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Abstract: Automatic inspection of insulators from high-voltage transmission lines is of paramount
importance to the safety and reliable operation of the power grid. Due to different size insulators
and the complex background of aerial images, it is a difficult task to recognize insulators in aerial
views. Most of the traditional image processing methods and machine learning methods cannot
achieve sufficient performance for insulator detection when diverse background interference is
present. In this study, a deep learning method—based on You Only Look Once (YOLO)—will be
proposed, capable of detecting insulators from aerial images with complex backgrounds. Firstly,
aerial images with common aerial scenes were collected by Unmanned Aerial Vehicle (UAV), and a
novel insulator dataset was constructed. Secondly, to enhance feature reuse and propagation, on the
basis of YOLOv3 and Dense-Blocks, the YOLOv3-dense network was utilized for insulator detection.
To improve detection accuracy for different sized insulators, a structure of multiscale feature fusion
was adapted to the YOLOv3-dense network. To obtain abundant semantic information of upper
and lower layers, multilevel feature mapping modules were employed across the YOLOv3-dense
network. Finally, the YOLOv3-dense network and compared networks were trained and tested on
the testing set. The average precision of YOLOv3-dense, YOLOv3, and YOLOv2 were 94.47%, 90.31%,
and 83.43%, respectively. Experimental results and analysis validate the claim that the proposed
YOLOv3-dense network achieves good performance in the detection of different size insulators amid
diverse background interference.

Keywords: aerial image; insulator detection; YOLO; background interference; image processing;
deep learning; Dense-Block

1. Introduction

With the development of computer vision techniques and intelligent grids, the scale
of high-voltage transmission lines is increasing. Regular inspection of transmission lines is
becoming an important task to ensure the safety and reliable operation of power systems.
Specifically, insulators are an indispensable, essential piece of equipment in transmission
lines, which play an important role in electrical insulation and mechanical support [1,2].
However, insulators are usually outdoors and subjected to harsh weather conditions.
Insulator failure is likely to threaten the safety of the power system, resulting in large-scale
blackouts and huge economic losses. Consequently, insulator detection based on computer
vision is of great practical significance [3]. Over the past few years, the development of
Unmanned Aerial Vehicle (UAV) and sensor techniques [4,5] has led to their exploitation
as effective tools for transmission line inspection. Insulator detection by UAVs has become
one of the primary research directions for intelligent grid systems [6]. Some scholars have
engaged in research on insulator detection from aerial images, and many remarkable results
have been achieved through image processing. Current methods for insulator detection
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can be divided into three categories: (1) traditional image processing methods, (2) machine
learning methods, and (3) deep learning methods.

Based on traditional image processing methods, segmentation and feature extraction
of aerial images have been explored as a way to recognize insulators within complex back-
grounds. Generally, the features of insulators in aerial images include texture [7] shape [8]
color [9], gradient [10], and edge [11], among others. Thus, edge detection, morphology,
scale-invariant features [12], and wavelet transformations [13,14] are usually employed
to extract features and separate insulators from complicated backgrounds. Mathematical
models have been established to detect insulators, as well. However, aerial images often
include diverse background interference, as shown in Figure 1.

Figure 1. Insulators in aerial images with diverse background interference. Each column (from rows 1–5)
depicts aerial backgrounds containing vegetation, rivers, sky, power towers, and buildings, respectively.

Specifically, in the work of Wang et al. [15], color, shape, and texture features were
combined to detect insulators in aerial images. Firstly, the parallel line features were
adopted as prior knowledge in order to obtain a region of interest (ROI) for insulators.
Secondly, the local binary pattern (LBP) was presented to extend candidate regions of
insulators. Finally, the LBP and hue saturation value (HSV) histograms were employed to
match insulators with the prior knowledge model. This method effectively reduced the
impact of complex backgrounds on insulator detection. However, it required complicated
computation and feature extraction. The method also struggled to deal with many kinds
of complex scenes. Iruansi et al. [16] proposed an active counter model for segmenting
and extracting insulators from ROI regions. Experimental results demonstrated that active
contour models were more efficient and flexible than threshold segmentation and gradient
algorithms. However, relevant features of insulators are changeable—due to different
shooting angles and distances—which reduced the accuracy of insulator detection. In the
work of [17], a method of orientation angle detection based on binary shape and prior
knowledge was proposed to distinguish insulators from complex backgrounds. Multiple
insulators could be detected in complex aerial images with different angles. However, the
method required all possible angles of the insulators to be set in advance, and did not work
well if the shape of insulator was unknown. Commonly, the color of insulators is quite
different from their background interference, and the color histogram is considered an
effective method to describe color features. In [18], hue saturation intensity (HIS) color
space was adopted to segment glass insulators in aerial images based on a threshold
segmentation algorithm. However, it struggled to segment insulators from complex back-
grounds by the use of only one threshold. To solve this problem, Zhai et al. [19] proposed
an insulator detection method based on the color and spatial morphology features in aerial
images. Firstly, color models of insulators were constructed by setting corresponding
thresholds for the red-gree-blue (RGB) color space. Secondly, ROIs for insulators were
extracted by color and spatial features. Finally, mathematical morphologies were adopted
to detect insulators. This method exhibited better robustness and real-time performance
compared with other existing methods. However, it did not work well in complex scenes
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containing various types of background interference. Based on observation of traditional
image processing methods, they rely on a variety of feature extraction algorithms and are
quite sensitive to background interference. Meanwhile, in the actual detection environment,
aerial images captured by UAV usually suffer from different shooting angles, shooting
distances, and luminous conditions. Thus, it is impossible to design a model for detecting
multiple insulators simultaneously.

