional output operation.

In the inference process, the input image and filter is processed using the FMA. During
backpropagation, the process is similar to forward propagation, which is convolution.
However, during the backpropagation, the output gradient is convolved with the input
image to obtain the gradient of filter/weight. The gradient of the input is used as an
input value in the calculation of the next layer, and the gradient of the weight is used
to update the weight/filter value of the current layer. Therefore, for the first layer, the
calculation of gradient of input can be skipped. Figure 5 shows the operation to obtain
the gradient of weight for the convolutional layer during backpropagation process. The
backpropagated value from the pooling layer is convolved with the input image to obtain
gradient of weights. When there are multiple filters, the process is repeated for each filter
using the backpropagated corresponding values from the pooling layer.
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Figure 5. Operation of convolution layer in backpropagation.

2.4. Pooling Layer

A pooling layer is used to reduce the dimensions of the feature map produced by the
convolutional layer. By reducing the dimensions, the memory and processing requirements
are lowered in the following layers. The pooling divides the feature-map in multiple
regions and then replaces the values in each region with only one representative value.
The commonly used pooling methods are average pooling and max pooling, where the
representative value is average or maximum value of that region, respectively. Figure 6a,b
shows examples of average and max pooling on an input image, respectively. This figure
uses an input image size of 4 × 4, a pooling region size of 2 × 2, and a stride of 2. As a
result, the pooling output has a size of 2 × 2.
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During forward propagation, when the feature map passes through a pooling layer,
the feature map size is reduced to a predetermined size. Conversely, in backpropagation,
when the feature map passes through the pooling layer, the image size needs to be increased.
The size is increased to match the size of the original feature map produced by convolution
during forward propagation. To this end, the location of the largest value during the
forward pooling process is stored in the argmax memory. This allows the pooling layer to
remember which parts were extracted and the size of the original feature map, which can
be used during backpropagation.

Figure 7a shows the operation of the pooling layer during the forward process in
training. In addition to storing the pooling results for each region, it stores the positions
of the maximum values extracted from each region. For example, the first region has the
largest value 10 at position 1, the second region has largest value 12 at index 2, and so
on. This process is repeated unless the pooling is complete. During backpropagation, the
pooling layer restores to the original size of the convolution output, as shown in Figure 7b.
Moreover, it places the backpropagated values at the corresponding positions stored in the
argmax memory. For inference only, during forward propagation, argmax is not needed.
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2.5. Softmax and Cross Entropy Error

Softmax is a function used to represent the resulting value of a fully connected layer
with a probability between 0 and 1. In general, the Softmax function is used for classification
and is expressed as Equation (5):

yk =
exp(ak)

∑n
i=1 exp(ai)

(5)

where exp(x) is an exponential function ex, n is the number neurons in the output layer,
and yk is the output of the k-th neuron.

Usually, when training, we use a loss function as the last operation. The loss function
plays an important role of searching for the optimal parameter value. The loss function
is an indicator of the “bad” performance of a neural network. It indicates how well the
current neural network is not processing the training data. The smaller the value of the
loss function, the smaller the error. If Softmax is used as the activation function, the loss is
calculated using a cross entropy error (CEE) as the loss function.

The forward and backward processes of the Softmax and CEE is shown in Figure 8. The
black arrows indicate the forward process, and the red arrows indicate the backpropagation
process of each function. The final value produced by the forward process is the output
of the loss function, represented by L. The result of the Softmax and CEE function while
propagating backwards is y1 − t1, y2 − t2, y3 − t3 · · · . Since y1, y2, y3, · · · represent the
output of the Softmax function and t1, t2, t3, · · · is the correct answer label, y1 − t1, y2 −
t2, y3 − t3 · · · represents the error that is used in calculating gradients of inputs. Since this
paper focused on updating the weight gradient, we did not use a log value in the CEE layer
for the calculation of the loss value.
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3. Architecture of Proposed Training Accelerator

The key goal of our proposed accelerator was to target the low area and energy-
efficient design of mobile/edge training hardware. As the number of layers in the neural
network model increases, the area and power also tend to increase. We therefore employed
a network compression technique comprising layer pruning and weight quantization.
As a result, we produced an optimized CNN that is shallower, with fewer filters and
narrower bit-widths for weight parameters while maintaining a high accuracy. To prove
the effectiveness of the proposed architecture and design methodology, we chose a small
CNN and the MNIST dataset for training and validation while setting the target accuracy
at 95% or higher.

