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Abstract: As photovoltaics technologies have emerged as one of the most promising renewable
energy resources in urban environments, monitoring and maintaining of such systems have gained
significance. In order to support reliable system operation during the projected in-field operation
lifetime, effective strategies for identifying potential problems in photovoltaic systems operation are
needed. In this paper, novel methods for the identification of degrading effects in the operation of
neighboring photovoltaic systems are presented. The proposed methods are applicable for identifying
panel aging properties, soiling effects, and the operation of photovoltaic systems under different
shading scenarios. Since the proposed methods are based on the cross-correlation of the operation of
neighboring systems, they are particularly suitable performance assessment in urban environments.
The proposed identification methods are integrated according to the adopted fog computing model,
providing a scalable solution capable of uniform integration into the distributed applications for
monitoring and maintenance of photovoltaic systems in urban areas. The details regarding the
implementation of the identification methods in the form of data processing services and service
operation and dependencies are also provided in this paper. The identification methods, integration
concept, and related service operation are verified through the presented case study.

Keywords: photovoltaic systems; degrading effects; fault detection; solar irradiance; fog computing

1. Introduction

In recent years, renewable technologies have become the main factor in the trans-
formation of the global energy market, supporting aspirations for achieving sustainable
development and low carbon emissions, while at the same time improving overall popula-
tion health and worldwide energy access. The transition from climate-damaging fossil fuels
towards clean forms of energy has enabled lower carbon dioxide (CO2) emissions, and
therefore a reduction of air pollution, especially in urban areas. By the estimations of the
International Renewable Energy Agency (IRENA), it is to be expected that CO2 emission
reductions will reach 21% by the year 2050, which could be achieved by deploying rapid
solar photovoltaic (PV) technology in combination with deep electrification [1]. Addition-
ally, solar PV has the potential to supply roughly 25% of the global electricity demand by
2050, placing PV systems as the second largest renewable energy resource [1,2].

Solar PV systems are the most promising technologies for utilizing renewable energy
resources in urban environments due to their high rooftop installation capacity. Moreover,
it has been estimated that the global installed capacity for solar energy production will
reach 337 GW in 2030 and 1089 GW in 2050 [3,4]. Consequently, there have been significant
efforts from industry and research groups to improve the efficiency, reliability, maintenance,
and fault diagnosis capability of PV systems. Recently, PV technology research has been
focused on the increase of performance reliability rather than on system efficiency [5]. There
have been a number of international initiatives, highlighting the importance of advanced
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performance monitoring and reliability, notably by the International Energy Agency (IEA),
Solar Europe Industry Initiative (SEII), and Sandia National Laboratories [6,7]. Nonetheless,
increasing PV system lifetime outputs by improving the reliability and service performance
would lead to the reduction of electricity costs [5,6].

Following the above points, energy losses, equipment damages, and safety hazards
could be prevented by using real-time performance monitoring [8]. Additionally, the
prediction of such defects directly leads to better functioning and lower costs for operation
and maintenance services. In order to prevent defects and to maintain proper quality of
operation, one of the key challenges is to firstly detect and then identify and quantify
underperformance in the operation of a PV system [9]. Especially in urban environments,
external factors such as climatic conditions, surrounding objects, installation properties,
and geographical locations directly influence the outputs of the PV system. The majority of
these effects instantly diverge the PV energy production levels in relation to the available
energy from solar irradiation [10]. Recent studies have shown that instant losses of energy
production could increase up to 75% due to the effects of partial shading [11,12], while
annual energy losses could be in the range of 10–20% [13] solely from this effect. One
should consider that in urban environments, distributed PV installations have a high
disparity of PV modules, since they consist of many small PV generation units spread out
over a particular area. In addition to the fact that these units differ from one another in
their production and installation properties (size, components, orientation, quality, etc.)
they potentially operate under different weather conditions [14]. Aside from the identified
issues related to the monitoring of the installed PV systems’ operational properties, there
are many challenges regarding their integration in smart city environments. Therefore, the
scope of this paper is directed toward both identified issues.

This paper presents methods for the identification of different degrading effects in
the operation of PV systems and the framework for integrating such methods in large-
scale urban scenarios. The presented methods rely on the developed methodology, which
addresses different temporal, physical, and operational PV system properties, providing a
reliable and robust estimate of PV system performance [11].

In this paper, the presented methodology and the related implementation model based
on the fog computing approach provide several contributions, as follows:

• Methods for PV system performance assessment based on the temporal analysis of PV
system performance metric parameters enable automated detection and identification
of different degrading effects causing system faults and underperformance;

• Despite the heterogeneity of PV systems and their properties, the presented methodol-
ogy uniformly integrates and utilizes underlying methods used for solar irradiance
measurement or assessment;

• The proposed performance assessment methodology is seen as a part of automated
monitoring and maintenance services and supplementary to periodic on-site inspec-
tions;

• The adopted tiered architectural style and fog computing approach enable a scalable
solution for the seamless integration of large numbers of distributed PV systems in
urban environments, which is in line with the requirements of smart city concepts;

• Cross-correlation-based services and corresponding system-level parameters enable
the discovery of erroneous measurements and sensor and operational faults, improv-
ing the reliability of information and the accuracy of performance assessment.

This paper is outlined as follows. In Section 2, a review of the most recent studies
and methods for monitoring and assessing PV system performance are provided. The
details of the adopted background methodology, focusing on the introduced relevant
parameters for PV systems performance assessment, together with a description of services
for automated detection of PV faults, are provided in separate subsections in Section 3. The
system architecture and deployment process for key services are also given in Section 3.
Section 4 provides information on the conducted case study, involving the investigation
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of PV systems in the neighborhood area, followed by analysis of the results. Section 5
includes concluding remarks and the directions for future work.

2. Related Work

Monitoring the performance of PV systems during their operational lifetimes is a
challenging task due to the diversity of the system components, their runtime properties,
and a variety of operational system conditions. Therefore, several industries and research
groups have made significant efforts to identify the main issues and to define a suitable
approach for handling such complex and challenging tasks. This section provides an
overview of state-of-the-art concepts and methodologies for detecting and identifying
degrading effects that influence photovoltaic system underperformance.

