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Abstract: Nonlinear electromagnetic inverse scattering is an imaging technique with quantitative
reconstruction and high resolution. Compared with conventional tomography, it takes into account
the more realistic interaction between the internal structure of the scene and the electromagnetic
waves. However, there are still open issues and challenges due to its inherent strong non-linearity, ill-
posedness and computational cost. To overcome these shortcomings, we apply an image translation
network, named as Complex-Valued Pix2pix, on the inverse scattering problem of electromagnetic
field. Complex-Valued Pix2pix includes two parts of Generator and Discriminator. The Generator
employs a multi-layer complex valued convolutional neural network, while the Discriminator
computes the maximum likelihoods between the original value and the reconstructed value from
the aspects of the two parts of the complex: real part and imaginary part, respectively. The results
show that the Complex-Valued Pix2pix can learn the mapping from the initial contrast to the real
contrast in microwave imaging models. Moreover, due to the introduction of discriminator, Complex-
Valued Pix2pix can capture more features of nonlinearity than traditional Convolutional Neural
Network (CNN) by confrontation training. Therefore, without considering the time cost of training,
Complex-Valued Pix2pix may be a more effective way to solve inverse scattering problems than
other deep learning methods. The main improvement of this work lies in the realization of a
Generative Adversarial Network (GAN) in the electromagnetic inverse scattering problem, adding a
discriminator to the traditional Convolutional Neural Network (CNN) method to optimize network
training. It has the prospect of outperforming conventional methods in terms of both the image
quality and computational efficiency.

Keywords: complex-valued Pix2pix; Contrast Source Inversion; microwave imaging; deep learning

1. Introduction

As an accurate and non-destructive measurement modality for imaging, nonlinear
electromagnetic inverse scattering is widely used in science, engineering, military and
medical fields [1–5]. Compared with conventional tomography methods [6–10], nonlinear
electromagnetic inverse scattering can solve the multiple scattering problem of electro-
magnetic wave fields inside the object [3–5,11], and the internal structure of the scene can
be “seen“ in a quantitative way. A large number of algorithms have been proposed and
developed over the past few decades to solve electromagnetic inverse scattering problem,
which can be divided into the following two: (a) deterministic optimization methods
including Distorted Born iterative methods (DBIM) [12,13], Subspace based Optimization
(SOM) [14–18], Contrast Source Inversion [19–21], and (b) stochastic methods [22–24]
such as Particle Swarm Optimization Algorithms (PSO). In recent years, with the widely
studied and rapidly developed of compressive sensing theory , some inverse scattering
methods were produced for addressing the problem of Synthetic Aperture Radar(SAR)
imaging [25–28]. Despite it has been verified that these methods can provide satisfactory re-
sults for objects of intermediate size and contrast. Owing to the limitation of computational

Electronics 2021, 10, 752. https://doi.org/10.3390/electronics10060752 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3425-3781
https://doi.org/10.3390/electronics10060752
https://doi.org/10.3390/electronics10060752
https://doi.org/10.3390/electronics10060752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10060752
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060752?type=check_update&version=2


Electronics 2021, 10, 752 2 of 14

costs, it is still a great challenge to apply them to large and realistic scenes. So far, with the
effect of multi-scattering effects, the nonlinear electromagnetic inverse scattering technique
is primarily used with low-contrast objects. And it is hard to handle the high-frequency
scene.