Figure 9 shows an overall block diagram of the proposed accelerator. The proposed
accelerator comprises five layers, which include one convolution layer, one pooling layer,
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two FC layers, and one Softmax layer. The blue part indicates data path blocks for inference
process (the forward propagation), while the red indicates the ones for the training process
(backpropagation). The training process calculates the gradient of the input and the
gradient of the weight with respect to the output loss values. The modules named dout
calculate the gradient of the input, and the modules marked by dW calculate the derivatives
of the weight. The gradient of dout and dW are repeatedly calculated for every layer, except
for the first convolutional layer. For the first convolution layer, only dW is calculated during
backpropagation, since there is no layer prior to this layer in need of dout.
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Figure 9. Architecture of inference and training hardware blocks. FC: fully-connected. (MEM: memory)

Each layer except convolution has a memory that stores the result of forward and
backward propagation. The Softmax function employs a lookup table of 156 entries to
calculate the exponential function ex, for the values of x in range from −31 to 0. For
the inference mode, the weight parameters of each layer are loaded from the outside
and used, while for the training mode, the weight parameters are updated through the
backpropagation operations.

3.1. CNN Model Optimization and Training Procedure

For the CNN optimization step, we used Tensorflow with Keras to determine the
minimal number of layers in the target CNN. Figure 10 shows the accuracy and loss values
changing (shown in the Y-axis) through a training process of 20 epochs (shown in the
X-axis). It can be observed from Figure 10b that the loss value decreased as the epoch
increased, while the accuracy increased up to the target accuracy of 95%.

If the validation accuracy satisfied the target accuracy, we continued to reduce the
CNN mode by applying the network compression technique comprising layer pruning
and weight quantization. We repeated this CNN model optimization and training process
until the validation accuracy fell short of the target accuracy. Then, we chose the latest
compressed model that satisfied the target accuracy.
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In the step of CNN model optimization, we employed a high-level framework based
on Tensorflow with Keras library, which is well-suited to repeated trials of network pruning
and weight quantization followed by a training process.

On the other hand, this framework was not suitable for designing and verifying the
accelerator hardware, since the functions of Tensorflow and Keras library are predefined
and, furthermore, hidden. Therefore, once CNN optimization was finished, we convert ed
the CNN model from Tensorflow/Keras to generic Python code using only NumPy library.
For the remaining design steps and verification of the accelerator architecture followed by
RTL (Register Transfer Level) design, we used generic Python code.

When comparing the code composed only Python language and the Keras model with
the same dataset, it was confirmed that almost the same accuracy was obtained. There
were some differences because the input datasets are randomly entered.

The next design step was determining the optimizer for the backpropagation of
loss gradient. While the high-level model based on Tensorflow and Keras used Adam
as an optimizer, the generic Python model employed a momentum optimizer, which
is more hardware-friendly. The Adam optimizer requires complex arithmetic functions
such as square-root and divider functions, which incur high complexity and large chip
sizes. On the other hand, the momentum optimizer only requires multipliers and adders,
which can be easily implemented in hardware with an RTL design. We compared the
accuracy between the two CNN models—Tensorflow with Keras and generic Python—and
confirmed that there was little difference in the accuracy after the complete training of long
epochs. Figure 11 shows the accuracy of the CNN modeled in generic Python code using
the momentum optimizer.
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Finally, the accelerator’s architecture and RTL design were conducted, whose func-
tionality was verified against the generic Python model in the outputs of each layer.

