
electronics

Article

Ubiquitous Vehicular Ad-Hoc Network Computing Using
Deep Neural Network with IoT-Based Bat Agents for
Traffic Management

Srihari Kannan 1 , Gaurav Dhiman 2 , Yuvaraj Natarajan 3, Ashutosh Sharma 4 , Sachi Nandan Mohanty 5,
Mukesh Soni 6 , Udayakumar Easwaran 7, Hamidreza Ghorbani 8, Alia Asheralieva 9,* and Mehdi Gheisari 9,*

����������
�������

Citation: Kannan, S.; Dhiman, G.;

Natarajan, Y.; Sharma, A.; Mohanty,

S.N.; Soni, M.; Easwaran, U.;

Ghorbani, H.; Asheralieva, A.;

Gheisari, M. Ubiquitous Vehicular

Ad-Hoc Network Computing Using

Deep Neural Network with IoT-Based

Bat Agents for Traffic Management.

Electronics 2021, 10, 785. https://

doi.org/10.3390/electronics10070785

Academic Editor: Paul Mitchell

Received: 3 January 2021

Accepted: 17 February 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, SNS College of Technology, Coimbatore 641035, India;
harionto@gmail.com

2 Department of Computer Science, Government Bikram College of Commerce, Punjabi University,
Patiala 147002, India; gdhiman0001@gmail.com

3 Research and Development, ICT Academy, Chennai 600096, India; yraj1989@gmail.com
4 Institute of Computer Technology and Information Security, Southern Federal University,

344006 Rostov-on-Don, Russia; sharmaashutosh1326@gmail.com
5 Department of Computer Engineering, College of Engineering Pune, Pune 411005, India;

sachinandan@ieee.org
6 Department of Computer Science and Engineering, Jagran Lakecity University, Bhopal 462044, India;

soni.mukesh15@gmail.com
7 Department of ECE, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, India;

udayakumar.sujith@gmail.com
8 Department Electrical Engineering and Information Technology, Azad University of Tehran, Tehran, Iran;

h.r.ghorbani@hotmail.com
9 Department of Computer Science and Engineering, Southern University of Science and Technology,

Shenzhen 518055, China
* Correspondence: aasheralieva@gmail.com (A.A.); mehdi.gheisari61@gmail.com (M.G.)

Abstract: In this paper, Deep Neural Networks (DNN) with Bat Algorithms (BA) offer a dynamic
form of traffic control in Vehicular Adhoc Networks (VANETs). The former is used to route vehicles
across highly congested paths to enhance efficiency, with a lower average latency. The latter is
combined with the Internet of Things (IoT) and it moves across the VANETs to analyze the traffic
congestion status between the network nodes. The experimental analysis tests the effectiveness
of DNN-IoT-BA in various machine or deep learning algorithms in VANETs. DNN-IoT-BA is
validated through various network metrics, like packet delivery ratio, latency and packet error rate.
The simulation results show that the proposed method provides lower energy consumption and
latency than conventional methods to support real-time traffic conditions.

Keywords: deep neural network; VANETs; routing; IoT agents

1. Introduction

Vehicular Ad-hoc Networks (VANETs) are an important class of ubiquitous computing,
which operate as a key technology for enabling the VANET applications [1–4].

VANETs have recently provided their users with the means for safety management
and data management, where the control methods are designed to work under any cir-
cumstances based on network dynamics [5]. On the one hand, the use of centralized [5]
and distributed algorithms makes traffic management more complex one regarding the
increasing adoption of vehicles in VANETs. On the other hand, the increase in traffic affects
urban transport indirectly, and it increases the delay in transportation, fuel consumption,
and emission values [6].

Even in real-time with precise traffic flow predictions, the traffic management systems
in VANETs often play a vital role in predicting the traffic flow. The Intelligent Transport
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System (ITS) offers reliable traffic management services in such scenarios, enabling the user
to coordinate the network in an optimal and safer way, to understand the environment. ITS
information and communication technologies further enhance the management of traffic
and mobility [5].