Over the past years, deep neural network has been widely used in regression and
classification problems [29,30]. With the establishment of massive databases and the
improvement of computing power, depth neural network (DNN) has become one of the
most powerful methods in the fields of image processing and computer vision, such
as semantic segmentation [31], Depth Estimation [32], Image Deblurring [33] or Super
Resolution Reconstruction [34,35]. Deep learning methods have been proven to be helpful
in the design and implementation of advanced functional materials [36] and high-precision
reconstruction from compression measurements [37,38]. The DNN method has also been
proved to be superior to the traditional machine learning method in automatic analysis of
the high content microscope data [39]. Recently, DNN algorithm has been widely used in
the field of imaging, such as biomedical imaging, including Magnetic Resonance imaging
(MR) and SAR imaging [40] and X-ray Computed Tomography [41,42] and Computational
Optical Imaging [11,43,44], as well as the DeepNIS method [45]. The experimental results
show that, compared with the conventional image reconstruction methods, the algorithm
based on neural networks [46,47] and the strategy based on DNN can greatly reduce
imaging time and improve the imaging quality significantly [41–48]. However, traditional
DNN requires a large amount of training samples to generate a trained network, which
needs more time in terms of training.

We propose an image translation network, named Complex-Valued Pix2pix (CVP2P).
Our solution strategy is first inspired by the Back-Propagation Scheme (BPS) [49] and then
the conventional CNN is replaced by the CVP2P network. The CVP2P is a straightforward
extension of the traditional pix2pix [50], a deformation of conditional generative adversarial
network, which inheriting the advantages of the latter. CVP2P mainly consists of two parts—
generator and discriminator. The generator is similar to a traditional CNN method and can
generate the final solution. The role of the discriminator is to make the generator capture
more nonlinear features than traditional CNN by the confrontation training between the
two. When the object has high contrast with high working frequency, the inverse scattering
problem is highly nonlinear. Thus, the CNN for BPS can hardly capture all nonlinear
features. In comparison, the CVP2P can learn the mapping from input to output more
quickly by confrontation training between generator and discriminator. This can effectively
reduce the network training time than traditional CNN methods. The proposed scheme
can be divided into two stages:

• (Stage I) An initial guess of the contrast
• (Stage IIc) Obtain a better contrast estimation through a custom deep learning network.

In this paper, an initial guess of the contrast is obtained by back-propagation method.
We will demonstrate that the CVP2P network can efficiently reconstruct the targets with
higher accuracy and efficiency than others. The input data of CVP2P originates from the
back-propagation results in Stage (I) and the input label comes from the real contrast of the
corresponding model.

The content of this paper is as follows—Section 2 states the problem and explains the
final estimated goal of the electromagnetic inverse scattering problem. Section 3 describes
the two stages of the above methods and compares the related schemes. Section 4 describes
the implementation details of the network, including loss function, network structure and
the training of the network. In Section 5, simulation and experiments are conducted to
verify the performance of CVP2P. We used the MNIST dataset to train and test the CVP2P
network [51]. We also built a microwave imaging system to provide experimental data for
the algorithm to test the generalization ability of the algorithm. Finally, the whole paper is
concluded and analyzed in the Section 6.
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2. Problem Statement

A two-dimensional scalar electromagnetic field is considered in this paper. As shown
in Figure 1, the incident plane wave Ez,in of TM polarization irradiates the target region Σ.
And the subscript z represents the Z component of electromagnetic waves. NS receivers
with distance R from origin are uniformly distributed on D and used to receive scattering
field data. The scattered field received by the receiver can be expressed as:

Ez,sca(r) = k2
0

∫
Σ

G(r, r′)χ(r′)Ez(r′)dS r ∈ ∂D, r′ ∈ Σ , (1)

Ez(r) = Ez,in(r) + k2
0

∫
Σ

G(r, r′)χ(r′)Ez(r′)dS r ∈ Σ, r′ ∈ Σ , (2)

r and r′ ∈ Σ represent the field point and the source point, respectively. dS is an area
unit on Σ. Ez(r) represents the total field, χ(r′) = εr(r′)− 1− i( σ(r′)

ε0ω ) denotes a quantita-
tive relationship between the contrast of the object χ(r′) and relative permittivity εr(r′).
σ(r′), ε0 and ω are conductivity, vacuum permittivity and angular frequency, respectively.
G(r, r′) = i

4 H(1)
0 (k0|r− r′|) denotes the two-dimensional Green’s function, H(1)

0 (•) denotes
the first kind of zero order Hankel function.