3.2. Combined Convolution and Pooling Operation

In conventional CNNs, large memories are required to store the output feature maps
produced by each convolutional layer before pooling is performed. For example, with an
input image size of 5 × 5 (25) and a filter size of 3 × 3 (9), the convolution layer (with
stride = 1) produces a feature map size of 3 × 3. Moreover, the feature map size increases
with the number of filters, regardless of the number channels in the input image. For
instance, a convolutional layer with four 3 × 3 filters will produce an output of size as
3 × 3 × 4. In general, when performing the pooling operation, the pooling stride is the
same as pooling region size. The pooling and convolution layers, however, are different
in stride and size, so they cannot be simultaneously operated. Therefore, a convolution
feature map memory is required to save the results, which are used as input by the pooling
layer after the convolution operation is completed.

With an increase in image size and number of filters, the feature map memory size
grows to significantly impact the chip size of the accelerator. It is therefore necessary
to reduce the feature map memory size for mobile/edge applications. The proposed
accelerator requires an image size of 28 × 28 (784 values). In addition, it employs padding
to prevent image size loss after convolution. After adding 1 pixel padding, the image
processed by the convolutional layer has a size of 30 × 30 (900) pixel values.

The convolutional layer comprises four 3 × 3 filters and thus conventionally requires
a memory of size 28 × 28 × 4 (=3136 values) to store output feature maps. In order to
reduce the memory size, the convolutional layer and the pooling layer are combined into a
single operation block so that the two layers calculate their operations at the same time
and only need memory to store the pooling result.

Figure 12 shows the operation of the proposed block that combines the convolution
and pooling operations. In a conventional convolution operation, the filter moves horizon-
tally in steps specified by stride number and then moves vertically only upon reaching the
edge of the image. However, in the proposed block, the movement of the filter considers
the regions defined for pooling in Section 2.3. The filter moves in a zigzag manner within a
region and moves to the next region only upon completing the current region. This allows
pooling to be performed on the completed region while the filter is filter is ready to move
to the next region.
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Figure 12 illustrates the operation of the proposed block in detail, where a small
register of size equal to the pooling region, instead of the feature map memory, is used. In
Figure 12 in step 1, the first MAC operation is performed, and its result is stored in the
register. In step 2, the filter moves to the right and a second MAC operation is performed.
In step 3, the filter moves to left down to perform the third MAC operation. In step 4, the
filter moves to right and the fourth MAC operation is performed. The results of all the four
MAC operations are stored in the corresponding register entries, upon which the pooling
operation is performed. Similarly, the MAC and pooling operations are repeated for the
next pooling regions, thus overwriting the register values.

When using the conventional/sequential method shown in Figure 12, the convolution
takes 3136 clocks cycles and pooling takes an additional 196 cycles. Therefore, it takes
a total of 3332 clock cycles and needs a feature map memory. On the other hand, the
proposed method of Figure 12 takes only 3136 clock cycles, as the pooling operation is
calculated in parallel. Moreover, the proposed method only needs a small register instead
of the feature map memory, thus reducing the overall chip size.

3.3. Operation of Training and Inference Mode

The proposed neural network accelerator supports two modes of operation—inference
and training. When trained weights are available, obtained either through training mode
or loaded from external source, the inference mode is used to classify images. In inference
mode, the input images are applied to the first convolution layer and the classification
result is obtained from FC2 layer. This process is repeated once for a given set of images
to validate the accuracy of the trained network. In the training mode, on the other hand,
both forward and backward operation are involved in order to acquire trained weights.
The forward operation classifies an image, as represented by probability for each class.
The final probabilities are compared with one-hot coded label (true value) for the applied
input image to calculate the error. The error is propagated backwards to perform change in
weights/filter values. The process is repeated multiple times for a given set of images to
achieve a high classification accuracy. Here, the number of images in the dataset and epoch
can be adjusted.