Based on machine learning methods, Ada-Boost and Support Vector Machines (SVM) [20]
are the most commonly used feature classifier algorithms for insulator detection. In [21],
deep convolution feature maps were presented to detect insulators in infrared images,
and the classification algorithm of SVM was adopted to achieve that goal. However, this
method was easily affected by background interference in aerial images. In [22], back-
ground suppression was used to remove the redundant information before extracting
insulators from cluttered backgrounds. However, it was difficult to train an SVM classifier
with a single feature (which could not effectively detect insulators from complex scenes).
In the work of [23], insulators in aerial images were accurately detected through the super-
position of weak classifiers. The accuracy of their insulator segmentation and detection
was improved to a certain extent, but it did not work well when the insulator was covered
by a large area or suffered from complex background interference. To solve this problem,
a structural model of insulators and the optimal entropy method of threshold segmen-
tation were proposed in [24] for insulator detection. Firstly, the software of Sketch-Up
was adopted to generate insulator simulation images. Next, an insulator training set was
constructed. Then, the mathematical morphology algorithm was employed to segment
insulators from complex backgrounds. Finally, the Ada-Boost classifier was introduced to
detect insulators in aerial images amid cluttered backgrounds. However, the samples of
insulators available for training were limited, resulting in the classifier algorithm being
difficult to apply on a large scale. Compared with traditional image processing methods,
the machine learning methods rely less on specific features in aerial images. However, the
algorithms are complicated and require a large amount of calculation.

With recent advances in artificial intelligence and deep learning, many researchers
have applied deep learning architectures to object detection, and these techniques have
been variously applied [25–28]. Deep learning architectures make full use of convolution
neural networks (CNNs) to automatically learn the depth feature of images layer-by-
layer, and optimize the network model parameters by training large-scale data to improve
detection accuracy. Recently, with the rapidly development of deep learning theories, more
and more researchers have paid attention to deep CNNs, which show a strong advantage
in feature extraction. Moreover, large-scale public datasets, high performance hardware
processing systems, and deep CNNs have promoted object detection algorithms to a new
level. The object detection algorithms based on deep CNNs are divided into single-stage
models and two-stage models. Specifically, the single-stage models include single shot
multibox detector (SSD) [29] and YOLO [30,31]. Regions with convolutional neural network
(R-CNN) [32], fast R-CNN [33], and faster R-CNN [34] are two-stage models. The two-
stage models exhibit high detection accuracy, but they are difficult to train and do not
currently meet requirements for real-time application. Single-stage models can achieve
real-time detection with some loss of accuracy compared to two-stage models. Because of
this, they are more feasible for real-world application [35]. Meanwhile, the networks of
YOLOv2 and YOLOv3—which are single-stage models—have been widely used for object
detection [36–41]. Consequently, existing single-stage models can be adapted to detect
insulators by transferring learning strategies. To improve the robustness and accuracy of
insulator detection, multilevel perception methods were presented in [42]. The SSD model
was adopted to train insulator detection models on multilevel training sets. Experimental
results demonstrated that the proposed method met the requirement of off-line analysis
for insulator detection. However, the samples used for training were limited, and the
processing speed of a single image needed to be improved. In the work of [43], the
YOLOv2 network was applied to transmission lines, inspecting systems for insulator
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detection. To solve the problem of lacking samples, several augmentation techniques
were employed to avoid overfitting. It was demonstrated in the experimental results
that the YOLOv2 network achieved a good detection performance (average prediction
accuracy: 88%, average prediction time: 0.04 s). The YOLOv3 network was adopted as
a deep-learning model for insulator locating in [44]. Experimental results validated the
YOLOv3 model, which performed well on insulator detection. To detect remote sensing
targets from complex backgrounds, Xu et al. [45] proposed a multiscale method based on
improved YOLOv3 for remote sensing target detection. Experimental results demonstrated
that the mean average precision of the proposed method was 10% higher than that of the
original YOLOv3.

In summary, traditional image processing methods often rely on a certain feature. The
applicability of the final algorithm needs to be further improved if image segmentation is
insufficient. Machine learning is more complicated and difficult to implement, compared
with deep learning methods. It can thus be concluded that using YOLO models can
achieve insulator detection and potentially meet the requirements of actual real-world
application. Nevertheless, there are still many difficulties in realizing this potentiality, e.g.,
different-sized insulators and the complex, ever-changing backgrounds of aerial images.
As a feed-forward neural network, DenseNet makes better use of the extracted features,
achieving feature reuse and preventing feature loss. Inspired by the work of [45], on the
basis of YOLOv3 and DenseNet, this work proposed a network (YOLOv3-dense) to detect
insulators in aerial images with complex backgrounds. To enhance feature propagation
and reuse, Dense-Blocks are adopted to replace some residual units with lower resolution.
To obtain different scales of insulator feature information, a structure of multiscale feature
fusion was proposed for the YOLOv3-dense network. To improve the abundance of
semantic information in upper and lower layers, multilevel feature mapping modules were
employed to YOLO headers.

