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Abstract: Visual understanding of the implied knowledge in line charts is an important task affect-
ing many downstream tasks in information retrieval. Despite common use, clearly defining the
knowledge is difficult because of ambiguity, so most methods used in research implicitly learn the
knowledge. When building a deep neural network, the integrated approach hides the properties of
individual subtasks, which can hinder finding the optimal configurations for the understanding task
in academia. In this paper, we propose a problem definition for explicitly understanding knowledge
in a line chart and provide an algorithm for generating supervised data that are easy to share and
scale-up. To introduce the properties of the definition and data, we set well-known and modified
convolutional neural networks and evaluate their performance on real and synthetic datasets for
qualitative and quantitative analyses. In the results, the knowledge is explicitly extracted and the gen-
erated synthetic data show patterns similar to human-labeled data. This work is expected to provide
a separate and scalable environment to enhance research into technical document understanding.

Keywords: data generation; knowledge template; line chart understanding; neural networks

1. Introduction

Understanding the propositions in chart images is a basic task to understand technical
documentation. For this task, a variety of problem settings and machine learning solutions
have been proposed [1–5]. Because of the ambiguity in defining a standard of knowledge
to extract from a chart, in most studies, the task is indirectly solved as part of a larger
integrated task as image caption generation.

This end-to-end style of problem solving can hinder research in academia in finding
optimally configured deep neural networks for chart understanding. For solve sequential
tasks at once, many deep networks are successful, such as neural machine translation [6],
compared with the conventional approach of dividing and conquering the integrated
tasks [7,8]. This is not the only case observed in this specific area. Deep neural networks
showed high-accuracy image classification by mitigating the drawbacks of decomposing
feature extraction and abstraction [9]. Because of the impact of the end-to-end style of
problem solving, many deep network researchers configure a whole architecture first
and analyze its macroscopic behavior. However, if we do not sufficiently understand the
properties of separate tasks, architecture configuration to find the optimal generalization,
model capacity, connections, and the required input features for each layer are delayed
because all the settings should be searched from scratch. The optimal settings for each task
can be hidden because of the effects of merging all integrated tasks in the search.

To address this problem in this paper, we propose a problem definition for the explicit
analysis of a chart image, provide an algorithm to generate supervised data, and share
them (https://github.com/cy-sohn/LCUdataset_generator (accessed on 9 March 2021)).
To the best of our knowledge, problem definition and shared data for understanding
statements implied in a line chart have been rarely proposed for helping with microscopic
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architecture design. We focused on understanding knowledge in line chart images from
visual perspectives rather than text-mixed information, called line chart understanding
(LCU) in this paper. In the proposed definition, we test well-known and simply tuned
convolutional neural networks for image analysis [10]. They are configured for multitask
learning [11,12] with various classification and regression subtasks to determine propo-
sitions and their numerical arguments. The contributions of this work are summarized
as follows:

• proposing a definition of knowledge implied in a line chart;
• providing an algorithm to automatically generate input chart images with their labels;
• analyzing the properties of the task and data by applying well-known neural networks

to synthetic and real datasets.

We note that the main contribution is defining LCU and providing synthetic data with
an algorithm validated with human-labeled real data. The neural network configuration is
just an example we use to provide easy-to-obtain performance and intuition about this task
for readers.

In Section 2, we explain state-of-the-art works related to chart understanding, and
in Section 3, we introduce the problem definition for specifying target chart images and
the knowledge template. Section 4 describes the algorithm to generate synthetic data.
Sections 5 and 6 show experiment setups and their results in the synthetic data and human-
labeled real data. In Sections 7 and 8, we conclude and discuss future challenges.