Figure 1. Electromagnetic inverse scattering measurement diagram.

The scattered field is measured with NS receivers per illumination with a total of NI
illuminations in a single experiment. In order to carry out numerical experiments, we
solve the discretized version of the Equations (1) and (2) by partitioning Σ into an K × K
square grid using the method of moments. Meanwhile, the product of the contrast χ and
the internal field E(r) at any point r in Σ is defined as the contrast source w, as shown
in Equation (5).Combined with Equations (1) and (2), we obtain the following associated
discretized forms:

en
j = en

inj
+ GSwn

j (3)

en
scaj

= GMwn
j (4)

wn
j = χnen

j , (5)

where en
j ∈ CK2×1, en

inj
∈ CK2×1 denotes the total internal and incident fields for the j-th

illumination, respectively. And n is the number of iterations. wn
j ∈ CK2×1 denotes the

contrast source, en
scaj
∈ CNS×1 refers to the scattered field, en

j , en
inj

and en
scaj

represent the

discretized version of Ez(r), Ez,in(r) and Ez,sca(r), respectively. χn ∈ CK2×1 refers to the
contrast in the imaging domain Σ. GS ∈ CK2×K2

and GM ∈ CNS×K2
represents the state

matrix and measurement matrix, respectively.
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The inverse scattering problem is to use the known scattered field esca to estimate the
contrast χ.

3. Methods
3.1. Motivation

The equations between the scattering field and the object contrast, such as Equations (3)–(5),
are non-linear and ill-conditioned equations, therefore the system will have infinite solu-
tions when solving the inverse problem. So it is difficult to choose a meaningful solution.
This defect is especially obvious under the conditions of high contrast objects or high
frequency scene.

Although it is possible to learn the mapping from the scatter field esca to the contrast
χ directly, we can also pre-process the scattered data esca using non-iterative inversion
algorithm before training the network. Accordingly, we propose a two stage strategy based
on back-propagation method, which is a computationally simple and effective solution for
highly non-linear inverse scattering problem. Next, we will explain the individual stages
of this deep learning scheme.

3.2. Initial Guess (Stage-I)

Similar to the method adopted by CSI, we use the back-propagation (BP) algorithm to
determine the initial value of the contrast source as follows

w0
j =

∥∥∥G∗Mescaj

∥∥∥2

Σ∥∥∥GMG∗Mescaj

∥∥∥2

∂D

G∗Mescaj , (6)

where w0
j represents the initial value of the contrast source. G∗M is the adjoint matrix of

the measurement matrix GM, ‖·‖2
Σ represents the 2-norm in the target area Σ, ‖·‖2

∂D and
represents the 2-norm on the measurement boundary ∂D.

According to the state equation of Equation (2) and the initial value of the contrast
source of Equation (6), the initial value of the total field e0

j can be obtained as follows.

e0
j = einj + GSw0

j . (7)

Thus, the initial value of contrast χ0 can be computed by the following Equation (8).

χ0 =

∑
j

[
w0

j e
0∗
j

]
∑
j

∣∣∣e0
j

∣∣∣2 . (8)

Combining the above Equation (6) to Equation (8), the initial contrast χ0 can be
prepared as the input of the subsequent CVP2P network.

3.3. Comparison with Related Schemes

A popular deep learning method for dealing with inverse problems is the DCS
method [49]. In the learning process of DCS, the contrasts χ of each incidence are put
into different input-channels of CNN, and each corresponding output-channel is the true
contrast χ of the domain Σ. Consequently, there are N pairs of input- and output-channels
in DCS, obviously different from BPS with only one pair of input- and output-channel.
Thus for DCS, results from different incidences are filled into different channels of the input
images, which is helpful to capture more nonlinear features. In CVP2P, the discriminator
as a loss function has its nature advantage of capturing more inner nonlinear features
because of the compromise between the generator and the discriminator. Thus it probably
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has similar advantages as DCS in terms of capturing more nonlinear features with deeper
length and confrontation strategy other than more channels.