In urban environments, the underperformance of PV operations can be caused by
various system-related or environment-related sources. Classified by the origin of the
sources, the performance degradation can be related to the physical system properties (con-
nection faults, mechanical defects, aging, manufacturing tolerances, etc.) or can result from
operational exposure to shading, soiling effects, or atmospheric conditions [11,12,15–18].
In previous studies [19,20], the types and causes of PV systems failures, as well as the
different methods proposed in the literature, have been provided.

Recent studies [5,21,22] have intended to provide an overview of the analytic data meth-
ods for detection and classification of failures based on acquired performance data, which
are used by the research community and industry. The focus of such research is to improve
system reliability and longevity through continuous real-time PV monitoring, since the fault
detection methods are indispensable to PV system reliability. Furthermore, accurate identifica-
tion of failures and operational problems in PV systems operation is crucial for reliable power
production, minimizing power losses and reducing maintenance costs.

In order to detect faults in operation, previous studies [11,23–30] have proposed meth-
ods based on the comparison of the performance results for a group of PV systems, whereby
the estimation of the expected system output is performed using the gathered environmen-
tal and weather condition parameters. Comparison-based performance assessments utilize
time-series data for an individual PV system power output [11]. The results have shown
high dependence of comparison results on particular PV panel operation and weather con-
ditions, as well as their applicability in performance assessment for a group of neighboring
PV systems. Similarly, in work presented in [31], the available PV system datasets with
power measurements were compared to the reference station outputs, thus allowing the
detection of their potential underperformance. These methods are highly dependent on
the locations of the observed and referenced stations, particularly on the differences in
meteorological conditions at those locations. Beside strict comparisons involving reference
systems, certain studies have involved the cross-correlation of operations inside a group of
neighboring systems [23]. In order to quantify the correlation results numerically, a novel
performance index was introduced. The index parameter, together with the PV system
power output, has been used for faults detection. On the other hand, recent studies have
introduced automatic fault detection procedures that are not dependent on environmental
parameters [14,28,32]. The developed methods do not require any specific monitoring
hardware or the input of any operating conditions data, as they only require the energy
production data. The development of system performance indicators by comparing the
energy production data for neighboring PV systems enables automatic fault detection, in
particular for systems located in the neighboring locations, and thus with similar environ-
mental conditions. The study presented in [8] analyzed different aspects that are crucial for
the development of effective monitoring systems for small- and medium-scale PV plant
applications, such as sensing, acquisition, data storage, and analytics.

An analytical method is used as a basic approach for the detection of PV system under-
performance in many studies [11,14,23,25–28,30]. In some cases [31,33,34], the proposed
methodology is based on the comparison of gathered measurement information from the
PV system with the values obtained from an adopted reference model. The detection of
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system underperformance occurs when the predefined difference values are reached. Other
studies have proposed alternative methods based on hardware redundancy [8], as well as
the combination of standard statistical models with artificial intelligence techniques [35,36],
specifically machine learning algorithms [37] and neural network algorithms [38]. The
developed fault detection algorithms depend on the variations of the voltage and the power
of the PV systems; thus, they are capable of detecting faulty PV modules and different
conditions.

As presented, most fault detection methods highly depend on the input parameters
derived from the installed PV system and its operating conditions. Common problems
that occur and often lead to miscalculations, and therefore to undetected faults, include
inaccuracies in the metadata from the PV system, unreliable solar irradiation data, and
thermal losses due to different weather conditions [14,39]. In [39–42], based on the moni-
toring of several hundred PV systems, it was determined that the fault detection methods
used experienced limitations due to unreliable input data. However, the methods based
on performance analysis enable automatic, real-time detection, thus optimizing time con-
sumption, with acceptable maintenance costs [5].

On the other hand, more studies have been conducted on PV system fault detection
based on imaging techniques [43–46]. These techniques rely on different types of imag-
ing, including infrared thermography, ultraviolet fluorescence, photoluminescence, and
electroluminescence. The focus of such approaches is on the visual assessment of the PV
systems, despite the need for additional equipment and time for image processing. The
details of the different types of methods for PV system fault detection and their advantages
and disadvantages are given in the Table 1. The methods presented in this paper are
cross-correlation analysis methods with environmental sensing. However, these methods
have improved properties, since they do not depend on the meteoritical conditions.

Table 1. Summary of the different types of methods used for PV system fault detection in the literature.

Type of Analysis Reference Advantages Disadvantages

Cross-correlation analysis
with environmental

sensing
[11,24–30]

Real-time fault detection and
identification/automatic fault detection

Applicable to distributed energy
resources (DER)

Low processing requirements
Low hardware requirements
Performance quantification

Highly sensitive to
meteorological conditions

Limited fault type identification
Inability to identify multiple faults

Performance analysis
without environmental

sensing
[14,21,28,32]

Automatic fault detection
Applicable to PV fields

Low processing requirements
Low hardware requirements
Performance quantification

Limited applicability to DER
Limited fault type identification

Inability to identify multiple faults

Reference-model-based
analysis [31,33,34]

Real-time
automatic fault detection

Low processing requirements
Low hardware requirements
Performance quantification

Highly sensitive to
meteorological conditions

Limited applicability to DER
Limited fault identification

Sensitive to the variations of model
parameters

Methods based on
artificial intelligence

techniques
[35–38]

Ability to diagnose multiple faults
Near-real-time detection

Performance quantification

Periodical model training required
Sensitive to the variations of

model parameters
Highly limited applicability to DER

High processing requirements
High hardware requirements

Time-consuming

Methods based on
imaging techniques [43–46]

Capability for comprehensive fault diagnosis
Ability to diagnose multiple faults

Physical fault inspection

High processing requirements
High hardware requirements

Highly limited applicability to DER
No performance quantification

Time consuming
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In addition to the overview of the relevant findings regarding the theoretical, analytical,
and technological background used in measurements and data processing, our approach
also addresses integration-related issues. The integration model applicable in our scenario
needs to comply with hierarchically organized data transport supported through layered
or tiered architecture capable of integrating different types of end-devices and consumer-
oriented services. Our approach perceives the distributed energy resources (DER) management
and maintenance operations as a part of a more complex distributed system.