The rest of this study is organized as follows: (1) Section 1 reports the existing works
of insulator detection. (2) Section 2 introduces the framework of YOLOv3. (3) Section 3
details the proposed network of YOLOv3-dense. (4) Section 4 gives experimental results
and analysis. (5) Section 5 presents the conclusion of this study.

2. The Network of YOLOv3

YOLO is an end-to-end object detection algorithm based on deep CNNs, transforming
object detection into a regression problem—which remarkably enhances the speed of object
detection. Specifically, the input image is divided into S × S grids; the grid is responsible
for detecting an object if the center of the object’s ground truth falls within its boundaries.
Then, the object is predicted by a bounding box on each grid without a proposal region.
The final coordinates of the bounding box and category probabilities are generated through
regression algorithms. This is the reason why the detection speed of the YOLO algorithm
is faster than two-stage models.

An object detection algorithm for YOLOv3 was proposed by Joseph Redmon in 2019.
It evolved from YOLO and YOLOv2. The backbone of the YOLOv3 network is Darknet-
53, which is a combination of the Darknet-19 and Res-net modules. The structure of the
YOLOv3 network is shown in Figure 2. Specifically, Darknet-53 and multiscale fusion are
adapted to the feature extraction network of YOLOv3. The width and height of images
are cropped to a multiple of 32, and sized to 416 × 416 for normalization. Then, the
cropped and resized image is sent to the Darknet-53 network for feature extraction and
three different feature maps (sized 13 × 13, 26 × 26, and 52 × 52) are obtained. To better
learn the features in the image, 26 × 26 feature maps are fused with 52 × 52 feature maps
via upsampling. Using the same method, the 13 × 13 feature maps are fused with the
26 × 26 ones. Detection accuracy can be improved through multiscale fusion of the deep
and shallow features. Finally, the detection results of the YOLOv3 network are predicted by
three different scales, (scale 1, scale 2, and scale 3 are used to predict large objects, medium
objects, and small objects, respectively).
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Figure 2. The structure of the You Only Look Once (YOLO)v3 network.

The feature extraction network of YOLOv3 is shown in Table 1: five Res-net modules
are adapted to the feature extraction network. Each Res-net module is composed of a
Residual unit (which is mainly made up of 1 × 1 and 3 × 3 convolutional kernels) and a
shortcut connection. There are 23 Residual units (1×, 2×, 8×, 8×, 4×, respectively) in the
Darknet-53 network. It is possible for the output of the former layer to skip several layers
(as the input of the later layers) by introducing Res-net modules.

Table 1. The feature extraction network of YOLOv3.

Type Filters Size Output

Convolutional 32 3 × 3/1 416 × 416
Convolutional 64 3 × 3/2 208 × 208

1×
Convolutional 32 1 × 1/1
Convolutional 64 3 × 3/2

Residual 208 × 208

Convolutional 128 3 × 3/2 104 × 104

2×
Convolutional 64 1 × 1/1
Convolutional 128 3 × 3/2

Residual 104 × 104

Convolutional 256 3 × 3/2 52 × 52

8×
Convolutional 128 1 × 1/1
Convolutional 256 3 × 3/2

Residual 52 × 52

Convolutional 512 3 × 3/2 26 × 26

8×
Convolutional 256 1 × 1/1
Convolutional 512 3 × 3/2

Residual 26 × 26

Convolutional 1024 3 × 3/2 13 × 13

4×
Convolutional 512 1 × 1/1
Convolutional 1024 3 × 3/2

Residual 13 × 13

3. Materials and Methods

Deep learning theory is an important part of computer vision, which has become a
research hot spot in object detection technology. The traditional object detection algorithms
have been gradually replaced by deep learning-based ones. More and more, deep learning
algorithms have been adapted to object detection, and better results have been obtained.

With the deepening of the network, YOLOv3 failed to make full use of multilayer
features, which led to the loss of insulator information in the transmission process. It
was thus difficult to detect insulators accurately amid complex background interference.
In order to enhance feature propagation and reuse, this paper proposes the YOLOv3-
dense network, based on the YOLOv3 network. The entire structure of the YOLOv3-
dense network is shown in Figure 3. It is composed of a feature extraction network, a
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feature pyramid network (FPN), feature mapping modules, and a detection network. To
improve feature propagation and reuse of the feature extraction network, Dense-Blocks
were adapted to replace some of the Residual units with lower resolutions. To obtain
different scales of insulator feature information, a structure of multiscale feature fusion
was proposed for the YOLOv3-dense network. To obtain abundant semantic information
on upper and lower layers, multilevel feature mapping modules were employed for
YOLO headers.

Figure 3. The entire structure of the YOLOv3-dense network.