As a related inversion procedure based on deep learning, the contrast source network
(CS-Net) has recently been proposed to solve the inverse scattering problem [48]. CS-Net
trains the network to learn the noise subspace components of the contrast source, so as to
obtain an estimation of the total contrast source. Its final output is still obtained by the
iterative algorithm of CS, which fails to discard the long time procedure of iteration. While
the CVP2P replaces the iterations with the deep learning network, which make the main
difference between them.

4. Implementation Details of the Network
4.1. Structure and Core Idea of CVP2P

The CVP2P is a kind of Generative Adversarial Network (GAN) [52], which has
similar structure to the network of pix2pix. Different from the traditional pix2pix to learn
the mapping from input picture to output picture, CVP2P mainly learns the mapping from
input complex data to output complex data.

CVP2P mainly consists of two parts—generator and discriminator. The role of the gen-
erator is to try to fool the discriminator by generating a contrast as accurate as possible, and
the discriminator needs to distinguish as much as possible between the real contrast and
the contrast generated by the generator. Through confrontation training, both continuously
optimize their own network to achieve a balance point, so that the contrasts generated by
the generator are infinitely close to the real samples. In the end, we can obtain an ideal
generator to generate the desired result. Thus, it can be seen that the best advantage of
CVP2P is that the updated information of generator (G) comes from discriminator (D)
rather than the data sample. For example, if we give the generator the goal of “learning the
mapping between input data and output data”, the discriminator will control the generator
to achieve this goal by confrontation training between them.

The generator of traditional image translation network (pix2pix) adopts U-net struc-
ture and is composed of convolution and deconvolution neural network. The discriminator
adopts “PatchGAN” architecture and is composed of convolution neural network. The
traditional pix2pix network is difficult to be applied directly to the electromagnetic inverse
scattering problem because it cannot deal with the complex. To solve this difficulty, we
have made the following improvement. Firstly, the generator of CVP2P adopts a mul-
tilayer complex-valued Convolution Neural Network (cCNN), which can compute the
complex-valued convolution and apply activation function on both real and imaginary
parts respectively. Different filter size is used in different cCNN layer to capture the features
from different spatial scales. And then the discriminator is divided into two parts: real part
and imaginary part. Either discriminator is a small traditional CNN that adopts “Patch-
GAN“ architecture. The complex generated by the generator is sent to the corresponding
discriminator for judgment.

4.2. CVP2P Loss Function

The loss function of the CVP2P is inspired by the traditional pix2pix. It combines the
loss function of cGAN with L1 distance, both of which should be calculated by the law of
complex. Thus, the loss function of cGAN and L1 distance are expressed as the following
Equations (11) and (12) respectively:

LcGAN(G, Dr/i) =
Exr/i ,yr/i∼Pdata(xr/i ,yr/i)

[log Dr/i(xr/i, yr/i)]

+Exr/i∼Pdata(xr/i)
[log(1− Dr/i(xr/i, G(xr/i)))]

(9)

and
Lcomplex(G) =
Eyr∼pdata(yr)[||yr − G(yr)||1]
+Eyi∼pdata(yi)

(z)[||yi − G(yi)||1],
(10)
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where G tries to generate the estimation of contrast. Dr/i represents the real r or imaginary
i parts of discriminator, aims to distinguish between Ground Truths yr/i and G(xr/i)
generated estimation of contrast. Lcomplex(G) is the complex value of L1 distance.

Thus, the final loss function of CVP2P becomes as follows, where λ controls the
relative importance of the two loss function:

G∗ = arg min
G

max
D

[LcGAN(Dr, G)

+LcGAN(Di, G) + λLcomplex(G)].
(11)

4.3. CVP2P: Network Training

The structural details of the CVP2P for nonlinear inverse scattering are described in
Figure 2. The input data of the CVP2P comes from the BP algorithm.