There are many studies available in the literature addressing the general challenges
regarding the integration and application of renewable energy sources in urban and remote
microgrid systems [47–55]. Although most studies are mainly focused on energy-related in-
tegration issues, some studies [56,57] outline the prospects for other industrial, commercial,
and household applications. Control and management techniques and methods applicable
for large-scale photovoltaic power stations were identified in [58] as essential. In this regard,
the system’s ability to support third-party access for custom application development was
found to be a requirement of the PV system monitoring equipment in order to support a
diversity of applications and services. However, in order to integrate such applications and
services, the system-level design must involve a scalable architectural approach capable
of handling large-scale data processing under real-time or near-real-time constraints. As
an extension of cloud-based computing, the fog computing approach introduces many
benefits to these requirements [59]. The idea of fog computing is to add a hierarchy of
elements between the core cloud services and network edge devices to meet the challenges
regarding real-time data processing, scalability, reliability, security, and high performance
in an open and interoperable way [60]. The fog-based approach at the architectural level en-
ables hierarchically organized data transport, integration of locally connected end-devices,
data aggregation, large-scale upload capabilities in vertical communication, and horizontal
service integration [61].

3. Methodology and System Overview

The methodology used for the identification of the particular degrading effects of the
PV system is based on the cross-correlation of each system’s operation estimates within the
group of neighboring systems. The Methodology and System Overview section provides
the details of the sensor-side data processing and parameter extraction methods, as well
as relevant services for correlation-based performance assessments. According to the
adopted fog-based reference mode, the details of system-level architecture and the service
deployment at the different tiers of the system architecture are also given.

Section 3.1 gives insights into the methodology background by introducing the rele-
vant system parameters and related parameter assessment methods. The parameters are
used to quantify system operational properties, providing inputs for deployed data pro-
cessing services. Section 3.2 introduces an identification method for detecting photovoltaic
system underperformance under different types of degrading effects, while the details of
the system architecture and service deployment are given in Section 3.3.

3.1. Methodology Background

The detection of various operational conditions of the PV system and assessment of its
operation was based on the analysis of system metric parameters introduced in the previous
study [11]. The adoption of the system efficiency factor ηSF enabled the compensation of
various factors, including panel manufacturing tolerances, measurement imperfections,
physical failures, shading operation, panel aging, and different sensor thermal properties,
on the assessment of the system operation. In particular, the system efficiency factor was
utilized to compensate time-varying operational and physical system properties for each
PV panel related to the intersystem comparison under clear-sky conditions. The system
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efficiency factor is defined as a ratio of the estimated total horizontal irradiance GH to the
reference irradiance value G0, given in the form of the following equation [11]:

ηSF =
GH
G0

(1)

The system efficiency factor is highly time-dependent; therefore, the actual value of
this factor has to be empirically found from the analysis of the system operation over a
considerably long period of time, defined as the observation period (typically given as a
one-month period).

Since the assessment of the system operation is adequate only during time intervals
where the panel operation is not affected by surrounding objects, further analysis is focused
on the corresponding time intervals, defined as the correlation window [11]. The correla-
tion window CWi is defined as a collection of averaging time intervals when the system
operation has a potential to be correlated with the operation of other nearby systems,
defined by the following equation [11]:

G0 −
1

ηSFmax
· GHmax < KCW · G0 (2)

where KCW is the determination coefficient for the time interval to be included in the
correlation window, G0 is the reference value of the total horizontal irradiance in the
particular time interval, ηSFmax is the maximum value of the system efficiency factor in
the corresponding observation period, and GHmax is the daily profile with the maximum
estimated interval values found in the overall observation period.

Similarly, considering the execution of cross-correlation services, the corresponding
analysis is valid during the adequate cross-correlation window, which is defined for a
pair of correlated PV systems as an overlapping time interval found in the correlation
windows of both systems, e.g., CWij. It should be noted that the potential for the execution
of cross-correlation services exists only for panels whose cross-correlation window CWij
exists. If CWij = {}, the operation of corresponding systems i and j are not correlated. For
two correlated systems in the cross-correlation time interval, it is possible to calculate the
estimation difference factor EDij, which is given as a difference between the individual
estimation difference factors EDi and EDj, defined as [11]:

EDij = EDi − EDj =
G0 − 1

ηSFimax
GHi

G0
−

G0 − 1
ηSFjmax

GHj

G0
(3)

The detection of the panel fault operation occurs when the estimation difference factor
EDij becomes greater than the boundary fault detection coefficient KFD. To summarize, the
system metric parameters ηSFi , CWi, CWij, and EDij are used as the inputs for the methods
that identify the cause of the PV underperformance, whereas the duration of the observation
period and coefficients KCW and KFD are system configuration parameters. Additionally,
system metric parameters present an outcome of the data aggregation process, whereby the
gathered sensor data are transformed into a summarized form for the associated averaging
interval. These parameters provide sufficient informativity for further data analysis related
to the developed identification methods.

3.2. Identification Methods

It should be noted that the initial value of the system efficiency factor ηSF is available
after the initial observation period. After that period, the value of ηSF is updated daily,
based on gathered measurements in the time window defined as the observation period.
During regular system operation after commissioning, estimation of system performance
is valid only during the detected system operation period under clear-sky conditions. The
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clear-sky conditions are identified through the expression that defines the boundaries of
such system operations [11]:

GH(i) > KCS · G0(i) · ηSF (4)

where KCS is also a configuration parameter.
If the clear-sky condition is found in the group of correlated PV systems, execution of

related cross-correlation services for the observed group of panels is assumed to produce
valid results, regardless of whether the clear-sky condition is confirmed for all panels in
the group.

During fully shaded or partially shaded panel operation, under the detected clear-sky
conditions, PV system i is expected to produce less power, causing a significant increase of
all EDij parameters in the group of correlated panels. For on-surface obstacles, the effect
is expected to be found in all time intervals included in a particular CWij, since EDij are
calculated for each time interval. On the other hand, for off-surface obstacles, the effect is
expected to be found in some of the time intervals included in the CWij, since the panel
shading depends on the incident angle of sunlight.

