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Abstract: The paper presents considerations concerning the transfer of random errors from the input
to the output of the Discrete Wavelet Transform (DWT) algorithm. The concept of determining
an uncertainty of its output data based on the probabilistic error description has been presented.
The DWT is discussed as the product of the vector of input quantities and the matrix of algorithm
coefficients. Calculations of the uncertainty of a single output result of the algorithm are described
with assumption that the input quantities are burdened by random errors of known distributions.
Theoretical considerations have been verified by simulation experiments using the Monte Carlo
method. Determining the uncertainty at the DWT output is possible due to the specific properties of
transferring random errors by linear and additive algorithms.

Keywords: digital signal processing; wavelet transform; error propagation; uncertainty; algorithm
coefficients identification

1. Introduction

Currently, digital data processing algorithms are an indispensable part of most mea-
surement systems [1]. In order to determine whether a measuring chain fulfills its task
correctly, it is necessary to know the metrological properties of every hardware/software
component. Due to the large complexity, the analysis of properties of measuring chains
containing elements of digital data processing is often omitted in many systems focused on
wavelet transform applications [2,3]. Analytic uncertainty analysis methods such as these
described in [4,5] are too complex and time-consuming to be used universally in common
measuring chain applications. However, the method described in the paper can be used in
most cases in which the functioning of the algorithm is not fully known and the algorithm
itself becomes a kind of “black box” [6].

This article will describe the general signal processing structure, bases of wavelet
transform algorithm and its matrix. After introducing this elements-uncertainty calcula-
tion method will be described. To prove the validity of described method Monte Carlo
simulations will be presented. Finally, the presented method will be compared with other
methods to demonstrate its advantages, and some examples of its applications will also be
presented.

To consider the error propagation, the general structure of a measuring chain shown
in Figure 1 is taken into account.

In a general case, the numerical operation performed by a data processing algorithm
can be presented in the matrix form [7]. For this purpose, it is necessary to identify the
algorithm coefficients. This procedure allows us to analyze the properties of the algorithm
without knowing its exact structure. The specificity of the Discrete Wavelet Transform
(DWT) algorithm is that its operation depends on the choice of the parameter of the
filter bank [8,9]; therefore, the analytical approach to the problem under consideration
becomes extremely difficult [10]. In the case of an analytical approach, any modification
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of algorithm parameters such as mother wavelet, decomposition level, number of input
samples, requires problem re-analysis. This situation is problematic in a measuring chain
design because these parameters are changed in the design process and the uncertainty
analysis must be repeated. The method described in this paper enables the analysis of any
combination of the filter bank and requires only identification of the algorithm coefficients matrix.

Analog

Processing

S/H

ADC
DWT

s(t) y(t) x(n) X(n)

signal

Figure 1. The general structure of the analyzed signal processing chain.

2. Wavelet Transform Algorithm

The wavelet transform (WT) algorithm is a tool enabling the analysis of signals by
presenting them using a scaled and time-shifted function called a “mother wavelet” [11].
This technique provides the possibility to analyze the signal simultaneously in the time
and frequency domain, similar to the “Short-time Fourier Transform”. Generally, the WT
can be expressed by the following equation:

ca,b =
1√
a

∫ ∞

−∞
x(t)ψ

(
t− b

a

)
dt, (1)

in which c is a WT coefficient, a is the scale parameter, b is the shift (position) parameter
and ψ–mother wavelet.

Equation (1) describes a filter whose parameters and input window depend on the
scale parameter a and the time shift parameter b. The scale parameter a is related to the
frequency. The higher the value of the parameter (a > 1), the more “extended” the wavelet
becomes, which corresponds to the lower frequency values. In the case of smaller values
of the coefficient (a < 1), the wavelet is “compressed”, which corresponds to the higher
frequency of harmonics. The time shift parameter b sets the time window for the analyzed
input signal.

In the case of continuous wavelet transform (CWT), the scale and shift parameters
can assume any value, which makes it possible to determine an infinite number of trans-
formation coefficients. By entering the limitation, where a = 2k, b = n2k and k, n ∈ N,
the equation describing the DWT is obtained. This is necessary to limit the number of
transform coefficients to a value sufficient to correctly reconstruct the processed signal.

The selection of the mother wavelet is a key issue when using the WT algorithm. Many
different kinds of wavelets are described in publications, depending on their specificity and
properties, they are used to analyze and process measuring signals. The paper presents the
wavelets of the “Daubechies” family (“db”) [12] and their derivatives “Symlet” (“sym”)
(used, among others, for image and sound analysis [13]) as well as wavelets of the “Spline”
family [14] (used, among others, for the analysis of the condition of machine mechanical el-
ements [15]). In addition, a concept using double-density decomposition (“dden”) [16] will
be analyzed. This concept is often used to remove noise from the measured signal [17]. The
selection of wavelets aims to show the universality of the method presented in this paper.