Figure 2. Overview of CVP2P network. The input data of the CVP2P comes from the back-
propagation algorithm.

The training procedure for the CVP2P is as follows:

(1) In the first step, the initial contrasts are divided into the real part and the imaginary
part as the input of the generator. And then both parts are convolved with the
corresponding filters according to Equation (10) to obtain a set of feature matrices.
Note that the output of cCNN has the same size as its input. In other words, the size
of the feature matrix remains constant in entire training process.

(2) In the second step, these feature matrices undergo a nonlinear activation function to
obtain a sparse outcome. Then the result is used as the input of the next layer to repeat
above operation. Generally speaking, it is assumed that the relative permittivity is
not smaller than 1 and the conductivity is non-negative. Therefore, the real part of
the contrast is positive and the imaginary part of the contrast is negative. If we use
the activation function of ReLu, we should apply the ReLu function to the complex
conjugate of the contrast.

(3) In the third step, the output of the final cCNN is sent to the corresponding discrimi-
nator for discrimination.

The results of a different number of convolution layers in the generator are tested.
The experimental results show that a 9-layers convolution is sufficient to achieve the
desired image quality. If necessary, more convolution layers can be added to enrich the
nonlinearity of the network. But, this enhances the complexity of the network, which
requires additional training cost and enhances the likelihood of overfitting. Since the main
role of the discriminator is to train the generator, two convolution layers are sufficient to
obtain the ideal generator in the case we consider.

5. Numerical and Experimental Results

The performance of CVP2P is assessed from the two aspects of simulation and experi-
ment. For comparison, we also test the corresponding results of the Multiplicative Regulariza-
tion Contrast Source Inversion (MR-CSI) method, both of which employ the Green’s integral
equation to generate the measured data in simulation as Equations (1) and (2).
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5.1. Training and Testing over MNIST Dataset

The MNIST handwritten digit dataset is used to evaluate CVP2P. As common hand-
written digits dataset in the field of deep learning, the MNIST dataset is commonly adopted
to train and test networks. When the CVP2P method is applied to non-destructive testing,
the permittivity of foreign object generally has a simple distribution with the shape of
circle, ellipse or striped shape. The relative permittivity value is relatively concentrated in
a certain range. Thus, we use some simplified samples, such as the MNIST handwriting
digit dataset, as the training set to obtain their characteristics for foreign object detection,
because they have the similar shape or distribution characteristics. For simplification, We use
binary handwritten digit sets for training to test constant contrast objects with different shapes.
Referring to Figure 1, the imaging region Σ is a square with size of 5.6λ0 × 5.6λ0(λ0 = 7.5 cm
is the effective wavelength in vacuum). For numerical simulation, the imaging region Σ
is composed of 110 × 110 uniform sub-squares. 32 transmitting antennas are uniformly
distributed on the circular region D containing the imaging region Σ. And the radius of this
region is represented by R = 10λ0. Meanwhile, 32 receiving antennas are used to collect the
scattered electric field of the probed scene. The relative permittivity εr of digit-like objects
are equal to 3, in this full-wave electromagnetic simulation [53]. In addition, in order to
test the ability of the network, we consider adding 10% random white noise to data of the
scattered field for testing in this research. Note that we only train CVP2P in the noiseless
case and test the network with noise-added data. From the MNIST dataset, we randomly
select 7000 images as the samples’ contrast. Through solving the full-wave solution of
Maxwell’s equations, the electromagnetic responses of multiple inputs and multiple out-
puts are obtained. Afterwards, 7000 BP results can be generated as initial contrast. These
data are used as the input of CVP2P, while the 7000 samples’ contrasts are considered to be
the input label and expected output of CVP2P. As a result, 7000 data pairs are randomly
broken into two groups: 6000 for network training, and 1000 for network testing.