In order to give methods in the form of analytical expressions for detection of panel
fault operation with on-surface and off-surface obstacles, we adopted the following nota-
tion, whereby EDij(t, d) represents the estimation difference factor for correlated panels i
and j for a time interval t for a particular day d. One should keep in mind that each of the
methods provide valid outputs only for time intervals belonging to the cross-correlation
window, i.e., for intervals t ∈ CWij.

In the space of EDij(t, d) estimates for a particular time interval t during several days
of panel operation, the fault operation of panel i, whose operation is correlated with the
operation of other panels j = 1..k, is defined as follows:

∀j, 1 ≤ j ≤ k, EDij (t,d) > KFD (5)

It is important to highlight that the result for the comparison given with (5) is valid only
for time intervals defined with the tuple (t, d) where condition (4) is satisfied. If condition
(5) is fulfilled for all time intervals from the cross-correlation window, the degrading effect
is the consequence of an on-surface obstacle. The analytical expression used to evaluate
such a condition can be expressed as:

∀t∈CWi, ∀j∈(1, 2,.., k), t∈CWij => EDij (t,d) > KFD (6)

For detection of off-surface obstacles, the panel operation does not exhibit the behav-
iors outlined by expressions (5) and (6), but rather by expressions (7) and (8), given with:

∀t∈(t1, t2, t3, ..., tm), (t1, t2, t3, ..., tm) ⊆ CWi, ∀ j, 1 ≤ j ≤ k, t∈CWij => EDij (t,d) > KFD (7)

∃t, t∈CWi, ∃ j, 1 ≤ j ≤ k, t∈CWij => EDij (t,d) < KFD (8)

As one can notice, identification of off-surface obstacles is achieved by meeting condi-
tion (5) in a certain number of time intervals, e.g., t1, t2, t3, ..., tm ∈ CWi, which belong to the
corresponding cross-correlation windows. Since the same PV system operation behavior is
expected to be found on the following days, the detected panel underperformance can be
verified in the same time intervals t found on consecutive days, all in clear-sky conditions.

The evaluation of conditions (4) to (6) on one hand, as well as conditions (4), (7), and (8)
on the other hand, is part of the fault detection services, while extraction of cross-correlation
parameters is part of the (cross-)correlation services. It should be noted that the execution
of both service types assumes the availability of time series data, including information for
maximal horizontal irradiance values GHmax with the corresponding date and time stamps,
time series of daily estimates of ηSFi , and interval-related EDi values, as part of the shared
data resource repository.
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Soiling effects, in particular short-term soiling effects, can be detected through linear
regression analysis of a time-series of estimated difference EDi (t, dj) values for a particular
time interval t found on consecutive days, all with the detected clear-sky conditions. If
input time series data are given as EDi (t,d0), EDi (t,d1), EDi (t,d2), . . . EDi (t,dn-1), where n
is the number of days in observation, a slope b of the linear regression model is found from
the equation:

b(t) =

n ·
n−1
∑

j=0

(
j · EDi(t, dj)

)
−
(

n−1
∑

j=0
j

)
·
(

n−1
∑

j=0
EDi(t, dj)

)

n ·
n−1
∑

j=0
j2 −

(
n−1
∑

j=0
j

)2 (9)

Since the panel soiling produces a constant effect on panel underperformance, the
slope of the linear regression model is expected to be correlated for all N time intervals
found in the panel correlation window. Therefore, the detection of the soiling effect in the
panel operation occurs if the following expression holds:

∀t, t∈CWi, µb > Kµ ∧ σb < Kσ (10)

where µb =
∑

t∈CW
b(t)

N represents the mean value for the set of b(t), while σb =

√
∑

t∈CW
(b(t)−µb)

2

N
stands for the standard deviation value and Kµ and Kσ are coefficients defining the
sensitivity of the proposed method.

Long-term soiling effects are related to the panel underperformance operation in the
time interval comparable with the duration of the observation period. Such a long period
of exposure to soiling influences both ηSFi (d) and EDi (t,d) panel metric parameters, and
therefore is detectable by time series trend analysis, as given with Equations (9) and (10).
Since the decrease of ηSFi (d) given by (1) slightly compensates the increase of EDi (t,d),
given with (3), applying such a detection method is highly sensitive to the particular panel
operation and soiling properties.

The aging properties of the panel operation can be easily monitored, since the inherent
property of the methodology for the estimation of the system efficiency factor ηSFi is
that ηSFi compensates aging and other long-term effects with a duration longer than the
observation period. The aging effect is directly observable through the changes of the
multiannual profiles of the ηSFi (d, y) parameter using the linear regression method, where
ηSFi (d, y) stands for the ηSFi value in a particular day d of year y. In order to avoid seasonal
interference, it is necessary to observe the series of ηSF values, where day d corresponds to
a particular day or a part of the season.

3.3. System Architecture and Service Deployment

The proposed identification methods as a part of the overall performance assessment
methodology are seen as a part of the larger-scale distributed application for PV systems
performance assessment and automated detection of its fault operation. In order to support
such an application with high data processing requirements under real-time or near-real-
time constraints, the design of the distributed system components must support a scalable
architectural approach. As an extension of the cloud-only solution, the fog computing
approach provides the support necessary to fulfil this requirement at the architectural level.
Following the given application context, the details of the fog-based architecture of the PV
systems operation assessment and the details of the deployment of methodology-related
processing services are shown in Figure 1.



Electronics 2021, 10, 762 9 of 21Electronics 2021, 10, x FOR PEER REVIEW 10 of 23 
 

 

 

Figure 1. Tiered fog-based system architecture. 