3.1. The Feature Extraction Network

During the training of the neural network, the feature maps were compressed by
convolution and downsampling. The transmission of image feature maps can be weakened
gradually with the deepening of network layers, resulting in the loss of feature information
transmission. To solve this problem, the DenseNet [46–48] was introduced to reuse those
features and prevent their loss, leading to improvements in network performance. In
addition, the parameters of the training network could be reduced effectively and low-level
features could be retained as long as possible. Consequently, the reuse and fusion of the
multilevel features of the network can be further realized by the use of DenseNet. The
structure of Dense-Blocks is shown in Figure 4. It can be seen that the input of H1 is X0, the
input of H2 is X0, and X1, . . . , and the input of Ht is X0, X1, . . . , and X(t−1). This means
that in the network, each layer’s input comes from the output of all the previous layers.
The expression of Dense-Blocks is defined as follows:

Xt=Ht([X0, X1, . . . , X(t − 1)]) (1)

[X0, X1, . . . , X(t − 1)] are the spliced feature maps of layers X0, X1, . . . , and X(t − 1). H1,
H2, . . . , and Ht are the spliced functions for feature maps. The function Hi (i = 1, 2, 3,
4) is composed of batch normalization (BN), rectified linear units (ReLU), and convolu-
tional (Conv), commonly BN-ReLU-Conv (1 × 1) and BN-ReLU-Conv (3 × 3), which are
employed in transfer function.
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Figure 4. The structure of Dense-Blocks.

To improve feature propagation and facilitate reuse of the feature extraction network,
Dense-Blocks were adopted to replace some Residual units with lower resolution. Three
Dense-Blocks were adopted to the YOLOv3-dense network; the structure of Dense-Blk1,
Dense-Blk2, and Dense-Blk3 are shown in Figure 4. Specifically, in the network architecture
of Dense-Blk1 (Figure 4a), the output of the first layer X0 was 52 × 52 × 128. The output of
the second layer X1 was 52 × 52 × 32 after BN-ReLU-Conv (1 × 1 × 32) and BN-ReLU-
Conv (3 × 3 × 32) operations by function H1. The feature layers X0 and X1 were spliced
into [X0, X1] (52 × 52 × 160) as the input of function H2. Moreover, the function H2
employed BN-ReLU-Conv (1 × 1 × 32) and BN-ReLU-Conv (3 × 3 × 32) operations on the
feature maps [X0, X1], and the output of the third layer X2 (52 × 52 × 32) was obtained. The
feature layers X0, X1, and X2 were spliced into [X0, X1, X2] (52 × 52 × 192) as the input of
function H3. The function H3 employed BN-ReLU-Conv (1 × 1 × 32) and BN-ReLU-Conv
(3 × 3 × 32) operations on the feature maps [X0, X1, X2], and the output of the forth layer
X3 (52 × 52 × 32) was obtained. The feature layers X0, X1, X2, and X3 were spliced into
[X0, X1, X2, X3] (52 × 52 × 224) as the input of function H4. Finally, the function H4
employed BN-ReLU-Conv (1 × 1 × 32) and BN-ReLU-Conv (3 × 3 × 32) operations on
the feature maps [X0, X1, X2, X3], and the output of the fifth layer X4 (52 × 52 × 32) was
obtained. The feature layers X0, X1, X2, X3, and X4 were spliced into [X0, X1, X2, X3,
X4] (52 × 52 × 256) as the input of Res-net modules (52 × 52). Similarly, in the network
architecture of Dense-Blk2 (Figure 4b), the output of first layer X0 was 26 × 26 × 256, and
the output of layer X1, X2, X3, and X4 was 26 × 26 × 64. The transfer functions of H1, H2,
H3, and H4 were BN-ReLU-Conv (1 × 1 × 64) and BN-ReLU-Conv (3 × 3 × 64), and the
spliced feature maps of [X0, X1], [X0, X1, X2], [X0, X1, X2, X3], [X0, X1, X2, X3, X4] were 26
× 26 × 320, 26 × 26 × 384, 26 × 26 × 450, and 26 × 26 × 512, respectively. The final feature
maps 26 × 26 × 512 were used as the input of Res-net modules (26 × 26). In the network
architecture of Dense-Blk3 (Figure 4c), the output of the first layer X0 was 13 × 13 × 512,
and the output of layer X1, X2, X3, and X4 was 13 × 13 × 128. The transfer functions of
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H1, H2, H3, and H4 were BN-ReLU-Conv (1 × 1 × 128) and BN-ReLU-Conv (3 × 3 × 128),
and the spliced feature maps of [X0, X1], [X0, X1, X2], [X0, X1, X2, X3], [X0, X1, X2, X3, X4]
were 13 × 13 × 640, 13 × 13 × 768, 13 × 13 × 896, and 13 × 13 × 1024, respectively. The
final feature maps 13 × 13 × 1024 were used as the input of Res-net modules (13 × 13).

Dense-Blocks were adopted to the proposed network (YOLOv3-dense). The shallow-
level features were able to be transmitted more swiftly and easily to high-level features via
convolution layers, and multilayer feature reuse and fusion could then be realized. On the
other hand, the information and gradient transfer efficiency of the whole network could be
improved, which would be beneficial to the fusion of upsampling and shallow features for
object detection.