The training of CVP2P was administered by the ADAM optimization method [54],
and the epoch setting is 12. The learning rates are set to 0.0002. The filters are initialized
randomly. All computations are performed in a small-scale server with the configuration
of 128 GB access memory, with Intel Xeon E5-1620v2 central processing unit and NVIDIA
GeForce GTX 1080Ti. We implemented and trained the CVP2P using Tensorflow library [55].
And the MR-CSI algorithms are implemented in Matlab 2018. Each iteration (including
forward and backward pass) takes about 1.2s, and the complete training takes about 4h.

Figure 3a shows the ground truths of the simulated MNIST handwritten digits for the
nonlinear inverse problem. Figure 3b,c show the image obtained by BP and the MR-CSI
with 1000 iterations, respectively. This is a clear indication that neither BP nor MR-CSI can
provide acceptable results in high contrast cases. The corresponding results that calculated
by CVP2P with cCNNs of 3, 6, and 9 layers are shown in Figure 3d(d-1,d-2,d-3), respectively.
The results illustrate that more parts of the nonlinear features in inverse scattering problem
can be learned by CVP2P.

In order to compare the impact of different methods on imaging quality, the so-called
Peak Signal to Noise Ratio (PSNR) and Correlation Coefficient (CC) are used as qualitative
measure metrics to assess image quality. For CVP2P method, the results of cCNN with 9
layers are selected to evaluate the image quality, because it can be seen intuitively that the
reconstruction result of cCNN with nine layers is better for all the cases we consider. The
formula to calculate CC and PSNR are as follows:

CC =
Cov(X, Y)√
D(X)

√
D(Y)

(12)

PSNR = 20 log(
MAXI√

MSE
), (13)

where X is the real part of the reconstruction, Y is the real part of the original model, D(·)
and Cov(·) represent the variance operator and covariance operator, respectively. The
possible maximum pixel value is represented by MAXI . MSE is the Mean Square Error
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between the original image and the reconstructed image. Tables 1 and 2 respectively show
the corresponding peak signal-to-noise ratio (PSNR) and CC of different methods.

Figure 3. Example 1: Reconstructed results of contrast are obtained by different imaging algorithms.
(a) Sixteen ground truths. (b) BP results, which are used as the input of CVP2P.(c) MR-CSI results of
1000 iterations. (d) CVP2P results, where (d-1), (d-2), and (d-3) represent the results of the cCNNs
with three layers, six layers, and nine layers, respectively.

Table 1. Peak signal-to-noise ratio (PSNR) results for the reconstructions in Figure 3.

Ground Truths for Testing BP MR-CSI CVP2P

9.837 11.67 20.94

9.92 10.68 20.34

10.95 12.58 21.57

10.25 9.837 20.07

10.57 10.64 20.3

9.702 10.88 19.27

9.567 10.56 20.38

9.614 9.725 19.42

9.665 9.885 19.65

10.46 11.736 20.59

9.556 9.323 19.13

9.925 9.756 19.15

9.724 10.37 20.22

10.02 10.37 18.4

10.7 14.04 21.61

9.951 10.23 20.12

As can be seen from the above table, the value of the qualitative measure metrics for
CVP2P is much higher than the traditional method. And for PSNR and CC, higher values
mean better image quality.

We note that in this case, the well-trained CVP2P, BP and MR-CSI algorithm takes
about 1 s, 8 s and 10 min to reconstruct an image, respectively. The computation time of the
CVP2P is much faster than the traditional method. Accordingly, it can be concluded that the
CVP2P is significantly better than MR-CSI method from two aspects of image quality and
computation time in this high-contrast case. Moreover, we also consider the architecture
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with more cCNN layers to learn more multiple scattering rules for improving the imaging
quality. In the inverse scattering problem, we usually hope that the reconstruction result
is consistent with the ground truth. However, the PSNR value fails to keep in line with
the subjective judgment of human eye. In other words, when the PSNR value is high,
the reconstruction may be unsatisfactory. PSNR performs poorly in predicting subjective
image quality. Thus, the CC becomes the only indicator to evaluate the imaging quality in
later cases.