Parameter assessment services in tier 2 govern the process for calculating system 
efficiency parameters based on the reference irradiance value G , which are locally stored 
at the application support service layer in tier 2, together with decisive coefficients K , K , Kμ, and Kσ, as presented in Equations (1) and (2). As a result of these services, the 
corresponding system efficiency factor η  and correlation window CW  for each PV 
system are found. The following (cross-)correlation services calculate the estimation 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CLOUD SERVICES CLOUD SERVICES 
CLOUD 

(GLOBAL) 

FOG  
NODE 

FOG TIER 3 
(REGIONAL AREA) 

FOG  
NODE 

DATASET 3 FOG TIER 2 
(DISTRICT AREA) 

APPLICATION  
SERVICES  

LAYER 

APPLICATION SUPPORT SERVICES 

NODE-TO-DEVICE PATHWAYS 

PREPROCESSING SERVICES 

APPLICATION  
SERVICES  

LAYER 

SOFTWARE BACKPLANE AND NODE MANAGEMENT 

APPLICATION SUPPORT SERVICES 

FOG TIER 1 
(NEIGHBOURHOOD AREA) 

FOG  
NODE 

AGGREGATION SERVICES 

DATASET 2 

LOW COST 
SENSOR 

END-DEVICE TIER 
(ENDPOINTS) 

PV PANEL 2 PV PANEL 1 PV PANEL 3 

CLOUD-TO-CLOUD PATHWAYS 

NODE-TO-CLOUD PATHWAYS 
NODE-TO-NODE PATHWAYS 

DATASET 1 DATASET 1 DATASET 1 DATASET 1 

PARAMETER ASSESSMENT SERVICES 

CORRELATION SERVICES 

FAULT DETECTION SERVICES 

SOFTWARE BACKPLANE AND NODE MANAGEMENT 

Figure 1. Tiered fog-based system architecture.

The number of fog nodes at a particular tier corresponds to the geolocational distri-
bution and density of the deployed measurement infrastructure. The nodes’ functionality
varies based on their positions in the particular tier in this N-tier architectural model. Nodes
in tier 1 collect measurement data from the connected sensors and PV panel devices. They
also perform data preprocessing operations, including sampling, filtering, and formatting
followed by data aggregation, and communicate with other nodes that are included in
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the particular cross-fog application. The fog nodes in tier 2 execute several application
services, providing information about the system operation status, data analysis, event
notification, detection, and identification of end-device fault operations. In tier 3, the fog
nodes combine information obtained from tier 2 fog nodes covering a wider district or
metropolitan area. Since the nodes that are closer to the network core services located in the
cloud have higher processing and communication capabilities, they perform more complex
analytics to provide more sophisticated services related to the operation of the overall
network of PV systems in the district area. However, certain fog nodes are not directly
related to PV system operation monitoring, so they can be part of other IoT applications
and systems.

Physical deployment is organized according to the tier architecture style. The uti-
lized data processing methods are encapsulated as service components that reside in the
different tiers of the system architecture. The bottom tier of the presented architecture
contains connected end-devices that provide measurement data for PV panel properties
(IPV, VPV, TPV), environmental temperature, and other relevant atmospheric conditions
(relative humidity, air pressure, etc.) embedded in dataset 1.

Collected raw sensor data are preprocessed by services that reside in the application
service layer in tier 1, providing an estimate of the total horizontal irradiance GH available
for each averaging time interval. The required configuration parameters (βTC, ηr, A, β, γ,
ϕ) utilized by the preprocessing services are part of the configuration data structure in
the application support service layer. The sequel aggregation services in tier 1 perform
a series of operations to calculate the daily profile with the maximum estimated interval
values founded in the overall observation period GHmax using the obtained GH data and
observation period parameter written in the configuration data structure. Both GHmax and
GH data are a part of dataset 2, and they are forwarded to tier 2 for further processing.

Parameter assessment services in tier 2 govern the process for calculating system
efficiency parameters based on the reference irradiance value G0, which are locally stored
at the application support service layer in tier 2, together with decisive coefficients KCW,
KFD, Kµ, and Kσ, as presented in Equations (1) and (2). As a result of these services,
the corresponding system efficiency factor ηSFi and correlation window CWi for each
PV system are found. The following (cross-)correlation services calculate the estimation
difference parameter (EDij) according to Equation (3) for each pair of correlated systems in
the matching cross-correlation window CWij.

The results of the correlation processing services are forwarded to the fault detection
services in the form of a dataset, which includes the system metric parameters (ηSFi , CWi,
CWij, EDi, EDij). There are three of these services that identify each class of degrading
effects, namely on-surface FD1, off-surface FD2, and soiling FD3, while their outputs are
operational statuses of the individual PV systems in the form of detected regular PV system
operation (pass status) or irregular operation (fail status). If clear-sky condition is not
detected, the service output is given as skip status regardless of the actual estimation
difference value. Fault detection service FD1 determines if an on-surface fault has occurred
by comparing the values of the estimation difference parameter (EDij) with the boundary
fault detection coefficient KFD. According to the implemented method previously described
in Section 3.2, the FD1 service first executes the clear-sky condition identification, which
if positive is followed by each PV system assessment for all identified EDij values for
every time interval in the matching cross-correlation window CWij, analytically given by
condition (6). If this condition is fulfilled, the FD1 service generates a failed status; if not,
the status is regular.

Fault detection service FD2 is responsible for the detection of off-surface degradation
effects, preconditioned by the same clear-sky condition identification as in the FD1 service.
Comparing both values of individual estimation difference parameter (EDi) for a single
PV system in a matching correlation window interval CWi and every estimation difference
parameter (EDij) for a pair of correlated PV systems in the matching cross-correlation
window interval CWij with boundary fault detection coefficient KFD, it is possible to
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determine the fault operation, which is analytically given by conditions (7) and (8). In
order to generate a failed status for the FD2 service, it is necessary that in a certain number
m out of N time intervals, the values of (EDi) and (EDij) are over the boundary fault
detection level, whilst there is at least one time interval i from corresponding correlation
and cross-correlation windows where compared values are under the fault detection level.
The value of m is adopted as a number comparable to the ratio of the cross-correlation
window interval to the duration of time interval i, in order to avoid possible mismatch in
ED values at the boundaries of the cross-correlation window. It is to be expected that the
same behavior of the PV system operation would be found in the same time intervals in
the following clear-sky days; therefore, the detected panel underperformance operation
can be verified and tracked.