2. Related Works

Deep-learning-based chart understanding has been proposed [13–16], but these works
focused on estimating the positions of chart objects rather than understanding implied
knowledge in a chart. References [1–4,17] introduced methods to extract data from a chart
or to convert data to other forms. They correlated the recognized results to text and graphic
information shown in technical chart images rather than extracting implied statements as
LCU. Reference [18] introduced the object detection network for the evaluation of scientific
plots. This work aimed to build a model to understand a horizontal bar graph by estimating
its numerical attributes. LCU targets line charts and extracting implied propositions instead
of estimating the numerical values. Chartsense [4] uses deep-learning-based classifiers
to determine the chart type of a given chart image and extracts simple information from
the chart image, which is an integrated task implicitly using part of the knowledge in a
chart, even though there is no explicit knowledge-understanding module. Figureseer [5]
recognizes texts using character recognition modules and parses them with plots together
for re-designing various charts and applying them to question answering. The mainly
discussion was the estimation of a regression form, rather than capturing knowledge in a
logic form. Reference [3] proposed a similar method for understanding and redesigning
a chart, but its targets are bar and pie charts. It omits a function to predict intents in a
chart different compared with LCU. Chart image generation [19–22] may also include the
chart understanding problem. Reference [19] proposed a method to generate line, bar,
and pie chart images, but it is partially automatic so the scalability of data is limited for
training data-driven models. PlotQA [20], FigureQA [21], and DVQA [22] provide data
used for question answering. PlotQA [20] provides data using the three types of plot
images: horizontal bar graph, line plot, and dot-line graph. Text appearing in the chart
images consists of words in the document texts. Labels, grids, font sizes, tick labels, line
styles, line colors, and legend locations are used as attributes of the chart. In our work, we
set wider ranges for those attributes and used more data samples to express detailed local
implications of a line. Slopes, positions, and the ranges of lines are also more expressive
in LCU. LCU uses both human-labeled and synthetic data for evaluation to confirm the
impact of the synthetic data as a test bed for real-world understanding. FigureQA [21]
provides visual inference data consisting of more than a million pairs of questions and
answers. It can express five types of plot types (line, dot-line, vertical and horizontal bar,
and pie charts) and learn logic such as maximum, minimum, and smoothness. Similar
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to PlotQA, these data have limited forms and attributes in line plots. Attributes such as
title, label, tick, and axis label are fixed, and the shape and legend of the line are expressed
differently for each plot. There are six questions fixed about the line plot in FigureQA that
can be answered by yes or no. LCU has a wider variety of logic templates than FigureQA.
DVQA [22] provides data for understanding bar charts. These data are not only applied to
QA but also used for extracting numerical and semantic information. The targeted chart of
this work is different than that of LCU.

3. Problem Definition for Line Chart Understanding

The goal of the LCU problem is to determine the propositions implied in a line chart
image. Thus, an input image is given and we need to predict the most accurate labels rep-
resenting the propositions and estimate their numerical arguments. In this section, we de-
scribe the targeted image conditions and propositions that compose a knowledge template.

3.1. Input: A Line Chart Image

A line chart has many diverse attributes [23]. To cover a wide range of graphic
perceptions that humans understand [23–25], we set a variety of attributes as shown in
Table 1. To obtain unbiased and diverse lines, we set the range of attributes as large as
possible in a uniform distribution when generating a value for each attribute (the library
used for generating lines: https://matplotlib.org (accessed on 1 January 2021)).

Table 1. Attributes of the frame of the targeted line chart image.

Attribute Range

title
name up to 10 characters
size [5, 10] (font size)
position {top, down}× {left, center, right}

Axis

label up to 10 characters
label position {center, none}
label size [5, 8] (font size)
label color {black, white}
range [0.0, 1.0]
tick label up to 10 characters
tick label size [4, 7] (font size)
tick digit two decimal places
number of ticks [3, 12]

Legend

label up to 10 characters
position {upper, lower} × {right, left}
border {border, none}
border color {black, gray}
background 4 colors

Line
type 4 types including sold and dotted type
color 7 colors
thickness [1, 4] (line width)

Background
color 5 colors
grid {horizontal, vertical, both, none}
plot area frame {lower left, lower left & upper right}

In this problem, we focus on a single chart composed of at most two lines, because this
is the first step to solve before we consider more complex charts. The target chart image
follows these rules:

• An image has a line chart.
• A chart has at most two lines.

https://matplotlib.org
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• All lines are continuous and have different colors.

This input setting is used to evaluate the basic functionality of understanding knowl-
edge. It can be easily integrated with other practical downstream tasks in a multitask
learning or fine-tuning manner. In addition to the rules, the target image uses a standard-
ized chart frame as follows:

• The origin point is located at the left bottom.
• The range of each axis is [0,1] (a standardized range).