The feature extraction network of YOLOv3-dense is shown in Table 2, which can be
divided into six sections, as follows: (1) One convolutional layer was employed in the
first section, and the size of the convolution kernel was 3 × 3 × 32. The output feature
maps 416 × 416 × 32 were obtained after the convolution operation. (2) One Residual
layer and three convolutional layers were employed in the second section, and the sizes
of convolution kernels were 3 × 3/2 × 64, 1 × 1 × 32, and 3 × 3 × 64, respectively.
The output feature maps 208 × 208 × 64 were obtained after the convolution operation.
(3) Two Residual layers and five convolutional layers were employed in the third section,
and the sizes of convolution kernels were 3 × 3/2 × 128, 1 × 1 × 64, and 3 × 3 × 128,
respectively. The output feature maps 104 × 104 × 128 was obtained after the convolution
operation. (4) 18 convolutional layers, 4 Residual layers, and 4 Dense layers were employed
in the fourth section, and the sizes of convolution kernels were 3 × 3/2 × 256, 1 × 1 ×
128, 1 × 1 × 32, 3 × 3 × 32, and 3 × 3 × 256, respectively. The output feature maps
52 × 52 × 256 were obtained after the convolution operation. (5) 17 convolutional layers,
4 Residual layers, and 4 Dense layers were employed in the fifth section, and the sizes of
the convolution kernels were 3 × 3/2 × 256, 1 × 1 × 64, 3 × 3 × 64, 1 × 1 × 256, and
3 × 3 × 512, respectively. The output feature maps 26 × 26 × 512 were obtained after the
convolution operation. (6) 17 convolutional layers, 4 Residual layers, and 4 Dense layers
were employed in the sixth section, and the sizes of the convolution kernels were 3 × 3/2
× 512, 1 × 1 × 128, 3 × 3 × 128, 1 × 1 × 512, and 3 × 3 × 1024, respectively. The output
feature maps 13 × 13 × 1024 were obtained after the convolution operation.

Table 2. The feature extraction network of YOLOv3-dense.

Type Filters Size Output

Convolutional 32 3 × 3/1 416 × 416 × 32
Convolutional 64 3 × 3/2 208 × 208 × 64

1×
Convolutional 32 1 × 1/1 208 × 208 × 32
Convolutional 64 3 × 3/1 208 × 208 × 64
Residual unit

Convolutional 128 3 × 3/2 104 × 104 × 128

2×
Convolutional 64 1 × 1/1 104 × 104 × 64
Convolutional 128 3 × 3/1 104 × 104 × 128
Residual unit

Convolutional 256 3 × 3/2 52 × 52 × 256
Convolutional 128 1 × 1/1 52 × 52 × 128

4×
Convolutional 32 1 × 1/1
Convolutional 32 3 × 3/1
Dense Block1 52 × 52 × (128 + 32 × 4)
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Table 2. Cont.

Type Filters Size Output

4×
Convolutional 128 1 × 1/1 52 × 52 × 128
Convolutional 256 3 × 3/1 52 × 52 × 256

Residual

Convolutional 256 3 × 3/2 26 × 26 × 256

4×
Convolutional 64 1 × 1/1
Convolutional 64 3 × 3/1
Dense Block2 26 × 26 × (256 + 64 × 4)

4×
Convolutional 256 1 × 1/1 26 × 26 × 256
Convolutional 512 3 × 3/1 26 × 26 × 512
Residual unit

Convolutional 512 3 × 3/2 13 × 13 × 512

4×
Convolutional 128 1 × 1/1
Convolutional 128 3 × 3/1
Dense Block3 13 × 13 × (512 + 128 × 4)

4×
Convolutional 512 1 × 1/1 13 × 13 × 512
Convolutional 1024 3 × 3/1 13 × 13 × 1024
Residual unit

3.2. The Structure of Feature Pyramid Network

In YOLOv3-dense, the input size for aerial images was 416 × 416. The sizes of ex-
tracted feature maps for insulator detection were 52 × 52, 26 × 26, and 13 × 13, respectively.
Note that the detail and location information of shallow-level feature layers is generally
abundant; however, with the gradual deepening of feature layers, detail information de-
creased, while semantic information increased. Owing to different filming angles and
filming distances, insulators exhibit different sizes in aerial images. It is difficult to recog-
nize insulators using only high-level semantic information, because shallow-level feature
maps may be ignored, leading to the loss of many details (e.g., the shape, color, and texture,
etc. of the insulators). Inspired by the works [49–51], in order to obtain different scales of
insulator feature information, a structure of multiscale feature fusion was proposed in this
work, as shown in Figure 3. High-level feature maps were fused with shallow-level feature
maps, and multiresolution feature maps were obtained for insulator prediction.