Fault detection service FD3 enables detection of the short-term soiling effect, long-term
soiling effect, and aging effect in PV systems operation. Following the clear-sky condition
identification from the FD1 service, the FD3 service executes a set of operations in order to
calculate the slope b of the linear regression model from the input time-series data of the
estimated difference EDi (t,dj) for each time interval in the matching correlation window
interval CWi, analytically given by condition (10). By choosing adequate coefficients Kµ

and Kσ, it is possible to define the sensitivity of the FD3 service; therefore, the boundary
values for the FD3 service will report the fault. By combining the current day status and
the previously stored historical data for short-term soiling effect statuses, it is possible to
identify the long-term soiling effects. The additional verification is the significant decrease
of ηSFi (d) for the long-term effects in the time interval comparable with the duration of
the observation period. Moreover, by using the previously described method of linear
regression, the FD3 service executes a set of operations in order to calculate the slope b of
the linear regression model from the input time-series data of the system efficiency factor
ηSFi (d, y) for each time interval in the matching correlation window interval CWi for the
ηSFi value in a particular day d of year y in order to identify the aging effect.

As the fault detection service outputs are operational statuses of the individual PV
systems in the form of regular or failed statuses, they are embedded in dataset 3 and
forwarded to the more complex analytics services in tier 3 fog nodes. Further details of
particular service operations for tier 3 nodes are outside of the scope of this paper.

4. Case Study

Deployment details for the investigated neighboring PV systems are given in Figure 2.
For the observed geographical area, the representative fog node in tier 2 is fog node N21. Fog
node N21 controls three PV sensor systems in tier 1, installed at separate locations on the
rooftops of the university buildings and associated research facilities. PV panels P1 and P2,
together with environmental sensors S1 and S2, are connected to fog node N11, located at
the ES (Embedded Systems) lab at the Technical Faculty Pavilion. Similarly, PV panel P3
and temperature sensor S3 are located at the ICEF (Innovation center of School of Electrical
Engineering) research laboratory and integrated into the fog architecture through fog node
N12, as PV panels P4 and P5 and temperature sensor S4, located at the faculty main building,
are connected to fog node N13. It is not mandatory that node N21 in tier 2 resides in the
same neighborhood area as node N1X from tier 1, since the node does not perform actual
measurements, but rather processes data obtained from connected fog nodes in tier 1.
Higher-level services and further integration toward core services are supported through
the infrastructure node N31.

The deployment scenario given in Figure 2 is selected as a representative scenario
in an urban surrounding, since it consists of PV panels from different manufacturers and
with different electrical and temperature characteristics. The case study presented in this
section includes the performance assessment with the automatic detection of the faults
of the five correlated PV panels, which were installed in close proximity while operating
under different environmental conditions. The features of the PV panels used for this case
study are provided in the Table 2.
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Table 2. The features of the used PV panels P1–P5.

PV Panel Type Characteristics Orientation Installation

P1 and P2 Solar fabrik
(Polycrystalline silicon)

surface area A = 1.522 m2

module efficiency ηr = 17.14% at 25 ◦C
temperature coefficient βTC = −0.43%/◦C

maximum power PM = 280 W

tilt angle β = 36◦

azimuth angle γ = 180◦
Telefon Inzenjering

M1000/12
battery backup

P3 Renewsys Deserv
(Polycrystalline silicon)

surface area A = 1.013 m2

module efficiency ηr = 14.80% at 25 ◦C.
temperature coefficient βTC = −0.5%/◦C

maximum power PM = 150 W

tilt angle β = 26◦

azimuth angle γ = 180◦
MEAN WELL TS-1500

battery backup

P4 and P5 Sun Spark SMX-250P
(Polycrystalline silicon)

surface area A = 1.645 m2

module efficiency ηr = 15.20% at 25 ◦C,
temperature coefficient βTC = −0.4%/◦C

maximum power PM = 250 W

tilt angle β = 32◦

azimuth angle γ = 180◦
MEAN WELL TS-1500

battery backup

The experiment was conducted over 70 days, from August until October of 2020,
of which the first 20 days were used as the observation period. During the total period,
the averaged horizontal irradiance values GH were gathered for all the panels, whereas
the daily profile of reference irradiance G0 was obtained from the ASHRAE clear-sky
model [62]. Considering everything stated above in Section 3.1, system parameters GHmax,
ηSF, ηSFmax, CWi, CWij, EDi, and EDij for all panels and correlation pairs were calculated.
The PV panel current and voltage signal sampling intervals were set to 1 s, while the
averaging time interval was set to 10 min. The fault detection coefficient was set to
KFD = 0.2, while the clear-sky coefficient was set to KCS = 0.85. Since PV panels P1 and
P2, as well as P4 and P5, are identical devices and installed right next to each other, which
would make their individual fault detection much easier than any random correlated pair
in the urban environment, the three different types of defects were separately induced to the
individually installed PV panel 3. The three experimental scenarios were conducted as follows.

4.1. Detection of the On-Surface Degrading Effect

In order to verify the presented method for detection of the on-surface degrading
effect, the following experiment was performed. On day 41 of the experiment at 06:00, part
of the surface of PV panel 3 was intentionally covered. The relevant data for PV panel 3 for
five consecutive days, from day 38 to day 42, are presented in Figure 3.
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For the five days of interest, the daily profiles of the estimated total horizontal irra-
diance GH (blue), its maximum normalized value GHmax/ηSFmax (purple), its reference
irradiance value G0 (red), and its boundary value for clear-sky conditions (green) for PV
panel 3 are presented in Figure 3a, whereas the corresponding values for PV panel 4 are
presented in Figure 3b. The corresponding values for PV panel 2 showed a similar trend as
the values for PV panel 4, and therefore were not presented in a separate graph.

On day 41 of the experiment, after the clear-sky conditions given by condition (4)
were confirmed and the initial time intervals with no irradiance or negligible low levels of
irradiance (night-time intervals and the time intervals around the sunrise and sunset) were
excluded from the assessment, the correlation windows for each PV panel (CW2, CW3, and
CW4) were determined using condition (2). The maximum values of the system efficiency
factor, as given in Equation (1), in the corresponding observation period for all three
panels were found to be ηSF2max = 0.65, ηSF3max = 0.63, and ηSF4max = 0.66, respectively.
Figure 3c,d present the determined correlation windows using condition (2), together with
cross-correlation windows for the correlated pair P3–P4 and P3–P2. Information about the
clear-sky conditions, extracted from Equation (4) and given as DET or NOT condition, is
also given in Figure 3c,d. One should keep in mind that if the normalized value of the total
horizontal irradiance for a single panel or both of the panels is above the boundary value
given in Equation (4), the result of the cross correlation, as evaluated using Equation (5), is
considered as valid.