The conditions show that any statement assigned to this image is based on visual
perspectives. For example, if a model predicts an optimum in this graph, it generates
an X-coordinate in [0,1]. Then, the selected point is linearly transformed to the range
determined by the attached numerical text labels without any additional process. This
setting has the advantage of clarifying the effect of predicting combinations with tick labels
and images when detecting knowledge determined purely by visual properties.

3.2. Output: A Knowledge Template

The knowledge template proposed in this paper is the set of propositions determined
by classification and regression subtasks. It can also be interpreted as the set of discrete
labels and related numerical arguments. The structure, labels, and ranges of labels of all the
subtasks are shown in Figure 1. Depending on the objects contained in an image, the logics
representing knowledge are categorized into chart, line, and partition groups. In the chart
group, the superiority subtask determines which line is superior to the other line overall. If
lines have a cross point, the superiority has a None label. The line group has three subtasks:
number of partitions is used to recognize the number of segments in the line. We allow one
to three contiguous partitions to imply different logics. The line segment in each partition
can have an independent growth type label. Monotonicity is used to distinguish whether
the slope of the line is positive or negative from the starting to the ending points of a line.
If a clear monotonicity is not observed, the None label is assigned. The minimum and
maximum are subtasks used to detect minimum and maximum real-valued XY-coordinates
in a line, respectively. In the partition group, the range is used to estimate the X-coordinates
used as the partition boundaries. Growth type determines the growth type of the line
segment in each partition. Examples of input images for extracting the knowledge template
are shown in Figure 2.

Figure 1. The structure of logic categories used as labels and their associated numerical ranges in the
proposed knowledge template (white boxes in the third column are classification and grey boxes are
regression subtasks).
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Figure 2. Examples of the generated input images and labels for classification subtasks (In., increasing;
De., decreasing).

4. Data Generation
4.1. Algorithm to Generate Labeled Data

After generating the attributes for a chart image, lines are automatically generated
for the selected labels of the subtasks. The whole process of generating lines and labels
is shown in Figure 3 and Algorithm 1. In the overall steps, we select logics and their
numerical arguments first, and randomly select data points to satisfy the selected labels.

Figure 3. Flow chart of algorithm for data generation.

In the first step, the algorithm randomly generates two points used as the starting and
ending point of a line. The points are in the range of 0 to 1. To determine the number of
logics for a line in between the two points, the algorithms selects the number of partitions
from {1,2,3} and then build partitions by randomly generating intermediate boundary
points. Then, the growth type for each partition is randomly selected from the label set
{inear, logarithmic, exponential}. After selecting a growth type for each partition, the form
of the lines for the selected label is determined as

linear label : y = mx + b (1)

logarithmic label : y = k log (x− a) + b (2)

exponential label : y = keax + b (3)

where x and y are the coordinates of a point; k, a, and b are the parameters to be tuned
for drawing a line to pass all generated samples. The value for k is a randomly selected
number in [1, 5] for linear lines; m and b are approximated for generated data points using
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the Python library. Data points are sampled at regular intervals on the X-axis. In the
algorithm, the range of θ is in [0.3, 2.9]. In logarithmic and exponential functions, b and
k are approximated to pass the initial points. The parameter a is initially fixed in [2, 20]
for the exponential function and [0.85× Xstart, 0.99× Xstart] for the logarithmic function,
where Xstart is the X-coordinate of the leftmost initial points. The boundary conditions
locate the lines into the first quadrant. The number of data points positioned in a partition
is in the range of 10 to 50.

Algorithm 1 Generation of synthetic supervised data.

Randomly select the slope of line θ
Randomly select starting and ending points of a line with θ
Randomly select a label for the number of partitions
Randomly select the boundary X-coordinate of partitions
for all p do

Randomly select a label for growth type
Randomly select a line shape in the type
Generate data points
Draw a line in the range of p

end for
Determine labels for line-level subtasks
Determine labels for chart-level subtasks
Return (a chart, a set of labels) pairs