3.4. Resource Sharing

For area- and energy-efficient hardware, there is a need to eliminate unused modules
and reuse them. Arithmetic operations in convolution and fully connected layers involve
multiplication, addition, and MAC operations in both forward and backward propagation.
Moreover, the next layer idles while the current layer utilizes its arithmetic units. Taking
advantage of this, the MAC and multipliers units are moved out of each layer. These
modules are shared by multiple layers through the use of encoders and decoders. Figure 13
shows the complete structure of the proposed accelerator when multiple blocks share MAC
and multiplier units. When running a model in software using a GPU, the priority is to
run immediately so that several operations are processed at once. However, the focus of
this paper was on energy efficiency and small area over speed, since the accelerator is to be
deployed in energy-efficient mobile/IoT nodes.

Figure 14 illustrates the use of encoders and decoders for the resource sharing of MAC
and multiplier units. Here, the multiplication and MAC units are separated from each other
for the sake of speed. In backpropagation, the gradient of the input is calculated using the
MAC operation, while the gradient of weight involves the multiplication operation. These
two operations can be performed by reusing one module, but this consumes more time.
Therefore, we added one multiplication module (in addition to the MAC unit) to perform
the gradient of weight and gradient of input operations in parallel during backpropagation.
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The circuit proposed in this paper calculates the gradient by reusing the MAC
and multiplier/subtractor units, which offers ease in scalability. If more (or larger) lay-
ers are needed for the training/inference of more complex images, the memory and
MAC/multiplier/subtractor units can be further reused for calculation. The control logic
can conveniently reallocate the memory and timing for a differently-sized network to
seamlessly operate. For a larger network, a larger size memory is needed for storing
the parameters and intermediate results. Since the current implementation uses on-chip
memories, if a network is too large to fit, resynthesis is needed.

4. Implementation and Evaluation

We implemented the proposed CNN training accelerators for mobile and edge com-
puting. We designed the architecture and synthesizable RTL code using Verilog. Then,
we used the RTL code to implement silicon chip based on TSMC 65 nm CMOS process
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using Synopsys’s Design Compiler and IC Complier, targeting a clock frequency of 100
MHz. To ensure the correctness of the synthesis result, post-synthesis simulations were
performed. Since the silicon chip was not ready for measurement yet, we performed
FPGA implementation to verify correctness of the design. For the silicon chip, the power
consumption and chip area were measured using Synopsys tools.

Firstly, we compared the inference accuracy of MNIST classification between (1) the
Python model running on a GPU and (2) the proposed accelerator using the Verilog model
on an FPGA. For this test, we used the same trained weights in both environments and
chose 2200 images from the MNIST test dataset. The trained weights were obtained by
training the native Python to provide an accuracy of 95% or higher. Figure 15 shows the
test setup using a Xilinx ZCU104 FPGA board and Raspberry Pi 4. The Raspberry Pi was
used to read/write weights, images, and results from the implemented CNN model via
SPI (Serial Peripheral Interface Bus). Moreover, the Raspberry Pi computed the accuracy
based on the results obtained from the implemented model on the FPGA.
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Table 1 shows the evaluation results, revealing an inference accuracy of 96.05% and
2113 out of 2200 correct predictions for both the test environments/platforms. This evalua-
tion ensured that the functionality of the proposed accelerator implementation was correct,
and its floating-point arithmetic operators were also highly accurate.

Table 1. Comparison of Python and RTL test accuracy in inference.

Python Model Verilog RTL/Hardware Model

Accuracy 96.05% 96.05%
Number of Correct prediction image 2113 2113

Table 2 shows the results of inference after separately training in Python and Verilog
simulation using 2200 training images. Initially, partially trained weights were obtained
from Python, providing a test accuracy of 93.5% for 1000 test images. Afterwards, these
partially trained weights were again provided to Python and Verilog for further training.
After separately training in Python and Verilog models, the test accuracy was compared, as
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shown in Table 2. The Python and Verilog trained models showed similar test accuracies of
95% and 95.1%, respectively. This suggested that even if complete training was separately
carried out in Python and Verilog, the deviation was expected to be small.