In order to ensure efficient and secured transmission, ITS strongly supports commu-
nication within VANETs between road units (vehicles) and roadside units (RSU). Several
other challenges, such as limited scalability, flexibility, poor connectivity, and inadequate
intelligence, lead to delays in time and congestion in communication channels, which
significantly affect the performance of VANETs.

Various investigations are conducted in theexisting literature [7–9] to solve such
complexities in traffic management. These methods are used to solve the traffic congestion
in VANETs, including difficulties in scalability, performance, and management. Several
optimization tasks are undertaken in order to ensure the regulation of traffic flow dynamics
in an urban scenario [10].

Congestion regulation is limited in existing methods in terms of accuracy and timely
traffic predictions. The congestion effects in VANETs are treated as a classification problem
and various solutions are offered, but the majority of systems are not fully usable [11,12].
The ITS systems support traffic predictions by analysing the network parameters to miti-
gate these limitations [13]. The predictions involve route planning and reprogramming
to reduce the rate of congestion [14,15]. Furthermore, the stochastic and non-linear traf-
fic characteristics [16] and traffic-flow are challenging to predict [17]. VANET methods
traditionally use linear and machine traffic-flow prediction models based on network
density, which fail to interpret the non-linear uncertainty [18–20]. Moreover, researchers
are attempting to further apply this proposed method to practical, artificial-intelligence-
based approaches based on optimization, metaheuristics, machine learning, and deep
learning [21–44]

With exponential traffic growth and high computational resources, traffic management
analysis becomes complex [45]. Therefore, a high-end intelligent system is needed for flexi-
ble and smoother transmission in vehicles with various constraints, such as uncertainty, ex-
ponential growth, and high computational resources. A high-end system uses deep learning
models to manage network abstraction and resource optimisation. Researchers are devel-
oping various security-based protocols [46–58] and machine learning techniques [59–62]
for different applications for wireless communication and data prediction.

With this motive, we introduce the Bat Algorithm (BA) [63] as a vital factor and
provide inputs that enable the Deep Neural Network (DNN) routing algorithm to make
optimal decisions. In this respect, this paper presents the following contributions:

1. In terms of various collision prevention methods, such as packet delivery rate, latency,
failure rate, and real-time traffic throughput, the authors analysed the DNN-Internet
of Things (IoT)-BA model with existing deep learning models;

2. The authors devised and updated the routing table to reduce vehicle collision rates
in real-time based on the traffic information collected by the IoT agents across the
network;

3. In order to improve VANET routing in a real-time scenario, the authors combined
the Deep Neural Network [64–68] algorithm with BA. In regular cases, this ensures
optimal routing decisions based on IoT-BA inputs, ensuring better service delivery
through the mobile ad hoc networks (MANETs).

The outline of this paper is as follows: Section 2 provides the network model. Section 3
deals with the traffic management model. Section 4 evaluates the traffic management model
with existing models. Section 5 concludes the paper.

2. Network Model

Figure 1 shows the network model under Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) entities. The following are the entities used to design the VANET
infrastructure [69–72].
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Figure 1. Vehicular Adhoc Networks (VANETs) model.

• Vehicle Unit: VANETs are responsible for communication with nearby vehicles along
the highway sector or with the RSUs at the edges/corners in simple terms for transport
purposes. VANETs are also responsible for facilitating transport. We used elliptical
curve encryption as an encryption algorithm in this paper to generate cryptographic
credential information and store it in the vehicle. The Global Positioning System (GPS)
is responsible for locating the vehicle inside. In a road segment, RSUs can determine
the total number of vehicles using a GPS unit [40–44,73–77];

• Roadside units (RSUs): The RSU is an access point on the roads, where details of vehi-
cle units can be found along the roads. The vehicle units’ encrypted street segments
are regarded as the relay for the Transport Message Channel. An IoT-BA is connected
to RSU by a faster means of communication. The RSU operates the cryptographic
credentials to decode vehicle information and the DNN-IoT-BA algorithm and stores
them;

• Traffic Management Center (TMC): The IoT-BA calculates the traffic density using
road segments. In order to obtain road traffic information, the directional connection
of TMC to RSUs and other IoT-BAs are used. In order to avoid congestion in road
segments, the IoT-BA transfers the collected information to the DNN. The differential
between TMC and IoT-BA is that the former is a fixed segment and the latter is a
network-wide mobile segment.