For the correlated pairs in the cross-correlation time interval, the estimation difference
factors ED34 and ED32 were calculated, as provided in Equation (3). The values of the
estimation difference factor for PV panels P3 and P4 (ED34) are presented in Figure 3e,
while similar values for PV panels P3 and P2 (ED32) are presented in Figure 3f. Information
about the validity of the analysis, given in the form of PASS and SKIP notes, is also given
in Figure 3e,f. A SKIP note suggests that the clear-sky condition is not detected for neither
of the correlated panels in any all-time intervals from the cross-correlation window.

At day 38, it can be noticed that the clear-sky condition is not detected for either panel
in the group of the correlated panels, therefore the correlation-related processing produced
an invalid result, indicated as the SKIP status in Figure 3e,f. It can be noticed that during
days 39 and day 40, all of the ED34 and ED32 values in time intervals from CW34 and
CW32 respectively, were below the value of the fault detection coefficient KFD; therefore,
conditions (5) and (6) were been fulfilled. We can conclude that the operation of the panels
does not demonstrate on-surface degrading effects, since the validity of the analyses is
confirmed through the PASS status. On the other hand, both ED34 and ED32 values during
the cross-correlation windows on days 41 and 42 were higher than the value of fault
detection coefficient KFD, due to the increased ED3 values. For day 41, conditions (5) and
(6) were fulfilled; therefore, the on-surface degrading effect was confirmed and indicated
as a FAIL status. The validity check regarding the clear-sky condition was confirmed for
days, 41 and 42, since the normalized value of the estimated total horizontal irradiance
obtained from panel P4 was above the border curve (DET status), regardless of the fact
that the matching value from panel P3 was significantly below the boundary value (NOT
detected status).

It is necessary to point out that the system efficiency factor is expected to show gradual
change during the succeeding observation period. Since the duration of the observation
period is much longer than the daily period, it will not directly affect the outcome of the
cross-correlation analysis.

As seen from the analysis, on-surface shading effects are successfully identifiable
through the time-series analysis of the performance metric parameters (ED, ηSFmax), where
in the case of physical failure and a partially or fully covered panel surface, the estimation
difference value is uniformly degraded in all aggregation time intervals in cross-correlation
windows. The output of the proposed identification method for detecting on-surface
degrading effects is given in the form of the PASS and FAIL statuses. False detections,
under fully shaded or partially shaded operation conditions, are avoided, since the results
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of the analysis are taken as valid only during the detected clear-sky atmospheric conditions
for the group of correlated panels. Detection of faulty PV operation as an outcome of
fault detection services in tier 2 leads to further consumer notifications and maintenance
alarms as a part of the notification services at higher tiers of the reference fog computing-
based architecture.

4.2. Detection of the Off-Surface Degrading Effect

In order to verify the presented method for detection of off-surface degrading effects,
on day 25 of the experiment at 06:00, the obstacle was placed in front of PV panel 3 at a
particular distance. This resulted in panel operation under the partially shaded conditions.
As in Figure 3a,b, the relevant daily profiles of panels P3 and P4 are presented for the five
days of interest, from day 22 to day 26. Similarly to the previous scenario, the clear-sky con-
ditions, designated as detected (DET status) or not-detected (NOT status), were confirmed
using condition (4), while the correlation windows (CW2, CW3, and CW4) and correspond-
ing cross-correlation windows CW32 and CW34 were evaluated from Equation (2) and are
presented in Figure 4c,d. Furthermore, the values for estimation difference factors ED34
and ED32 were calculated as in expression (3) and are presented in Figure 4e,f.

It is noticeable that during day 22, some cloudiness was present, overlapping with the
correlation intervals, therefore indicating that the correlation output was not valid (notified
as the SKIP status in Figure 4e,f).

On day 23, there were alternating periods of cloudy and clear-sky weather conditions,
designated as the NOT and DET statuses, respectively, on a daily basis. However, each
averaging time interval (10-min) has its own DET or NOT status; thus, it is possible to
execute the detection procedure even on the days with low numbers of clear-sky intervals.
The spikes during day 22, which can be found in ED34 and ED32, as shown in Figure 4e,f,
correspond to the situation where all panels in the group operate under the cloudy weather
conditions, indicated as the NOT status in the particular averaging interval. Therefore, the
results of the correlation procedure for the particular averaging interval were found to be
invalid, as indicated with the SKIP status. Since the granularity of the presented results in
Figure 4e,f is on a daily basis, the SKIP and PASS statuses in different averaging intervals
during day 23 are shown as a combination of both statuses specified as SKIP or PASS. As
the values of ED34 and ED32 in all averaging intervals with the PASS status were below the
adopted value KFD, according to condition (7), the irregular operation of the PV panels was
been detected during day 23. Similarly, on day 24, as clear-sky conditions were confirmed
(DET status), all of the values for ED34 and ED32 were below the adopted value KFD; thus,
none of the irregular operations of the PV panels were detected.

On day 25, it can be noticed that for certain intervals of both cross-correlation windows
CW32 and CW34, values of both ED34 and ED32 were higher than the values of the fault
detection coefficient KFD, thereby satisfying condition (7), whilst there was at least one time
interval where values of ED34 and ED32 were below the values of coefficient KFD, satisfying
condition (8). Since both conditions (7) and (8) were satisfied, the off-surface degrading effect
was confirmed. A similar situation was detected for panel P3 operation during day 26.

As noticed from the previous analysis, fully shaded or partially shaded operation areas
of the PV panel caused by the nearby obstacles that cast a shadow on the panel surfaces are
identifiable through the cross-correlation analysis of the performance metrics parameter ED
inside the cross-correlation window. Degraded panel operation, identified as an estimated
difference above the boundary value, is expected to be found for some, but not for all, of the
averaging time intervals from the cross-correlation window, as given through expressions
(7) and (8). In contrast to the panel operation with on-surface obstacles, operation with off-
surface obstacles does not significantly affect the value system efficiency factor, since there are
averaging time intervals inside the cross-correlation window, where the PV panel regularly
operates without shadows being cast on the panel surface. Similar to the detection of on-
surface obstacles, detection of off-surface obstacles produces valid results only during the
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clear-sky conditions. Detection of panel underperformance suggests the visual inspection of
the surroundings of the PV system as the recommended maintenance action.
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4.3. Detection of Soiling Degradation Effect

In order to verify the presented method for the detection of the soiling degradation
effect, the following scenario was performed. On each day, starting from day 50 of the
experiment, the surfaces of PV panels P2 and P4 were cleaned, whereas the surface of PV
panel P3 was exposed to environmental accumulation of dust and dirt.