3. Matrix Form of the DWT Algorithm

The general purpose of the algorithm under consideration is to convert the input
quantity given as series of samples x(n), where n is an input sample number, into series of
samples of the output quantity denoted as X(m), where m is an output sample number.
The discussed algorithm operates on a sequence of N samples of the input quantity and
returns the sequence of M values of the output quantity. Therefore, the algorithm can be
described by the general matrix equation [6,7]:
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X(0)
X(1)

...
X(M− 1)

 =


a0,0 a0,1 · · · a0,N−1

a1,0
. . .

...
...

. . .
...

aM−1,0 · · · · · · aM−1,N−1

 =


x(0)
x(1)

...
x(N − 1)

. (2)

By introducing designations, where X is a vector of output quantities, x is a vector of
input quantities and A is a matrix of algorithm coefficients, Equation (2) can be presented
in the form:

X = A · x. (3)

By substituting vector x into the input of the algorithm and values of subsequent
elements of this vector are determined in accordance with the equation:

x(n) =
{

1 for n = i
0 for n 6= i

}
, (4)

the coefficients of the i-th column of matrix A can be identified. By executing N iterations
(for k = 0, 1, . . . , N − 1), the values of all elements of matrix A are obtained [18].

This method eliminates the need to know the exact structure of the DWT algorithm
and enables uniform analysis for any set of filter banks.

4. Relationship between Data Uncertainty at the Input and Output of the Algorithm

According to the considerations presented in [19], it is possible to determine the
relationship between error variances at the output and at the input of the algorithm
presented in the matrix form. A single output result of the algorithm X(i) for the i-th row
of the matrix of coefficients A is described by the equation:

X(i) = ai,0x(0) + ai,1x(1) + . . . + ai,N−1x(N − 1). (5)

Random error appearing at the output of the algorithm in the i-th step of its implemen-
tation can be presented as a linear combination of the input random error and algorithm
coefficients:

eX(i) = ai,0ex(0) + ai,1ex(1) + . . . + ai,N−1ex(N − 1). (6)

By executing the algorithm repeatedly, a set of output errors with variance σ2
X is

obtained. This is related to the variance σ2
x of the set of input errors by the relationship:

σ2
X = a2

i,0σ2
x + a2

i,1σ2
x + . . . + a2

i,N−1σ2
x , (7)

which is obtained assuming that the values of the input error are not correlated with each
other. Denoting the sum of the squares of the i-th row of matrix A as:

N−1

∑
j=0

a2
i,j, (8)

the relationship between the variance of random error at the output and at the input of the
algorithm takes the form:

σ2
X = A2

i σ2
x . (9)

Assuming that each subsequent value of the algorithm output quantity can be con-
sidered as a result of the single-point algorithm (5) [7,18,19], the shown relationship is
determined separately for each result of the X vector, taking into account the corresponding
row of the A matrix.
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According to the central limit theorem, regardless of the distribution of input errors, it
can be assumed that the error distribution at the output of the algorithm will have (with
an acceptable approximation) the shape of the normal distribution [20]. Assuming the
uncertainty at a 95% confidence level, a standard deviation can be used to determine
it [7,19,20]:

U(Xi) = cnσx = cn Aiσx, (10)

where cn = 1.96 is a coverage factor.
Thus, it is possible to define the uncertainty transfer coefficient for various types of

random errors as:

ki =
U(Xi)

U(x)
. (11)

For example, for input random errors with uniform distribution (coverage factor
cu = 1.65 at 95% confidence level), the uncertainty transfer coefficient will be:

ki =
U(Xi)

U(x)
=

cn Aiσx

cuσx
= 1.19Ai, (12)

while for input errors described by a normal distribution it is:

ki =
U(Xi)

U(x)
=

cn Aiσx

cnσx
= Ai. (13)

On the basis of the presented information, it can be observed that knowledge of the A
matrix coefficients and the parameters of input uncertainty sources allows us to determine
the uncertainty of the output quantities of the algorithm and as a result, the uncertainty of
the output quantities of the whole measuring chain.