The structure of multi-scale feature fusion in this work was as follows: first, three-scale
effective feature maps (52 × 52 × 256), (26 × 26 × 512), and (13 × 13 × 1024) were extracted
by the network of YOLOv3-dense and recorded as large feature layer (LFL0), medium
feature layer (MFL0), and small feature layer (SFL0), respectively. Secondly, the small
feature layer (SFL0) was upsampled and then fused with the medium feature laayer (MFL0)
to obtain a 26 × 26 medium feature layer (MFL1). That medium feature layer (MFL1)
was upsampled and then fused with the large feature layer (LFL0) to obtain a 52 × 52
large feature layer (LFL1). That resultant large feature layer (LFL1) employed a feature
mapping module to obtain another large feature layer (LFL2) for scale 52 × 52 prediction.
Finally, the LFL2 was downsampled and then fused with the dense feature layer (DFL1)
from the output of DenseBlk2 to obtain a 26 × 26 medium feature layer (MFL2). MFL2
employed a feature mapping module to obtain a medium feature layer (MFL3) for scale
26 × 26 prediction. Meanwhile, MFL3 was downspampled and then fused with dense
feature layer 2 (DFL2) from the output of DenseBlk3 to obtain a 13 × 13 small feature layer
(SFL1). SFL1 employed a feature mapping module to obtain small feature layer 2 (SFL2)
for scale 13 × 13 prediction.

In this work, the final feature layers of three different scales (LFL2, MFL3, and SFL2)
were obtained from the proposed structure of FPN. Through the feature fusion operation,
the final feature layer for prediction had more semantic information and higher resolution,
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which made it more effective in predicting insulators of different scales. The detection
accuracy of different size insulators could be improved by FPN.

3.3. The Feature Mapping Module

In the network of YOLOv3, five convolutional layers were employed in previous
YOLO headers. To avoid gradient vanishing and enhance the semantic information of upper
and lower layers, feature mapping modules were adopted to replace the five convolutional
layers. Each feature mapping module contained two Residual units. The structures of
feature mapping modules are shown in Table 3. The convolution operations 1×1 and
3×3 can obtain information about different receptive domains in aerial images, and the
results of these convolution operations can be aggregated to obtain abundant semantic
information. Multiscale feature mapping modules provide different receptive domains
and abundant semantic information, which can be beneficial to insulator detection in aerial
images with complex backgrounds.

Table 3. The structure of feature mapping modules.

Type Filters Size Output

2×
Convolutional 128 1 × 1/1
Convolutional 256 3 × 3/1

Residual 52 × 52 × 256

2×
Convolutional 256 1 × 1/1
Convolutional 512 3 × 3/1

Residual 26 × 26 × 512

2×
Convolutional 512 1 × 1/1
Convolutional 1024 3 × 3/1

Residual 13 × 13 × 1024

4. Experiments Results and Discussion

The basic configuration of the PC used in this experiment was as follows: Intel(R)
Core(TM) i9-9900 K (Intel, Santa Clara, CA, USA), 3.6 GHz primary frequency of CPU,
32 G of RAM, NVIDIA GeForce GTX 3080 (10 G) graphics card (Intel, Santa Clara, CA,
USA), CUDA 11.1 and cuDNN 8.0.5 accelerated environments, with Visual Studio 2017
and Open CV 3.4.0 adopted as the visual studio framework. PC used the Windows 10
operating system from Microsfot, and the deep learning framework of the networks was
Dark-net [52]. The experimental environment is shown in Table 4.

Table 4. Experimental environment.

Parameters Configuration

CPU Intel(R) Core(TM) i9-9900 K, CPU/3.6 GHz, RAM/32 G
GPU Nvidia GeForce GTX 3080(10 G)

Accelerated Environment CUDA 11.1, cuDNN 8.0.5
Visual Studio Framework Visual Studio 2017, Open CV 3.4.0

Operating System Windows 10
Training Framework Dark-net

4.1. Dataset Preparation

Since there were not enough public datasets available for insulator detection, the
images used in this experiment were all captured by UAV. Based on the work of [53],
another 1400 aerial images of composite insulators were collected, and a novel dataset,
CCIN_detection, (Chinese Composite INsulator) was constructed. CCIN_detection con-
tained more common aerial scenes than the aerial images in the dataset CPLID (Chi-
nese Power Line Insulator Dataset) [54]. As shown in Figure 1, aerial images in dataset
‘CCIN_detection’ included diverse scenes.
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To increase the richness of the experimental dataset and avoid overfitting during
training, data augmentation techniques were applied in this work. Specifically, Gaussian
noise, blurring, and rotation were employed to transform the original image styles—and
then the Label-Image annotation tool was employed to produce labels. Finally, the dataset
‘CCIN_detection’ included 5000 aerial images in total; 3000 images were employed as a
training set, while the other 2000 were used for testing, as shown in Table 5. All the images
in dataset ‘CCIN_detection’ were sized to 416 × 416.

Table 5. The insulator dataset CCIN_detection.