As previously stated, after the clear-sky conditions were confirmed and the correlation
windows were determined, the estimation difference values for each panel (ED2, ED3,
and ED4) were calculated, using expressions (4), (2), and (3), respectively. As stated in
Section 3.2, linear regression analysis was used, as the parameter b, the slope of the model,
was determined using expression (9). The input data for the linear regression analysis
were time-series of estimated difference ED3 values for time intervals t1 = 12:30–12:40;
t2 = 12:40–12:50; t3 = 12:50–13:00; t4 = 13:00–13:10 for a period of ten consecutive days, only
involving detected clear-sky condition. The results are presented in Figure 5 for t1, t2, t3,
and t4. Furthermore, the mean value for the set of b(t) and standard deviation values were
extracted from the obtained data. In order to detect the soiling effect in panel operation P3,
as provided in the expression (10), the coefficients Kµ and Kσ, used to define the sensitivity
of the proposed method, need to be empirically determined from the previous behavior of
PV panel P3. Additionally, the slopes of models obtained from other correlated panels need
to be considered in order to avoid seasonal interference. For the conducted experiment, the
mean value for the set of b(t1–t4) was found as µb = 0.42%/day, while for standard deviation
σb = 0.043%/day. By considering the data from the previous observation periods, these
results showed significant increases due to the observed soiling effects in the operation
of panel P3. Additionally, the mean value and standard deviation for the set of b(t1–t4),
obtained from the cross-correlation analysis for panels P2 and P4, whose surfaces had been
cleaned daily, were µb = 0.18 %/day, σb = 0.015 %/day, respectively.

According to the data provided in Figure 5, it can be noticed that some of the data
points—namely the ones corresponding to days 52, 53, and 57—are missing, since the
clear-sky condition was been detected in the observed averaging intervals t1–t4. The
individual clear-sky statuses for averaging intervals t1–t4, together with the slope of the
linear regression model during the experiment, are provided in Table 3.

Table 3. The detailed clear-sky condition statuses for averaging intervals t1–t4.

Period STATUS Slope [%/day]

t1 DET DET NOT NOT DET DET DET NOT DET DET 0.41

t2 DET DET NOT NOT DET DET DET NOT DET DET 0.43

t3 DET DET NOT NOT DET DET DET NOT DET DET 0.37

t4 DET DET NOT NOT DET DET DET NOT DET DET 0.49

Days 50 51 52 53 54 55 56 57 58 59

As seen from the provided case study, short-term soiling produces cause effects similar
to the fully shaded panel operation scenario, but with significantly lower degradation rates
of the estimated difference parameter. These effects are successfully detectable through the
trend analysis of the time series of estimated difference values for the particular averaging
interval for a series of consecutive days, or in a time interval shorter than the duration of
the observation interval. On the other hand, the effects of long-term soiling on estimation
difference values are partially compensated. This is consequence of the time interval
in cases of slowly changing dust accumulation is comparable with the duration of the
observation window. Thus, changes in the estimated difference EDij are compensated
through the variation of the system efficiency factor ηSF of the panel exposed to soiling
effects. In such a scenario, the degrading effects are identifiable through the trend analysis
of the variation of the system efficiency factor itself, since the value of the estimation
difference parameter obtained from the cross-correlation analysis is not affected.
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t2 DET DET NOT NOT DET DET DET NOT DET DET 0.43 
t3 DET DET NOT NOT DET DET DET NOT DET DET 0.37 
t4 DET DET NOT NOT DET DET DET NOT DET DET 0.49 

Days 50 51 52 53 54 55 56 57 58 59  

As seen from the provided case study, short-term soiling produces cause effects 
similar to the fully shaded panel operation scenario, but with significantly lower 
degradation rates of the estimated difference parameter. These effects are successfully 
detectable through the trend analysis of the time series of estimated difference values for 

Figure 5. The linear regression analysis of estimation difference values for PV panel 3 for time intervals (a) t1, (b) t2, (c) t3,
and (d) t4.

The experimental analysis given in Section 4 confirmed that the different degrading
effects, which result in PV system underperformance, are identifiable through temporal
analysis of the system performance metric parameters and the proposed cross-correlation
analysis. Additionally, the adopted fog computing model is found to be highly suitable
for the implementation of the proposed identification services in the form of sequential
processing steps, since it enables the distribution of computing, storage, and networking
steps in a hierarchically organized form. Furthermore, as its inherent characteristic, the
adopted fog-based architecture is capable of overcoming the limitations of the current
infrastructure and supports the design of more comprehensive large-scale applications for
monitoring and maintenance of photovoltaic systems in urban environments.

5. Conclusions

The system-to-system comparison among the group of correlated PV systems repre-
sents a flexible framework for robust identification of degrading effects in the operation of
neighboring PV systems. The proposed identification methods are based on the analysis
of the temporal properties of the performance metric parameters under different opera-
tional conditions, including panel aging, mid-term soiling, and on-surface and off-surface
shading operations. Since the methodology provides valid estimates exclusively under the
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empirically detected clear-sky conditions, the effects of varying irradiance found under the
partially shaded weather conditions are omitted. Considering that the set of identification
methods is given in the form of sequential processing, whereby sensor-side data processing
can be localized at the network edge, the implementation of identification services accord-
ing to the tiered model is particularly suitable. Furthermore, according to the adopted fog
computing reference model, the proposed hierarchically organized architectural solution
enables integration of PV system monitoring and maintenance services in the form of a
distributed application capable of acquiring large-scale data and providing various end-
user services. The utilization of more advance statistical methods and machine learning
algorithms for cross-correlation analysis, as well as the extension of the identifiable fault
types and the detection of multiple faults, are planned as parts of a future study.
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