Table 2. Comparison of Python and RTL test accuracy for training and inference.

Python Model Verilog RTL Model

Initial Accuracy (Weight) 93.5%

Number of Training Data 2200 2200
Number of Inference Data 1000 1000

Accuracy 95% 95.1%
Number of Correct Prediction Images 950 951

To highlight the benefit of resource sharing, in terms of area and energy consumption,
we implemented and compared two accelerators using Synopsys: (1) an accelerator with
dedicated resources and (2) an accelerator with shared resources. Tables 3 and 4 compare
the chip area and power consumption of the two architectures. From Tables 3 and 4, it can
be observed that the architecture with shared resources provided the best results.

Table 3. Comparison in terms of power for dedicated vs. shared resources architectures.

Accelerator with Dedicated Resource Accelerator with Shared Resources

Logic Power (mW) Logic Power (mW)

Combinational 26.069 (79.71%) register 22.8959 (78.88%)
Clock network 0 sequential 0

Register 6.636 (20.29%) combinational 6.1314 (21.12%)

Total 32.7041 mW Total 29.0273 mW

Table 4. Comparison in terms of area for dedicated vs. shared resources architectures.

Accelerator with Dedicated Resource Accelerator with Shared Resources

Logic Area (µm2) Logic Area (µm2)

Combinational 1,672,173.38 Combinational 1,570,811.06
Buf/Inv 36,890.2 Buf/Inv 35,927.28

Non-combinational 173,657.77 Non-combinational 1,726,553.89

Total 3,408,531.16 Total 3,297,364.95

Table 5 compares the energy efficiency of three hardware systems with different
configurations:

(1) GPU-based PC running a CNN model (using Keras/Tensorflow framework).
(2) Proposed accelerator with dedicated resources.
(3) Proposed accelerator with shared resources.

While the precision employed by the GPU-based PC was a 64-bit floating point, the
precision implemented in the two proposed accelerators was a 32-bit floating point. Since
the number of bits was different, a minor difference in the calculation result could be
expected. However, since the order of the magnitudes of the weight values was the same
in training, it could be confirmed that the weight values were updated by making the best
use of each feature. In Table 5, the energy consumption was calculated by multiplying
the average power consumption of the training process multiplied by the projected time
span for five epochs of the complete 50,000 training images of MNIST dataset. For the
GPU-based PC, the average power consumption and the overall training time are reported.
During training on PC, a smart Wi-Fi plug [28] was used to measure the power of the
PC box (excluding any peripherals). The smart plug communicated the voltages, current,
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power, and energy consumed to the app on a smartphone over Wi-Fi, as shown in Figure 16.
To calculate the energy consumed by the PC, the time duration of training was multiplied
by the average power consumption. On the other hand, for the proposed accelerators, the
average power consumption was estimated by Synopsys’ Design Complier, and the overall
training time was estimated by the Vivado Verilog simulator. Our experiment, reported in
Table 5, demonstrated that the proposed accelerator with shared resources consumes only
0.21% of the energy consumed by the GPU-based PC.

Table 5. Comparison in terms of energy consumption. FP: floating point.