4.2. Detailed Settings for Label Generation

Categories and the range of outputs for each task are shown in Figure 1, which use
the following specific configurations for their output. For the number of partitions, we
assign the number of partitions to each line; therefore, the partition boundaries of lines
are also independent. Growth type is independently assigned to each partition of each
line. Superiority determines whether the first line is greater than the second line in the
overall area. If a chart has only a line, this task is ignored in training. Label 1 means
greater than the second in the overall area, 2 means the opposite case, and 0 means that it
is too ambiguous. If the first line is greater than the second line, the minimum value of the
first line is greater than or equal to the maximum value of the second line. Monotonicity
determines a consistently increasing or decreasing state of a line in its all partitions. We set
the label 1 for monotonic increasing, 2 for decreasing, and 0 for the inconsistent case. We set
the labels by checking the sign and slope of generated lines. Minimum and maximum are
regression subtasks to predict two points whose Y values are the minimum or maximum
overall X-coordinates in a line, respectively. The growth type label is separately assigned to
each partition of each line. Range is the subtask used to predict the meaningful partition
boundaries composed of X-coordinates. In this subtask, the starting point S and ending
point E on the X-axis are predicted. The total number of output variables to predict and
their types are shown in Table 2. Superiority, monotonicity, growth type, and number of
partitions are classification tasks and the others are regression tasks.

Table 3 shows the distribution of labels in the generated 75,000 samples.
Figure 4a,c shows the distributions of minimum and maximum points and mean

X-coordinates of partitions. To visualize the distribution, 1000 images were sampled for
each number of partitions, and the mean X-coordinates for the starting and ending points
were plotted.
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Table 2. Numbers and types of subtasks (the number of output variables to predict is doubled for
two lines in all subtasks except superiority).

Category Subtask Number of Subtasks Type

chart Superiority 1 classification

line

Number of Partitions 2 classification
Monotonicity 2 classification

XY-coordinates for Minimum 4 regression
XY-coordinates fpr Maximum 4 regression

partition

X of start & end for 1 partition case 4 regression
X of start & end for 2 partition case 8 regression
X of start & end for 3 partition case 12 regression

Growth Type labels for 1 partition case 2 classification
Growth Type labels for 2 partition case 4 classification
Growth Type labels for 3 partition case 6 classification

Table 3. Proportion of labels in training data.

Subtask Class Proportion

Number of Line 1 49.92%
2 50.08%

Number of Partitions
1 33.43%
2 33.22%
3 33.35%

Superiority
None 86.85%
Line 1 6.77%
Line 2 6.38%

Monotonicity
None 51.27%

Increasing 24.42%
Decreasing 24.31%

Growth Type

Linear Increasing 16.74%
Linearly Decreasing 16.7%

Logarithmic Increasing 16.57%
Logarithmic Decreasing 16.45%
Exponential Increasing 16.73%
Exponential Decreasing 16.82%

4.3. Detailed Settings for Input Image Generation

The default resolution of a chart image is 100 dpi at a figure size of 640 × 480. The
background color of the chart area is randomly selected except for black. The grid lines
and the chart frame containing the axes are turned on or off. The direction of the lines
is vertical, horizontal, or both. Text elements appearing on a chart can contain up to 10
uppercase or lowercase characters. This condition for text generation is equally applied to
the chart title, X-axis label, Y-axis label, and line labels. The number of ticks in the chart is
between 3 and 12 and represented with two decimal places.
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(a) minimum & maximum (red dot: minimum, blue dot:
maximum)

(b) initial points

(c) partitions (Each box represents a range of X-coordinate of partitions. nP_Pm: X-coordinates of mth partition in
n partition number case)

Figure 4. Distribution of randomly generated attributes. All these distributions show the large coverage of lines covered by
the algorithm. (a) Minimum (blue dots and maximum (red dots) points. Lines are drawn to pass the minimum and the
maximum. (b) The initially selected two points of a line. They were all randomly selected and the leftmost point is the
starting point and the rightmost point is the ending point. (c) The distribution of X-coordinates of the boundaries. In each
box, the X-coordinates are randomly sampled.

5. Experiments

The goal of the following experiments was to show the easy-to-obtain performance of
well-known neural networks and their difference between human-labeled and synthetic
test data. We note that proposing a novel and extensively optimized architecture was
beyond the scope of this study.

5.1. Model Configuration

To evaluate an easy-to-obtain performance in this problem, we tested ResNet-50,
Wide-ResNet-50-2, and Chart-Understanding-Spatial-Transformer-Network (CU-STN), as
illustrated in Figure 5. ResNet-50 [26] and Wide ResNet-50-2 [27] were modified to leave
the spatial information. The average pooling layer was replaced by the conversion layer
(channel = 128, kernel = 3, and stride = 2). Their fully connected layer was also modified
to fit the output size. CU-STN is a network configuration that was proposed to apply
the spatial transformer network to the ResNet backbone resized for LCU. This network
constructs a more robust network given the flexibility of the positions of the lines on a
chart. The number of parameters for ResNet-50, Wide-ResNet-50-2, CU-STN is 26, 69, and
9 million, respectively.