In the case of wavelets from the “db” and “sym” family, regardless of the other
parameters of the decomposition process, the value of the coefficient Ai for each row of
matrix A is equal to 1 [12]. This means that the algorithm transfers random errors which
have a normal distribution with the coefficient ki = 1. For the other considered wavelets,
the value of the coefficient Ai depends on the number of iterations of the decomposition
process, the length of the input vector and on the index of the output value of the algorithm.

5. Propagation of Normal Distribution Error

White noise is an example of an error source with a normal distribution. Knowing
the noise parameters and assuming that it is the dominant source of error, it is possible to
determine the uncertainty of a sample of the algorithm output quantity X(m) on the basis
of Equation (13).

In order to perform the appropriate calculations, it was assumed that at the input of
the DWT algorithm is given a vector consisting of N = 1024 samples of the input quantity.
Table 1 presents the values of the uncertainty transfer coefficient ki for the 50th element of
the DWT algorithm output vector, depending on the mother wavelet and the number of
decomposition levels.

Table 2 shows the uncertainty values U(X) calculated and UMC(X) obtained by
Monte Carlo method for the 50th element of the DWT output vector in the case of input
data with added white noise with variance σ2 = 0.1(U(x) = 0.6198) for exemplary mother
wavelets and decomposition levels. In order to verify the correctness of the calculated
uncertainty values, the Monte Carlo method was used and 1,000,000 iterations of calculating
the value of the output quantity were made, then the uncertainty was determined based
on the histogram of the error. Figure 2 shows an example of the input and output quantity
errors histograms for “spline4:4” wavelet and four levels of decomposition.
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Table 1. Values of the uncertainty transfer coefficient ki of the Discrete Wavelet Transform (DTW)
algorithm depending on the type of wavelet and the number of decomposition levels for errors which
have normal distribution.

Decomposition Level
1 2 3 4

db8 1
sym8 1

spline4:4 2.531 4.014 4.461 4.461
spline8:8 17.36 319.4 293.6 293.6

dden1 0.863 0.862 0.559 0.656
dden2 0.863 0.862 0.554 0.660

Table 2. Examples of the output uncertainty values (U(X)—calculated; UMC(X)—simulated) in the
case of added white noise with variance σ2 = 0.1(U(x) = 0.6198).

Wavelet Decomposition Level Calculated U(X) Simulated U MC(X)

dden1 6 0.3465 0.3469
spline4:4 4 2.4875 2.4844

db8 8 0.6198 0.6176

Figure 2. Histogram of the (a) input quantity error, (b) output quantity error, wavelet “spline4:4”, four levels of decomposition.

6. Propagation of Uniform Distribution Error

An example of an error with a uniform distribution is the quantization error of the
ADC. Assuming that a 10-bit converter (B = 10) with the processing range V− = 0 V and
V+ = 5 V has been used, the quantum value can be calculated as q = (V+ − V−)/2B =
0.00488 V. In this case, the uncertainty of the algorithm input data is U(x) = 0.95 · q/2 =
0.0023 V and the standard deviation: σx = U(x)/cu = 0.0014 V. Assuming that the
quantization error of the ADC is dominant in the situation under consideration, it is
possible to determine the uncertainty of subsequent elements of the vector of the algorithm
output quantity on the basis of Equation (12). Table 3 presents the values of the uncertainty
transfer coefficient ki for the 50th element of the DWT algorithm output vector, depending
on the mother wavelet and the number of decomposition levels.

Table 4 shows the uncertainty values U(X) calculated and UMC(X) obtained by
Monte Carlo method for the 50th element of the DWT output vector in the case of input
data with added quantization noise with variance σ2 = 0.2× 10−5(U(x) = 0.0023) for
exemplary mother wavelets and decomposition levels. In order to verify the correctness
of the calculated uncertainty values, the Monte Carlo method was used and 1,000,000
iterations of calculating the value of the output quantity were made, then the uncertainty
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was determined based on the histogram of the error. Figure 3 shows an example of
the input and output quantity errors histograms for “spline4:4” wavelet and four levels
of decomposition.

Table 3. Values of the uncertainty transfer coefficient ki of the DTW algorithm depending on the type
of wavelet and the number of decomposition levels for errors with uniform distribution.

Decomposition Level
1 2 3 4

db8 1.19
sym8 1.19

spline4:4 3.012 4.777 5.309 5.309
spline8:8 20.66 380.1 349.4 349.4

dden1 1.027 1.026 0.665 0.781
dden2 1.027 1.026 0.659 0.785

Table 4. Examples of the output uncertainty values (U(X)—calculated; UMC(X)—simulated) in the
case of added errors with uniform distribution and variance σ2 = 0.2× 10−5(U(x) = 0.0023).