Images Number Training Set Testing Set Image Size Insulators Number

5000 3000 2000 416 × 416 9900

4.2. Anchor Boxes Clustering

In order to achieve accurate detection of different scale insulators in aerial images, the
k-means++ clustering algorithm was employed in the CCIN_detection dataset to obtain
good anchor boxes in advance. The result is shown in Figure 5. The vertical axis indicates
the average intersection over union (IoU), and the horizontal axis shows the number of
clusters (k). It was determined that when k = 12, the corresponding average IoU = 75.09%,
and after k = 12, the average IoU increased slowly. Therefore, the chosen number k of
clustering centers for the dataset CCIN_detection was 12, and 12 cluster centers were
further divided into three different detection headers. The corresponding anchor boxes for
insulator multiscale prediction were obtained as follows: (43, 19), (87, 20), (59, 35), (123, 33),
(87, 56), (44, 126), (165, 60), (253, 44), (154, 104), (263, 73), (264, 111), and (260, 174). Among
them, (43, 19), (87, 20), (59, 35), and (123, 33) were the anchor boxes for scale 3; (87, 56),
(44, 126), (165, 60), and (253, 44) were the anchor boxes for scale 2; (154, 104), (263, 73),
(264, 111), and (260, 174) were the anchor boxes for scale 1, respectively.

Figure 5. Clustering result on dataset CCIN_detection.

4.3. Quantitative and Qualitative Analysis

To validate the effectiveness of the network YOLOv3-dense, the compared networks
(YOLOv2, YOLOv3, and Method in [45] with three-scale) and YOLOv3-dense network were
trained on the Dark-net framework, and the final networks used for insulator detection
were evaluated on the same Visual studio framework. In order to obtain a fair comparison,
all the networks were trained and then tested on the dataset CCIN_detection. The training
parameters are shown in Table 6. During the process of training, the initialization value of
the learning rate was 0.001; after the iterations of 25,000 and 32,000, the learning rate was
adjusted to 0.0001 and 0.00001, respectively.
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Table 6. Experimental parameters configuration.

Batch Size Subdivisions Momentum Decay Learning Rate

64 16 0.9 0.0005 0.001–0.00001

Angle Saturation Exposure Hue Iterations

0 1.5 1.5 0.1 38,000

True positive (TP), false positive (FP), true negative (TN), and false negative (FN)
are the most commonly used parameters in the binary classification model. Precision
and recall are defined in Formula (2) and Formula (3), respectively. The two-dimensional
precision-recall (P-R) curve is composed of the values of the precision and recall, and the
average precision (AP) is defined in Formula (4).

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

AP =
∫ 1

0
P(R)dR (4)

The P-R curves of four networks are shown in Figure 6. They were conducted on the
testing set of CCIN_detection. Based on the observations in Figure 6, the AP values of the
four networks were: YOLOv2 (83.43%), YOLOv3 (90.31%), method in [45] (91.70%), and
YOLOv3-dense (94.47%), respectively. It was found that the AP value of our proposed
network was 11% higher than that of YOLOv2, 4% higher than that of YOLOv3, and 2.8%
higher than that of the method in [45]. This indicates that the YOLOv3-dense network is
more accurate than the networks of YOLOv2, YOLOv3, and the method in [45].

Figure 6. The precision-recall (P-R) curves of four networks.

Running time was also employed to evaluate the performance of the networks, and
the experimental results are listed in Table 7. Specifically, the running time of the proposed
network YOLOv3-dense (8.5 ms) was only a little longer than those of YOLOv3 (8 ms)
and the method in [45] (8 ms). Therefore, our proposed network can run in real-time. The
precision values of the four networks were: YOLOv2 (87%), YOLOv3 (90%), method in [45]
(94%), and YOLOv3-dense (94%). The recall values of the four networks were: YOLOv2
(83%), YOLOv3 (91%), method in [45] (90%), and YOLOv3-dense (96%), respectively. It was
determined that the precision value of the YOLOv3-dense network was 7% higher than that
of YOLOv2 and 4% higher than that of YOLOv3. The recall value of the YOLOv3-dense
network was 13% higher than YOLOv2, 5% higher than YOLOv3, and 6% higher than the
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method in [45]. Consequently, as it achieved a good trade-off between precision, recall, AP,
and running time, our proposed network may be more advantageous than the compared
networks (YOLOv2, YOLOv3, and the method in [45]).

Table 7. The experimental results of different networks.

Networks Precision Recall AP Running Times (ms)

YOLOv2 87% 83% 83.43% 4.5
YOLOv3 90% 91% 90.31% 8.0

Method in [45] 94% 90% 91.70% 8.0
Our network 94% 96% 94.47% 8.5

Aerial images captured by UAV for insulator detection commonly include diverse
background interference, e.g., skies, rivers, power towers, vegetation, buildings, and so
on. To verify the effectiveness of the YOLOv3-dense network in different aerial scenes,
the experimental results on images with diverse background interference are shown in
Figure 7a–e. Specifically, each Figure shows the insulator detection results, including the
bounding box, prediction name (insulator) and predicted confidence. Figure 7a shows
experimental scenes with sky in the background. Sky interference is relatively simple,
and all of the insulators in the image were segmented accurately from the background.
Figure 7b shows experimental scenes with rivers in the background; similarly, these are
relatively uncomplicated, and all the insulators in the images were detected. Experimental
images with power towers in the background are shown in Figure 7c. Although these
were complex compared to the background interference of the sky or rivers, all insulators
were detected in these images. Figure 7d shows experimental scenes with vegetation in
the background. All insulators were accurately detected under the conditions of occlu-
sion and strong lighting. The experimental scenes with buildings in the background are
shown in Figure 7e. Although the backgrounds of these images were more complex than
power towers and vegetation, all the insulators were detected correctly. Consequently, the
YOLOv3-dense network exhibits good performance for insulator detection.