5.2. Training Setting

The training loss is the sum of loss functions for 17 classification and 32 regression
subtasks. We used cross-entropy for classification and average mean squared error for
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regression. The problem types for each subtask are shown in Table 2. The total loss function
Ltotal is defined as follows:

Ltotal = ∑
i∈S

L(i)P(i)Li, (4)

L(i) =

{
1, if a line for the subtask i exists
0, otherwise

(5)

P(i) =

{
1, if a partition for i exists
0, otherwise

(6)

where S is the set of all subtasks and Li is the ith subtask. Because the number of subtasks is
dependent on the value of the selected line and the partition number, we used the indicator
functions L and P to determine which subtasks to include in the total function. For
monotonicity and superiority, ambiguity is very high and their proportion is not uniform
as shown in Table 3. To remove the bias in training, we set the balancing parameters as
shown in Table 4 multiplied with cross-entropy loss functions. The balancing parameter
was set to the ratio of the inverse of the corresponding proportions. To investigate various
behaviors with respect to the generated data size, we prepared four training data sets
composed of 1000, 5000, 10,000, and 50,000 sample images. The detailed hyperparameter
settings for training are listed in Table 4.

Figure 5. Architecture of CU-STN (θ: transformation parameter of STN for grid generator).

Table 4. Hyper-Parameter Settings (In.: Increasing, De.: Decreasing).

Dataset Hyper-Parameter Value

Common batch size 64
pretrained model false

Training

validation ratio 0.5
maximum update step 500,000
optimizer algorithm Adam
optimizer hyperparameter (alpha, beta) (0.9, 0.999)
learning rate 0.001
weight decay 0
learning rate scheduler algorithm ReduceLROnPlateau
scheduler hyperparameter (patience) min(b total epochs

10 c, 10)
scheduler hyperparameter (factor) 0.1

Test balancing parameters ( monotonicity (None, In., De.) (0.58, 1.21, 1.21)
label weights for superiority (None, Line1, Line2) (0.11, 1.40, 1.49)
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5.3. Evaluation Setting

To evaluate performance, we prepared three test data sets composed of 500 synthetic
images, 5000 synthetic images, and 500 human-labeled real images. The best validation
model observed in training was used for test evaluation.

6. Result and Discussion
6.1. Quantitative Analysis

The accuracy and error results from 5000 synthetic test images are shown in Table 5.
The growth type results are split to the three cases of number of partitions. The best results
are displayed in bold text. Growth type per partition is more complex than the other tasks.
This result may have been caused by the high ambiguity of the growth type values of
short lines. The decrease in the accuracy was an expected pattern because the accuracy
in each case is the percentage of the images that obtained the correct labels for all the
partitions involved. Superiority is the simplest task. The estimation of partition boundary
showed significant errors. Minimum and maximum estimation are more complex than the
boundary estimation.

Table 5. Performance for all subtasks in synthetic test data (5000 samples; part., the number of partitions; mono., monotonic-
ity; super., superiority; |Dtr|, size of training and validation data; MSE, mean square error; W-ResNet-50-2: Wide-ResNet-50-2).

Classification Accuracy (%) Average MSE (10−1)