The proposed method was tested in an urban scenario that was designed as grids and
intersections of roads. The path between any two crossings was considered to connect two
or more street segments, such as the segment s(i,j) and intersection I(i) s(i,j), providing a
collection of different characteristics, which include road widths and lengths, vehicle traffic
density, and the number of roads between two intersections [78–80].

The unit has a unique identification number (ID), consisting of the location, direction,
and speed of the vehicle. Vehicles automatically accessed the RSU to understand total
crossroads, traffic segments, and congestion levels. This study used IoT-BA to provide more
precise vehicle information than existing vehicle communication models. The DNN made
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appropriate decisions by forming the graph G = <V,E> with V in the proposed method, as
the intersections between the source, the destination vehicle, and E are considered the road
segments connected to intersections in V.

The below definitions can be considered as parameters that append themselves for
optimizing the DNN via BA:

• Detection range is defined as the communication region between the receiver sensitiv-
ity threshold of any two vehicles and the SINR, which are required for payload;

• Data Exchange range is defined as the communication region in which the data
transmission takes place;

• Time before handover is defined as the communication region where the OBU prepares
for handover;

• Time to handover is defined as the communication region where the actual handover
takes place.

The minimum received power is defined as the minimum power a car requires to
physically receive the signal from RSUs, which is defined below

Min (PR) = 100.1*sat (1)

where sat is defined as the minimum signal attenuation.
The detection range is defined as the minimum reception power needed to establish

communication based on wavelength, transmitter power, threshold, and path loss coeffi-
cient

Detection Range = (λ2max(p))/(16π2PR))1/α (2)

where:

λ is the wavelength;
max(p) is the maximum level of transmission power;
α is defined as the minimum level of a path loss coefficient.

Network Dwelling Time (NDT) is defined as the inverse of mobility leave rate (µml),
where a Vehicle Unit (VU) is in the range of RSU, which is given by

µml = V ∗ P/(π∗A) (3)

where:

V is the velocity of the VU;
P is defined as the Perimeter of an RSU;
A is defined as the area of an RSU.

NDT = (µml)
−1 (4)

3. Traffic Management Model

The DNN-IoT-BA traffic management model operates as a driverless assistant system
that uses IoT-BA to collect traffic information near the road segments and intersections
and acts as a forwarder of data to RSU. The DNN-IoT-BA traffic management system is
a distributed graph-based model with a set of vehicles (V) and edges (E). The IoT-BA
sends the number of vehicles present in the road segment and the traffic congestion near
the intersections and road segments. In the proposed method, VANETs work with the
IoT-BA that assists the infrastructure unit and then connects with the vehicle unit for
routing operations.

3.1. Mobile Agent Unit

The DNN-IoT-BA traffic management system works as an unmanned traffic assistant
system that collects traffic information near the roads and intersections with IoT-BA, as
a data transmitter to RSUs. A distributed graph-based model with vehicle set (V) and
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edges (E) is the DNN-IoT-BA traffic management model. In intersections and on roads,
the IoT-BA sends the total number of vehicles. The VANETs work with IoT-BA in the
proposed method, supporting the infrastructure unit and connecting it to the vehicle for
routing operations.

The IoT-BA in the proposed VANET architecture is a dynamic module moving into
VANETs and connecting vehicle units with the infrastructure unit. The IoT-BA is made up
of four segments: an identification unit, an execution code unit, a path unit, and a space
unit of datum. In order to distribute the data packets from the sources of the source to
the destination node through cooperative BAs via the selective routing track, the IoT-BA
uploads vehicle information onto the DNN.