5.2. Testing over Letter Targets with Trained Networks

We carry out another set of numerical simulations so as to verify the superiority of
the method. In this test, the MNIST dataset is still invoked as the training set of CVP2P.
Meanwhile, the test objects have the shape of English letters and the relative permittivity is
set to 3. Other parameters are all the same as the Example 1.

Table 2. CC results for the reconstructions in Figure 3.

Ground Truths for Testing BP MR-CSI CVP2P

0.666 0.714 0.972

0.641 0.661 0.968

0.747 0.758 0.975

0.672 0.594 0.967

0.718 0.642 0.967

0.646 0.667 0.958

0.637 0.639 0.968

0.632 0.576 0.962

0.628 0.585 0.963

0.707 0.724 0.969

0.599 0.551 0.96

0.644 0.589 0.959

0.622 0.616 0.967

0.666 0.627 0.951

0.732 0.838 0.973

0.670 0.618 0.966

Figure 4 shows the reconstruction results based on different inverse scattering methods,
where ground truths is displayed in the first row. The imaging results of the BP, MR-CSI
and CVP2P are illustrated in the second, third and fourth rows, respectively. We use CC to
compare the image quality of the reconstruction with all the three methods above, which
is shown in the Table 3. Moreover, the reconstruction time with the trained CVP2P takes
less than 1 s, while the MR-CSI method takes the reconstruction time of about 10 min with
1000 iterations. The BP algorithm takes 8 s because of its low computational complexity.
Because the probed object has relative high contrast, the MR-CSI method unable to produce
satisfactory reconstruction results. Therefore, the CVP2P exhibits significantly better than
BP and MR-CSI from the aspects of imaging quality and time.

Through the above discussion, we can conclude that although the network is only
trained by the MNIST dataset, we can still obtain satisfactory reconstruction results for
different types of objects with the trained CVP2P. This indicates that the CVP2P can learn
the generalizable mapping between ground truth and the input in a similar electromagnetic
inverse scattering scenario regardless of the shapes of scatters. We clearly observed that
the CC of the CVP2P method is much higher than the BP and MR-CSI method. In other
words, the CVP2P can learn more accurate features of the nonlinear imaging models.
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5.3. Tests with Lossy Scatterers

We further verify the versatility of the CVP2P method by reconstructing lossy scatterers.
Other parameters are all the same as the Example 1 except for the complex value contrast.

In the first two columns of Figure 5, the true profiles of three ground truths are shown.
The real and imaginary parts of relative permittivity are in the range of 1–3 and 0–1 in the
training set of Example 3 , respectively. The reconstructed results by the CVP2P are also
displayed in Figure 5, and it is seen that these scheme achieve acceptable results for lossy
scatterers. We use CC to compare the image quality of the reconstruction with real and
imaginary parts, which is shown in the Table 4.

Figure 4. Example 2: Reconstructed contrast of letter-shaped objects are obtained by different imaging
algorithms. The final reconstruction results are presented in the second, third, and fourth rows,
respectively. The ground truths are presented in the first row.

Table 3. CC results for the reconstructions in Figure 4.

Ground Truths for Testing BP MR-CSI CVP2P

0.648 0.829 0.943

0.448 0.857 0.976

0.694 0.861 0.963

0.697 0.76 0.975

0.634 0.783 0.914

0.685 0.756 0.956

Table 4. CC results for the reconstructions in Figure 5.

Ground Truths for Testing BP MR-CSI CVP2P

R 0.966 0.986 0.979
I 0.956 0.970 0.968

5.4. Testing Pre-Trained Networks by Experimental Data

In order to have a deeper understanding on CVP2P, the homemade measurement sys-
tem for imaging are used to obtain Experimental data of antenna array for generalizability
verification. We first built a Multi-antenna measurement system to provide experimental
data. The picture of the experimental system is shown in Figure 6.