|Dtr|
Growth Type Part. Mono. Super. Range Min &

p1 p2 p3 p1 p2 p3 Max

R
es

N
et

50

1K 21.47 4.26 0.78 37.24 49.41 81.19 0.65 0.53 0.45 0.70

5K 26.27 5.60 1.48 40.24 56.72 70.61 0.55 0.50 0.44 0.69

10K 36.48 9.36 1.86 42.57 61.68 62.02 0.55 0.53 0.38 0.64

50K 76.23 49.92 25.93 60.85 76.83 76.17 0.24 0.19 0.15 0.35

W
-R

es
N

et
50

-2

1K 16.95 3.09 0.58 34.76 36.87 65.37 0.53 0.39 0.30 0.70

5K 31.92 6.65 1.63 40.87 49.49 58.71 0.46 0.40 0.32 0.50

10K 35.43 9.66 2.29 46.66 63.13 76.00 0.35 0.24 0.19 0.40

50K 78.85 52.80 30.75 64.24 77.25 80.87 0.25 0.20 0.16 0.36

C
U

-S
TN

1K 20.02 4.18 0.39 34.22 47.60 84.14 0.55 0.35 0.27 0.64

5K 17.15 3.22 0.43 32.58 42.59 87.16 0.48 0.32 0.22 0.63

10K 38.01 11.96 2.68 50.99 69.88 73.51 0.38 0.24 0.19 0.39

50K 71.71 46.28 21.04 62.15 75.13 77.47 0.27 0.18 0.15 0.36

C
U

-S
T

N
+

sc
he

du
le

r 1K 16.26 2.93 0.74 34.52 33.51 84.87 0.49 0.33 0.23 0.63

5K 17.15 2.97 0.23 33.28 42.59 87.16 0.47 0.32 0.22 0.62

10K 37.09 10.79 1.86 45.31 65.51 77.51 0.35 0.25 0.20 0.39

50K 69.45 37.42 13.63 59.25 76.91 81.19 0.25 0.19 0.16 0.34

According to Tables 6 and 7, the results varied but overall patterns of accuracy of
subtasks were not significantly different between the human-evaluated data. For the
superiority and monotonicity tasks, the proportion of labels is unbalanced compared to the
other subtasks maintaining uniform distribution, so we additionally evaluated F1 scores in
the small synthetic dataset, as shown in Figure 6. In the case of monotonicity, F1 scores
were similar to the accuracy results, which implied that average recall was close to one
rather than zero. Superiority showed a significantly lower F1 score compared with the
accuracy, so the average recalls were also low. This difference was observed even in the
high accuracy near 90%, which implied that the dominating labels had sufficiently large
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precision and recall while the others did not. Because of the high ambiguity of labeling,
this task has high problem complexity.

(a) superiority (b) monotonicity

Figure 6. Comparison of F1 score and accuracy of the (a) superiority and (b) monotonicity subtasks
for synthetic data.

Table 6. Performance for all subtasks in human-labeled real test data (500 samples; part., the number
of partitions; mono., monotonicity).

Classification Accuracy (%) Average MSE (10−1)

|Dtr|
Growth Type Part. Mono. Range Min &

p1 p2 p3 p1 p2 p3 Max

R
es

N
et

50

1K 46.88 5.56 0.00 35.04 44.53 1.05 0.64 0.52 1.15

5K 36.60 22.22 0.00 31.39 53.28 0.56 0.59 0.42 1.41

10K 50.45 16.67 7.14 26.64 69.71 0.84 0.61 0.42 0.82

50K 85.71 69.44 42.86 81.02 89.05 0.49 0.15 0.13 0.69

W
-R

es
N

et
50

-2

1K 21.43 2.78 0.00 20.07 36.86 0.81 0.31 0.25 1.30

5K 38.34 5.56 0.00 43.43 67.15 0.64 0.40 0.23 0.96

10K 65.18 19.44 7.14 28.10 82.48 0.75 0.33 0.16 0.73

50K 86.61 66.67 50.00 79.93 90.15 0.49 0.20 0.14 0.58

C
U

-S
TN

1K 16.52 2.78 7.14 11.68 13.14 1.21 0.45 0.24 1.24

5K 42.86 0.00 0.00 13.14 8.76 0.86 0.31 0.17 1.33

10K 59.38 25.00 0.00 50.00 84.31 0.60 0.29 0.16 0.62

50K 82.14 58.33 42.86 63.14 93.07 0.51 0.20 0.13 0.56

C
U

-S
TN

+
sc

he
du

le
r 1K 20.98 2.78 0.00 5.84 68.61 0.76 0.28 0.17 1.30

5K 42.86 0.00 0.00 81.75 8.76 0.78 0.27 0.16 1.29

10K 50.45 19.44 0.00 22.99 70.07 0.31 0.25 0.09 0.63

50K 72.77 36.11 35.71 45.98 90.15 0.61 0.21 0.18 0.62
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Table 7. Performance of all subtasks with the synthetic test data (500 samples; part., the number of partitions; mono.,
monotonicity; super., superiority; |Dtr|, size of training and validation data, W-ResNet-50-2: Wide-ResNet-50-2).