As IoT-BAs contain a wide range of information, each system has a unique identity.
The data of current vehicles passing through a road segment are stored in the cloud, and
the routing path is defined by DNN, which is a core indicator of packet transmission. Lastly,
the data space stores the data from the car units completely. In this case, it is in the RSU
Infrastructure Unit that the DNN routing path is found [68].

3.2. Infrastructure Unit

The infrastructure unit is located on the application level, and the routing path can be
robustly calculated using the vehicle position and speed via DNNs (DNN architecture with
optimization for BA in Figure 2). Figure 2 specifies the workflow of the infrastructure unit.
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3.3. Bat Algorithm (BA)

The Bat algorithm emulates bat echolocation, whereby bats use echolocation to dis-
tinguish between prey and physical boundaries. Bats, additionally, identify differences in
other ways, such as by flying in an arbitrary motion with speed vi at position xi, with a
recurrence of fmin, turbidity A0, and shifting wavelength λ, in order to look for prey.
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The bats alter the recurrence naturally, based on the radiated pulse, and this changes
the pulse discharge rate r ε [0, 1] based on the closeness of the fitness function. In general,
the loudness varies between large A0 (positive value) and a minimum Amin (constant value).

IoT-BA operations are defined in terms of their frequency, velocity, position, emis-
sion pulse rate, and loudness. These terms help the bats to search for prey in a D-
dimensional space.

Virtual Bat Movement is obtained after the random initialization and the new position
and velocity are updated in a regular time-step t, as below

fi = fmin + ( fmax − fmin)× β (5)

vt+1
i = vt

i + (xt
i − x∗)× fi (6)

xt+1
i = xt

i + vt+1
i (7)

where:

fi is the frequency;
vt

i is the velocity;
xt

i is the position;
At

i is the loudness;
rt

i is the emission pulse rate;
x∗ is the global best;
Fmin is the minimum frequency;
fmax is the maximum frequency.

For a local search, the solution is chosen based on the current best solution, and then
the updated solution is locally produced for each bat based on the following condition

xnew = xold + ε ∗ At (8)

where:

ε is the arbitrary vector;
At is the normal commotion at step t.

The global solution is updated with the best fitness function obtained from N bats
when it is better than the previous best f (x∗).

Loudness and Pulse Emission: At
i and rt

i , respectively, tend to reduce and increase based
on the rationalization of a new solution. This means the bats are moving in the correct
direction towards their prey. This is formulated as shown below

I f (rand(0, 1) < At
i&& f (xi) < f (x)) (9)

f (x) = f (xi) (10)

At+1
i = αAt

i (11)

rt+1
i = r0

i (1 − e−γt) (12)

where:

rand is considered a random vector with uniform distribution.
0 < α < 1 and γ > 0

The negative Mean Absolute Percentage Error (MAPE) is used to enhance the weights
and bias of the DNN in the form of a fitness function, which is provided below

MAPE =
N

∑
i=1

[
ai − di

ai

]
× 100% (13)

where
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ai is the actual value;
di is the estimated value.

The lower the MAPE, the better the optimization of parameters of DNN.
BA predicts the value of critical strength parameters in the VANET congestion detec-

tion process based on its operating of parameters and conditions. DNN uses the trained BA
prediction to determine the values of process parameters that result in the optimal value of
the strength parameters in various operating conditions.

3.4. Infrastructure Unit Workflow

The Infrastructure Unit (Figure 3) collects control information such as the position,
location, speed, and time signature of the vehicle. The information is iteratively collected to
ensure that the information is accurate. The data are gathered by the BAs and not directly
transmitted to infrastructure units.

The information from IoT-BAs is sent to the DNN, and the routing path is processed
based on the routing information collected from BAs (routing process is the same as in [64]).
The BAs route BAs with a code execution unit and set the route to prevent the congestion of
the VANETs. All operations are carried out to prevent the greatest challenge of congestion.

Figure 3. Infrastructure Unit Workflow.