Wavelet Decomposition Level Calculated U(X) Simulated U MC(X)

dden1 6 0.00183 0.00174
spline4:4 4 0.01318 0.01206

db8 8 0.00276 0.00277

Figure 3. Histogram of the (a) input quantity error, (b) output quantity error, wavelet “spline4:4”, four levels of decomposition.

7. Multiple Error Sources

In the case of multiple error sources, the presented method also can be applied. In
the first step, there is a need to calculate the input quantity error distribution parameters:
variance and coverage factor. These parameters can be calculated analytically [19] or found
using the Monte Carlo method [21]. The analytic method can be easily applied in the
case of standard error distributions while the Monte Carlo method is more universal, but
requires time to compute.

Assuming a measurement chain containing the AD converter described in the previous
chapter and an analog part where the white noise is present, the Monte Carlo method can be
applied to find the parameters of input values error distribution. In this case, the sources of
errors have uniform distribution with coverage factor cu = 1.65, variance σ2 = 0.2× 10−5

and normal distribution with coverage factor cn = 1.96, variance σ2 = 0.15× 10−5. Because
the considered error distributions are standard, the analytic method described in [19] can
also be easily applied, but in order to emphasize the universality of the presented method,
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the Monte Carlo method is taken under consideration. In the case of more than two error
sources, the analytic method might be not applicable.

Figure 4a presents a histogram of the input quantity error in the described case. As-
suming the uncertainty at 95% confidence level according to the data presented in Figure 4a,
the variance of input quantity error σ2 = 0.35× 10−5, coverage factor ci = 1.91 and uncer-
tainty U(x) = 3.57× 10−3. According to Equations (10) and (11) and the calculated input
error distribution parameters, the uncertainty transfer coefficient for i-th output quantity
can be defined as:

ki =
U(Xi)

U(x)
=

cn Aiσx

ciσx
= 1.026Ai, (14)

Table 5 presents the values of the uncertainty transfer coefficient ki for the 50th element
of the DWT algorithm output vector, depending on the mother wavelet and the number of
decomposition levels. Table 6 shows the uncertainty values U(X) calculated according to
Equation (10) and obtained by the Monte Carlo method for the 50th element of the DWT
output vector in the described case. Figure 4b shows an example of the output quantity
error histogram for “spline4:4” wavelet and four levels of decomposition.

Table 5. Values of the uncertainty transfer coefficient ki of the DTW algorithm depending on the type
of wavelet and the number of decomposition levels for two error sources.

Decomposition Level
1 2 3 4

db8 1.026
sym8 1.026

spline4:4 2,597 4.118 4.557 4.577
spline8:8 17.81 327.7 301.2 301.2

dden1 0.885 0.884 0.574 0.673
dden2 0.885 0.884 0.568 0.677

Table 6. Examples of the output uncertainty values U(X) in the case of two error sources.

Wavelet Decomposition Level Calculated U(X) Simulated U MC(X)

dden1 6 0.00205 0.00206
spline4:4 4 0.01470 0.01474

db8 8 0.00366 0.00367

Figure 4. Histogram of the (a) input quantity error, (b) output quantity error, wavelet “spline4:4”, four levels of decomposition.
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8. Results Interpretation

In the case of “db” and “sym” wavelet family, propagation of the random errors is
always the same regardless of any other algorithm parameters. For the “dden” wavelet
family, the uncertainty transfer coefficient ki depends on the decomposition level. For
decomposition levels 2 and 4 it is about 1 (1.027, 1.026), for higher levels, 6 and 8, it is less
than 1. This means that for this family of wavelets, random errors are not amplified from
input to output of the DWT algorithm, and for higher levels of decomposition, these errors
are suppressed. In case of “spline” wavelet families uncertainty transfer coefficient ki is
always more than 1, and is strongly related to the number of decomposition iterations and
the wavelet form. It should be mentioned that the uncertainty transfer coefficient ki in most
cases changes for different elements of the output vector, because the coefficient A depends
on a single row of the A matrix.

It is very important to remember that values presented in this article are results for a
single output quantity. To consider other outputs quantities uncertainty, coefficients ki for
all other i values must be calculated in the described way.

9. Comparison with Other Methods

Currently, the two most common methods used to determine the uncertainty of the
output quantities in the case of measurement chains containing the DWT algorithm can be
mentioned in the literature. These include the analytical methods described, e.g., in [4,5,22]
and the Monte Carlo method, which is one of the most universal methods of uncertainty
determination [21].