Classification Accuracy (%) Average MSE (10−1)

|Dtr|
Growth Type Part. Mono. Super. Range Min &

p1 p2 p3 p1 p2 p3 Max

R
es

N
et

50

1K 23.79 3.19 0.41 38.65 51.35 83.75 0.68 0.57 0.44 0.71

5K 28.23 5.98 0.41 37.43 58.78 68.75 0.61 0.55 0.46 0.71

10K 38.71 9.96 2.49 40.68 63.51 61.25 0.53 0.53 0.37 0.64

50K 74.19 55.78 19.09 62.43 76.76 78.75 0.26 0.21 0.15 0.35

W
-R

es
N

et
50

-2

1K 16.53 4.38 0.00 34.86 33.92 68.75 0.56 0.43 0.30 0.71

5K 32.26 7.17 1.24 40.68 50.95 56.67 0.49 0.43 0.32 0.48

10K 36.29 11.16 0.41 45.00 63.92 73.75 0.37 0.24 0.19 0.40

50K 75.00 49.80 26.56 64.59 77.16 80.83 0.26 0.20 0.16 0.35

C
U

-S
TN

1K 21.37 2.39 0.41 34.73 46.49 85.00 0.58 0.36 0.27 0.64

5K 17.74 3.98 0.00 32.84 40.81 88.33 0.52 0.34 0.24 0.62

10K 41.53 11.95 3.32 49.59 71.49 71.25 0.36 0.23 0.20 0.38

50K 68.55 52.59 20.75 63.11 76.76 78.33 0.27 0.18 0.14 0.34

C
U

-S
TN

+
sc

he
du

le
r 1K 18.95 3.19 0.83 33.38 35.00 85.42 0.54 0.35 0.24 0.63

5K 17.74 1.59 0.00 33.51 40.81 88.33 0.51 0.34 0.24 0.62

10K 39.11 9.16 1.66 45.68 66.49 76.25 0.36 0.25 0.20 0.37

50K 70.16 37.05 16.18 58.92 77.84 80.42 0.26 0.19 0.16 0.33

Figure 7 shows the task-wise comparison results between human-labeled real and
small synthetic data. Fluctuation patterns were similar in growth type estimation for one
partition case. The two and three partition cases showed large difference, which were
caused by the ambiguity shown in the quantitative analysis. The number of partitions,
monotonicity, boundary estimation, and minimum and maximum regressions showed
relatively similar patterns.

The validation results were also collected, as shown in Table 8.
In this setting, the ratio of validation and training samples was 1:1. The highest

accuracy was recorded for growth type, partition confidence, monotonicity, and superiority.
The lowest mean square error (MSE) values were recorded for range and minimum and
maximum. As with the test, growth type and range were separately marked according to
the number of partitions. The score was high because it was the best score recorded in each
task during validation regardless of the total loss.

The overall results showed that simple CNN settings resulted in good performance
on most subtasks, but a few tasks had low performance. The cause of this limitation is the
ambiguity of labels in the data, because the rules for data generation with labeling were
mainly based on human intuition. For example, determining linear or logarithmic in many
images was challenging. Beyond the problem of ambiguous labeling, limits in machine
learning perspectives remain. First, we used multitask learning framework, but learning
all subtasks together may not be beneficial depending on their similarity.
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(a) Growth Type for one-partition
case (p1)

(b) Growth Type for two-partition
case (p2)

(c) Growth Type for three partition
case (p3)

(d) Number of Partition (e) Monotonicity (f) Range for p1 case

(g) Range for p2 case (h) Range for p3 case (i) Minimum and Maximum

Figure 7. Comparison of synthetic data (red) and human evaluation data (blue). Bars are the accuracy
and MSE for classification and regression, respectively. Bars in the same color are the results of
models trained with 1000, 5000, 10,000, and 50,000 samples from the leftmost side. Overall subtasks
result show similar tendencies. Detailed numerical results of the tests are shown in Tables 6 and 7.

Table 8. Performance for all subtasks in synthetic validation data (tr., training; va., validation; part., the number of partitions;
mono., monotonicity; super., superiority; |Dtr|, size of training and validation data; W-ResNet-50-2: Wide-ResNet-50-2).