4. Performance Evaluation

The DNN-IoT-BA was simulated in a python compiler (Anaconda with Python 3).
DNN simulation parameters under VANETs are presented in Table 1. The simulation was
performed on a two-way road with a fixed road width in an area of 1500 m × 1500 m. The
simulation covered 300 vehicles in an urban scenario with speeds ranging from 0 kph to
50 kph. The IEEE 802.11p MAC protocol was used to estimate the packet interval and up-
date the report on secured packet transmission. It also helped maintain the retransmission
of packets that fail during the broadcast. The Krauß model was considered as the mobility
model in the current study, which is a spatially continuous, car-following model, where
the distance between the vehicles can be estimated by the VU itself. It further allowed the
safe travel of VUs with proper velocity.
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Table 1. Simulation Parameters.

Parameters Value

Total vehicle units 100–300
Channel carrier frequency 5.9 GHz

Packet length Uniform
Maximum transmission 20 mW

Simulation area 1500 m × 1500 m
Vehicle velocity 20–50 kph

Bit rate 18 Mbps
Signal attenuation threshold −90 dBm

Path loss coefficient 2
Transmission range 500 m

MAC protocol 802.11 p
Traffic type CBR

Beacon interval 0.5 s
Data rate of MAC 6 Mb

Mobility model Krauß model
CBR rate 4 packets/sec

Simulation time 1000 s

The validation of the DNN-IoT-BA proposed was conducted against the existing
models of deep-learning: DNN and Artificial Neural Network (ANN) [65]. The DNN
and ANN were trained without the predictions from BA and were trained directly with
the proposed module without the inputs from BA. Validation was performed by different
performance metrics, such as transport type, speed of the vehicle, and network density, to
assess the average latency and cumulative distribution function (CDF).

The network connectivity quality of the existing DNN and ANN models is illustrated
in Figure 4. The transmission range varied from 200 m to 500 m and the vehicle’s arrival
rate was fixed from 30 kph to 50 kph. The simulation results show that the probability of
connection expired with an increasing distance metric and the connection to a vehicle was
lost when distance from the RSU was increased by 400 m.

Placing RSU on all 350 m, however, helped the VANETs build long-term connections
with vehicles. Nevertheless, the connection probability still presented a challenge when
connecting vehicles within the 300 m range (as illustrated in Figure 5), with increasing
network traffic (from 100 to 300 vehicles). The CDF results from the DNN-BA, DNN,
and ANN, testing the connection probability between 100 and 300 vehicles, are shown in
Figure 5.

In this respect, the density of the network was high for 300 vehicles, mid-range for
200, and low for 100. The results show that a more distant connectivity to vehicles was
established under the proposed method than using low-density models of DNN and ANN.
Network degradation was shown when the density of the network increased.
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The results of the average data latency between the vehicles are shown in Figure 6,
depending on their velocity. The simulation results show that data transmission latency
increased alongside increases in speed. On the other hand, the latency continued to
increase with increasing network density. The combined surges in speed and vehicle
density contributed to the maximum latency. Such mobility affects the transmission of data
because the link between vehicles is not established.

This affects the delivery rate directly because the average latency is indirectly propor-
tional to the ratio for package delivery (Figure 7). The simulation results, on the other hand,
show that the link was well established, with minimal vehicle speed and density, and the
average delay was, therefore, significantly reduced. The DNN-IoT-BA performance was
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efficient overall, due to the presence of IoT-BA, compared with the DNN and ANN, as the
average minimum latency rate showed a lower failure rate.
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The results of the delivery ratio of packages with different car speeds and densities are
given in Figure 7. As the transmitters failed to transfer the packets to the neighbouring VU,
the packet delivery ratio was affected by a link failure due to increasing speed. Therefore,
the connection breaks and the link with increasing network density exists. The break
in connection had a significant influence on the packet loss stimulus rate, and thus on
performance. The collision of the vehicle packets increased the packet loss rate with an
increased vehicle density and resulted in a decreased functionality in the overhead network.
The simulation results show that the DNN-IoT-BA was delivered with higher feasibility
than DNN and ANN.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

and the average delay was, therefore, significantly reduced. The DNN-IoT-BA perfor-
mance was efficient overall, due to the presence of IoT-BA, compared with the DNN and 
ANN, as the average minimum latency rate showed a lower failure rate. 