GPU-Based PC * Accelerator with Dedicated Resource Accelerator with Shared Resources

Bit-precision FP64 FP32 FP32

Power 54.6 W 32.7041 mW 29.0273 mW

Time 101 s
393.21 s

(10 ns (clock period) × 157,284 cycles
× 50,000 images × 5 epoch)

393.21 s
(10 ns (clock period) × 157,284 cycles

× 50,000 images × 5 epoch)

Energy 5514.6 J 12,859.6 mJ 11,413.82 mJ

* For GPU-based PC: Nvidia GeForce GT 710 with Intel(R) Core™ i5-9600KF CPU @ 3.70 GHz.
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In order to compare with the existing FPGA accelerators [13,15,29], we obtained the
FPGA resource usage and power of the proposed architecture, as shown in Table 6. For a
fair comparison among accelerators targeting various sized networks, we calculated the
scaling factor, which was the ratio of operations in an existing work to our work. The
results reveal a normalized energy consumption of 17.40 µJ by our design, which was lower
compared to the results of [15,29]. The training accelerator in [13] employed batch size of
10 to reduce latency to 363.80 µs per image, resulting in a reduced energy consumption.
However, using a batch size of 1 (same and ours) would have resulted in much higher
energy consumption in [13] due to the added latency of frequent weight updates to DRAM
(Dynamic Random Access Memory). Therefore, the low effective normalized energy per
image makes the proposed architecture suitable candidate for IoT/mobile deployments.
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Table 6. Comparison of resource usage, execution time, average execution power, and normalized energy consumption
with the existing works.

[15] [29] [13] Proposed

Precision FP 32 FP Fixed 16 FP 32
Training dataset MNIST CIFAR-10 CIFAR-10 MNIST

Device Maxeler MPC-X Xilinx ZU19EG Intel Stratix 10 Xilinx XCZU7EV
LUT 69,510 329,288

ALM = 20,800
169,143

FF 87,580 466,047 219,372
DSP 23 1500 1699 12

BRAM 510 174 10.6 304
Operations (OPs) 14,149,798 74,430,000 59,299,400 114,824

Scaling Factor (OPs/OPs) 123.23 648.21 516.44 1.00
Time Per Image (µs) 355.00 864.26 363.80 26.17

Power (W) 27.30 14.24 a 20.63 0.67 a

Energy Per Image (µJ) 9691.50 12,307.05 7506.25 17.40
Normalized Energy (µJ) b 78.65 18.99 14.53 17.40

a Provided by Xilinx Vivado. b Normalized energy is energy per image/scaling factor or OPs/(OPs/s/W)/scaling factor.

For the measurements of Table 6, a Raspberry Pi was used for delivering images/weights
and reading results, which consumed an additional 0.808 W of power. Upon including
the power of the external device (Raspberry Pi), the consumed power and energy values
increased to 1.478 W and 38.67 µJ, respectively. In real deployment, however, we plan to
use an on-chip RISC-V core, which would have a much lower power consumption than the
Raspberry Pi.

The layout of the implemented test core, using TSMC 65 nm CMOS process and
generated by a Synopsys IC Complier, is shown in Figure 17. The test core included the
accelerator with shared resources and an off-chip interface for writing image/weights and
reading produced results. The core occupied an area of 2.246 × 2.246 mm2.
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Figure 17. Layout of the accelerator with shared resources.

5. Conclusions

This paper proposed a single-chip training and inference accelerator for use in mo-
bile/edge and IoT devices. The inference and training functions of the accelerator were
evaluated for MNIST handwritten digits 0–9 on an FPGA. The accelerator locally stores
weights and only needs external communication for acquiring input images and reporting
results. The architecture has the benefit of a reduced energy consumption compared to a
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GPU-based accelerator running on a PC, and it demonstrated similar training and infer-
ence accuracies. Additionally, the proposed low-power accelerator has the capability for
continuous self-training while deployed, thus ensuring a high accuracy of prediction. The
accelerator promises huge potential in the growing number IoT edge devices by offering
training capabilities at a fraction of the power consumption of a model running on a GPU.
To further reduce area and energy consumption, pruning and quantization down to 16-bit
or 8-bit floating points may be used for calculation. To use the proposed accelerator for
various applications, we plan to develop a flexible architecture, where the same hardware
can be used to accelerate networks of different depths, in the future.
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