The system works at 3–5 GHz with 24 balanced Vivaldi antennas, which are evenly
placed on a cylinder with a radius of 22.5 cm. Each Vivaldi antenna is 7 cm long, and it is
7.3 cm wide.The maximum imaging domain, D, consisted of a circle of radius 17 cm, located
at the center of the chamber. If a square domain is used, the maximum size is a length
of 18 cm. In practice, we have used a maximum imaging domain, D, with 10 cm sides.
A vector network analyzer (KC901V) is connected to antenna via Agilent Coaxial Matrix
Switch for transmitting and receiving signals, which provided port isolation of greater than
100 dB over the frequency range of interest. A host computer is connected to the vector
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network analyzer via USB to collect data. One antenna is used as the transmitting antenna,
and the other 23 antennas are used as the receiving antenna, and the 1 × 23 transmission
measurements of Sa,b is obtained. Replace another antenna as the transmitting antenna
and repeat the same operation. All data sets had 24 × 23 23 transmission measurements
of Sa,b (reflection measurements, Sa,a, were excluded from these data). The target is made
of a square wooden block with a side length of 5 cm. For numerical simulations, the
imaging region Σ is a square with size of 0.1 m × 0.1 m, which is evenly divided into
64 × 64 sub-squares.

Figure 5. Example 3: Reconstructed contrast of lossy scatterers by the CVP2P are shown in the
third and fourth columns, respectively. The ground truths are shown in the first two columns of
Figure 5. Among them, R and I are defined as the real and imaginary parts of the complex value
contrast, respectively.

Figure 6. Microwave tomography system. 24 Vivaldi antennas were connected to a network analyzer
via 6 Agilent Coaxial Matrix Switch.

We use CVP2P trained by MNIST dataset to test the experimental data. Figure 7a
shows the target (Ground truth) where the yellow object is a square wooden block and
its relative permittivity is 2. Figure 7b–d shows the results of the BP, CVP2P and MR-CSI
method at the working frequency of 4.4 GHz, respectively. Although the experimental
data is extremely different from the simulated data of the MNIST dataset, the results of
the CVP2P are satisfactory and superior to the MR-CSI in terms of image quality and
computational efficiency. It should be noted that it takes 10 min and 1000 iterations for
MR-CSI to produce these results. The computational time of the CVP2P is less than 1 s,
which is much faster than MR-CSI.

Although the CC of the reconstructed image produced by CVP2P is as high as 0.9625,
the imaging result still has artifacts and rough boundaries. This shows that the generaliza-
tion ability of the network is relatively strong.
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Figure 7. Experimental results reconstructed by different methods. The Ground Truth is a square
wooden block with a side length of 5 cm as shown in (a). (b–d) are the reconstructed results using BP,
CVP2P and MR-CSI, respectively. The CC between the image reconstructed by different methods
and the ground truth is equal to 0.59792, 0.9625 and 0.8616, respectively.

6. Conclusions

In this paper, we establish a deep learning framework, which can be applied to inverse
scattering problem. Further, we clearly demonstrate that our method has the ability to
reconstruct the objects with high contrast and achieve acceptable outcomes. The CVP2P
can produce the contrast image with more accuracy by learning, which is illustrated by
our quantitative and comparative research in simulations and experiments. Since the
CVP2P is a non-iterative method, it can greatly reduce the computational cost and is
very suitable for handling large-scale inverse scattering problems. Compared with the
traditional method, such as MR-CSI, CVP2P achieves a better result in image quality and
computational efficiency.

However, in the deep learning process, lack of interpretability is a major issue for
our proposed scheme. As shown by the results described above, although the CVP2P
is significantly superior to other inverse scattering methods, the mapping relationship
learned by CVP2P is still not so clear. It leads to uncertainty as to how the CVP2P is able to
estimate the contrast of ground truth from the initial contrast. However, we must add that
many deep learning schemes involve such a problem.
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