 
Figure 6. Impacts on average latency with variable velocity. 

The results of the delivery ratio of packages with different car speeds and densities 
are given in Figure 7. As the transmitters failed to transfer the packets to the neighbouring 
VU, the packet delivery ratio was affected by a link failure due to increasing speed. There-
fore, the connection breaks and the link with increasing network density exists. The break 
in connection had a significant influence on the packet loss stimulus rate, and thus on 
performance. The collision of the vehicle packets increased the packet loss rate with an 
increased vehicle density and resulted in a decreased functionality in the overhead net-
work. The simulation results show that the DNN-IoT-BA was delivered with higher fea-
sibility than DNN and ANN. 

 
Figure 7. Impacts on packet delivery rate with variable velocity. 

10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Velocity (kmph)

A
ve

ra
ge

 L
at

en
cy

 

 
DNN-BA (100 VU)
DNN (100 VU)
ANN (100 VU)
DNN-BA (200 VU)
DNN (200 VU)
ANN (200 VU)
DNN-BA (300 VU)
DNN (300 VU)
ANN (300 VU)

10 15 20 25 30 35 40 45 50
55

60

65

70

75

80

85

90

95

100

Velocity (kmph)

P
ac

ke
t D

el
iv

er
y 

R
at

io
 (%

)

 

 

DNN-BA (100 VU)
DNN (100 VU)
ANN (100 VU)
DNN-BA (200 VU)
DNN (200 VU)
ANN (200 VU)
DNN-BA (300 VU)
DNN (300 VU)
ANN (300 VU)

Figure 7. Impacts on packet delivery rate with variable velocity.

The results of the data with different data rates are displayed in Figure 8. The data
rates vary according to the density of the network and the speeds of the vehicle. As
a result of the simulation, the maximum output was achieved at the borders of roads,
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as the vehicle moved in the direct and curved road sections with minimum speed and
minimum throughput.

The DNN-IoT-BA also enhanced the network performance compared to other meth-
ods with the optimal choice of vehicles in road segments. The optimal selection reduced
the packet loss rate, and the selection of the optimally adjacent vehicle hops effectively
maintained the transmission connection. Due to the absence of an IoT-BA—in which
vehicles can be used for determining a connection, and thus strictly prevent energy con-
sumption by linking reliability—a throughput decrease was found in DNN and ANN. The
determination of neural network parametric values by the BA assisted in improving the
DNN optimization by finding the routes for the packets to traverse across the network.
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5. Conclusions

This paper shows that DNN-IoT-BA offers an efficient routing of vehicles on high-
speed roads in VANETs. This DNN-IOT-BA is the best way of increasing energy efficiency.
The IoT-BA examines the entire network to find the moving states of every vehicle in
VANETs. The DNN-IoT-BA then optimizes routing decisions based on the MA inputs,
with higher traffic congestions in the network. The DNN effectively processes routing
decisions at a faster rate and provides a network solution to set optimum routes, thus
reducing network congestion more quickly. The use of the routing table for regular vehicle
updates at RSUs ensures optimal selection of vehicles and stable routing decisions. Data
and transmission rates were demonstrated through variable speed, distance, and vehicle
density, confirming that DNN-IoT-BA offers quicker routing decisions than existing DNN
and ANN models. Simulation results show the higher connectivity, throughput, packet
delivery, and end-to-end latency of the DNN-IoT-BA model. The results also show that the
probability of connection termination in DNN-IoT-BA is lower, which supports increased
data transmission. This means that simplified routing choices based on the continuous
IoT-BA monitoring of DNN have optimally retained the traffic density, which ensures an
efficient packet delivery to the destination nodes. Finally, the application of low-mobility
vehicle routing decisions is efficient compared with those with a faster mobility of vehicles.
In future, the application of other deep learning algorithms considering vehicles with
mixed traffic data can be utilized for vehicular traffic management.
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