Due to the different shooting angles and distances in real-world applications, insula-
tors in aerial images are extremely diverse in appearance, shape, and size. To verify the
accuracy and robustness of the YOLOv3-dense network in multiscale detection, several
typical images with different backgrounds were employed to demonstrate the visualization
performances of the four networks: YOLOv2, YOLOv3, the method in [45], and YOLOv3-
dense, as shown in Figures 8–12. Specifically, Figure 8 shows the experimental results with
sky backgrounds. Three insulators were detected by YOLOv2 (Figure 8a), four insulators
were detected by both YOLOv3 (Figure 8b) and the method in [45] (Figure 8c). All except
for the vertical insulators were detected by YOLOv3-dense (Figure 8d). The experimental
results with river backgrounds are shown in Figure 9. YOLOv2 (Figure 9a) and YOLOv3
(Figure 9b) detected five insulators in the image, while six insulators were correctly detected
by the method in [45] (Figure 9c) and the YOLOv3-dense network (Figure 9d). Because
the shapes of bridges can be similar to insulators, it was hard for YOLOv2 to distinguish
insulators from the complex backgrounds. As a result, two bridges were misidentified as
insulators in Figure 9a. Figure 10 shows the detection results with power towers in the back-
ground. Although the color of insulators was similar to the background, all six insulators in
the image were detected by the YOLOv3-dense network (Figure 10d). YOLOv2 (Figure 10a)
detected four insulators, while YOLOv3 (Figure 10b) and the method in [45] (Figure 10c)
detected five insulators each. Compared to the method in [45], the YOLOv3-dense net-
work performed better in detection through occlusion. The experimental results using
images with vegetation in the background are shown in Figure 11. All eight insulators
were detected under strong lighting conditions by the method in [45] (Figure 11c) and
the YOLOv3-dense network (Figure 11d). Only six insulators were detected by YOLOv2
(Figure 11a) and seven insulators were detected by YOLOv3 (Figure 11b). Figure 12 shows
the detection results with buildings in the background Although the background was
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complex and the color of buildings was similar to the insulators, all insulators (six in total)
were correctly detected by the method in [45] (Figure 12c) and YOLOv3-dense network
(Figure 12d). Only four insulators were detected by YOLOv2 (Figure 12a) and YOLOv3
(Figure 12b). Consequently, based on the observations of Figures 8–12, the YOLOv3-dense
network achieved better performances in diverse scenes compared to the networks of
YOLOv2, YOLOv3, and the method in [45].

Figure 7. Experimental results with different scenes conducted by YOLOv3-dense. The first through fifth rows show
experimental scenes with backgrounds of sky, rivers, power towers, vegetation, and buildings, respectively.
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Figure 8. Experimental results of multiscale detection with sky backgrounds.

Figure 9. Experimental results of multi-scale detection with river backgrounds.
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Figure 10. Experimental results of multi-scale detection with power tower backgrounds.

Figure 11. Experimental results of multi-scale detection with vegetation backgrounds.
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Figure 12. Experimental results of multi-scale detection with buildings in the backgrounds.

It can be concluded that the YOLOv3-dense network could be utilized on UAV for
insulator inspection. The YOLOv3-dense network has advantages in occluded object detec-
tion, and can be extended into other component inspections in high-voltage transmission
lines (e.g., anti-vibration hammers, bird nests, etc.); moreover, it would be impactful to be
able to implement insulator detection in different weather conditions.

5. Conclusions

In this study, a modified network (YOLOv3-dense) was proposed for the detection of
different-sized insulators in aerial images with complex backgrounds. A novel insulator
dataset was constructed, which contained composite insulator images captured by UAV
in common aerial scenes. The modified network YOLOv3-dense combined YOLOv3 with
Dense-Blocks to optimize the feature extraction network. To enhance the accuracy and
robustness of different-sized insulator detection, a structure of FPN was proposed as
an addition to the YOLOv3-dense network. Multilevel feature mapping modules were
adapted to the YOLOv3-dense network to obtain abundant semantic information of the
upper and lower layers. The networks of YOLOv3-dense, the method in [45], YOLOv3,
and YOLOv2 were trained and tested on the constructed dataset. Experimental results
demonstrated that the AP value of the YOLOv3-dense was 2.8%, 4%, and 11% higher than
that of the method in [45], YOLOv3 and YOLOv2, respectively. In addition, the precision
values of the networks YOLOv3-dense, the method in [45], YOLOv3, and YOLOv2 were
94%, 94%, 90%, and 87%, respectively—and the recall values were 96%, 90%, 91%, and 83%,
respectively. The results confirmed that the proposed network is superior to the method
in [45], YOLOv3 and YOLOv2. Although the running time of the proposed network
(8.5 ms) is slightly higher than that of YOLOv3 (8 ms), the proposed network can still be
used to detect insulators in real-time. Consequently, the proposed network achieved good
performance in different-sized insulator detection amid diverse background interference.

For a future study, the proposed model will be used for UAV-based real-time inspection
of transmission lines.
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