Analytical methods require precise knowledge of the applied mother’s wavelet, there-
fore any change of this parameter is connected with the necessity to perform a repeated
analysis. Moreover, these methods are complex and time-consuming. Usually, the user will
use ready-made tools implementing the DWT algorithm, such as Matlab or GNU/Octave,
so the exact form of the algorithm may not be fully known. Hence, in practice, analytical
methods are relatively rarely used.

The Monte Carlo method turns out to be more universal and easier to apply. For
this method, it is not necessary to know the structure of the algorithm or the form of the
used mother’s wavelet. However, it requires a lot of computational expenditure and the
preparation of an appropriate simulation, which assumes the presence of all considered
error sources. Two measuring chains should then be designed, the first one-ideal (without
errors) and the second one, in which these errors occur. After the simulation, the algorithm’s
output uncertainty can be estimated based on the histogram of errors.

It should be noted that in the case of both discussed methods, the analysis will concern
a single output quantity of the measurement chain. In real measurement chains, the control
decision is made on the basis of several quantities, therefore an uncertainty analysis should
be performed for each of them. In the case of the author’s method presented in this paper,
these inconveniences do not occur. In order to determine the uncertainty of any output
quantity, it is only necessary to calculate the appropriate ki coefficient for that quantity
and apply Equation (11). Possible changes of the DWT algorithm parameters require only
determine the new values of the matrix A, as shown earlier dependencies. Compared to the
analytical method, the approach presented by the authors does not require a complicated
analysis of the selected mother’s wavelet, knowledge of the form of the algorithm, or its
numerical structure. Moreover, its use is not time-consuming. On the other hand, unlike
the Monte Carlo method, a possible change of the algorithm parameters does not require
repeating time-consuming simulations.

However, the presented method has a few limitations. In order to use it, it is necessary
to know the parameters of the error distribution at the algorithm input. In the case of many
sources of error, these parameters can be determined by the analytical method [19] or by
simulation, as shown in this paper. Moreover, the error values of all input quantities cannot
be correlated with each other [7].
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10. Examples of Applications

As the wavelet transform is applied to signal processing and analysis in many areas,
the presented method can find a variety of applications. The literature describes many
applications containing the DWT algorithms [2,3,13,15], however, they do not include the
metrological analysis necessary to determine the properties of the measurement chain. This
may be due to the drawbacks of the previously discussed methods of uncertainty analysis
of the DWT algorithms.

In the case described in [15], the uncertainty of the analog part of the measurement
chain should be determined and then the uncertainty of the input quantities of the wavelet
transformation algorithm should be determined taking into account the digital part of the
measurement chain. This example shows the applicability and advantages of the developed
method. It should be emphasized that the mentioned application contains solutions for
several combinations of parameters of the DWT algorithm in order to determine which
set of parameters is the most appropriate. In this case, the universality and speed of
implementation of the developed method become very valuable advantages.

Another example of the application of the described method may be sound processing
measurement chains, such as speech recognition algorithms or other applications described,
among others, in [2]. In this case, the metrological analysis must take into account the pa-
rameters of the analog part of the measurement chain: the converter (microphone), cabling,
possible filters and the digital part: the A/D converter, additional filtering algorithms
or initial signal processing. The determined parameters of the discrete transformation
algorithm input quantities errors can be used to determine the uncertainty of the output
quantities of the analyzed measurement chain. A similar situation occurs in the case of
image analysis algorithms [9,11].

11. Conclusions

The presented method of calculating the uncertainty of the DWT algorithm output
quantities, described for the universal case in [6,7,18], gives results similar to those obtained
in the simulation. It allows us to determine the metrological properties of DWT algorithms
for any filter bank set and any number of decomposition levels.

The described method allows us to determine the uncertainty of the output quantity
of the DWT algorithm related to the corresponding frequency range and time interval. This
method assumes that the parameters related to the sample are ideal and any processed
errors are reflected in the sample values. The uncertainty in determining the frequency
range or the time interval is therefore included in the uncertainty of the value of the output
quantity [6,7,18]. It unifies the process of determining the uncertainty of the input quantity
in the case of various sources of errors and the analysis of their impact on the uncertainty
of the output quantity.

In order to determine the uncertainty in case of several types of errors, the analysis
should be extended by determining the convolution of the probability density functions
or application of a reductive interval arithmetic [19,23]. For errors with a non-standard
probability distribution, the presented method is not directly applicable. In this case, the
Monte Carlo method can be used [21,24] to determinate input error distribution parameters
in order to apply the presented method.
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Abbreviations
The following abbreviations are used in this manuscript:

WT Wavelet transform
CWT Continuous wavelet transform
DWT Discrete wavelet transform
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