Classification Accuracy (%) Average MSE (10−1)

|Dtr| Growth Type Part. Mono. Super. Range Min &
p1 p2 p3 p1 p2 p3 Max

R
es

N
et

50

1K 27.03 6.72 2.23 41.53 50.84 85.35 0.49 0.44 0.40 0.65

5K 34.24 9.12 2.35 42.16 61.84 85.90 0.54 0.37 0.36 0.61

10K 43.67 12.60 2.82 45.41 69.36 86.70 0.38 0.31 0.24 0.45

50K 75.93 47.70 27.79 61.01 76.18 86.45 0.24 0.20 0.15 0.35

W
-R

es
N

et
50

-2

1K 22.39 5.53 2.28 42.56 51.23 84.98 0.37 0.27 0.25 0.52

5K 35.69 9.59 2.18 44.07 64.21 85.90 0.45 0.34 0.26 0.48

10K 42.53 13.00 2.74 46.89 70.17 86.66 0.35 0.24 0.19 0.39

50K 77.02 52.49 32.30 63.07 76.59 87.28 0.24 0.20 0.17 0.37

C
U

-S
TN

1K 24.71 4.74 2.30 39.71 52.13 84.98 0.41 0.30 0.25 0.58

5K 18.44 4.17 0.97 34.14 42.90 85.90 0.48 0.32 0.22 0.62

10K 477 12.24 2.70 49.25 72.41 86.85 0.38 0.25 0.20 0.38

50K 73.37 45.74 24.13 60.75 75.64 87.63 0.26 0.19 0.14 0.35

C
U

-S
TN

+
sc

he
du

le
r 1K 285 4.35 0.77 37.00 48.25 84.98 0.46 0.31 0.25 0.63

5K 17.24 3.14 1.21 36.51 42.90 85.90 0.48 0.32 0.22 0.62

10K 38.98 11.11 2.62 44.94 66.36 86.66 0.36 0.26 0.20 0.39

50K 72.78 42.01 18.20 60.41 75.78 88.17 0.25 0.19 0.15 0.34



Electronics 2021, 10, 749 14 of 17

6.2. Qualitative Analysis

For Figure 8, we selected two sample images in the synthetic data for each number of
partitions case from the test result from the synthetic data. Figure 8a,b shows the correct pre-
diction results for growth type, and regression tasks still need improvement. In Figure 8c,d,
some partitions are relatively well-predicted but the maximum and minimum values may
be distant from correct points. Growth type labels are partially incorrect, but they are
ambiguous even in human evaluation. In Figure 8e,f, partition and growth type values
show large errors. In the accurate cases of prediction, we obtain somewhat understandable
knowledge in human evaluation, but there are still errors that needs improvement in all
tasks. Similarly, Figure 9 shows the prediction results on real test data. Compared with
the synthetic data, we can see the natural language texts for labels, various ranges of real
tick labels, and other practical attributes. The red bar and blue cross are the prediction
results. The results in this data set are similar to those of the synthetic test dataset. Because
the prediction is completely based on visual perspective, the prediction can be applied to
practical images without the loss of generality.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Example of detailed results on synthetic test dataset. Blue, correct prediction; red, wrong prediction; In, increase;
De, decrease; blue cross, minimum and maximum point; red line:,partition boundary. These test data consist of one line
chart, so superiority evaluation was excluded.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Example of detailed results with the human-labeled dataset. Blue, correct prediction; red, wrong prediction; In,
increase; De, decrease; blue cross, minimum and maximum point; red line, partition boundary. These test data consist of
one line chart, so superiority evaluation was excluded.

7. Conclusions

In technical document understanding, learning knowledge implied in a line chart is
important, but it is conducted together with downstream tasks. This integration slows
research on optimizing the configuration of neural networks used for understanding the
knowledge. The explicit knowledge template proposed in this paper and the algorithm
to automatically generate supervised data can be used as an incubating environment of
models to solve the task. As an example of using the environment, we showed three
configurations of convolutional neural networks and analyzed their performance and
actual prediction cases. The synthetic data showed similar patterns to the human-labeled
real data, showing that this environment can work for incubating models without a data-
size limitation. This shared task is expected to boost research on the understanding of
technical documents.
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8. Future Works

In future work, the domain of applicable charts could be extended. We plan to more
rigorously analyze the human evaluation results.
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