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Abstract: In this work, an innovative approach for the design of a shaped-beam reflectarray (RA)
is presented. It is based on the use of a novel evolutionary algorithm (EA), named Social Network
Optimization (SNO), that presents good capabilities in terms of convergence and reliability, and
therefore it is suitable for optimizing a complex problem such as the one of interest. The full-
wave analysis of a small–medium configuration designed with the proposed approach and the
experimental characterization of a prototype proved the effectiveness of the adopted method.

Keywords: optimization methods; antennas; reflectarrays; antenna radiation pattern synthesis;
shaped beam antennas

1. Introduction

In recent years, the increasing complexity of many engineering problems, involving
a huge number of degrees of freedom, and the enlarging of the available computational
capabilities, increased the use of pseudo-stochastic optimization algorithms: in fact, they
are able to manage a high number of independent parameters and to find an optimal
solution in most cases, but at the cost of high computational effort, which is strictly related
to the complexity of the mathematical model used to properly describe the problem to
be solved.

Among the pseudo-stochastic approaches, evolutionary algorithms (EAs) have been
applied successfully to different families of problems: they are derivative-free, global
optimization algorithms inspired by biological interaction and evolution [1]. In view of
their good features, they have also been applied to several antenna design problems (see,
e.g., [2,3], where examples of the application to electromagnetic problems of the Genetic
Algorithm (GA) or Particle Swarm Optimization (PSO), eventually hybridized with other
approaches [4], are collected): they are generally complex problems and therefore they
require the use of an efficient algorithm, properly tailored for their solution.

Since their introduction at the end of 70s [5], the importance of reflectarrays (RAs) [6,7]
has been growing in different fields of applications [8]; depending on the type of utilization,
RAs must provide wide-band behavior [9,10], beam steering [11] and reconfigurability [12],
or must radiate a shaped beam. In most of these cases, they represent a good alternative to
conventional reflector antennas, since they are less bulky and do not require the use of a
mold for their manufacturing, providing a consequent reduction of production costs.

The design of a reflectarray can be effectively carried out with evolutionary strategies
that can be adopted with two different aims: the optimization of the single unit-cell or
that of the whole planar reflecting surface. In [13,14], two different approaches, based
on the use of PSO and GA respectively, were used for the design of arbitrarily shaped
dual-band re-radiating elements, whereas in [15] the GA was adopted for enhancing the
bandwidth of the proposed RA unit-cell. The optimization of the entire RA represents a
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challenging problem, since it involves thousands of degrees of freedom, and therefore the
optimization’s computational effort can increase dramatically if a suitable approach is not
used; moreover, it is also important that the algorithm does not destroy the quasi-periodic
distribution of the re-radiating elements, to guarantee the correct behavior of the antenna.
In [16], simulation results of the application of the multi-objective Brainstorm Algorithm
to the optimization of the aperture phase of a multi-focal RA are summarized; in [17] GA
was adopted for the optimization of a multi-beam double RA, and in [18] it was applied
to the design of a reconfigurable liquid-crystal reflectarray working at 108 GHz. PSO was
the method selected in [19] to optimize a folded reflectarray, and in [20] some preliminary
results of the application of the MQC10-Biogeography-Based Optimization (MQC10-BBO),
an enhanced version of the Biogeography-Based Optimization (BBO) [21], to the design of
a multi-beam RA are presented. Except for [19], where the outcomes of the experimental
characterization of a pencil-beam prototype are shown, in all the other cited cases, only the
preliminary results of the numerical analysis of the optimized configurations are presented.

For what concerns shaped-beam RAs, a first solution to obtain a cosecant squared
radiation pattern was introduced in [22], and in [23] Pozar presented the results relative
to the design of a configuration providing the coverage of Europe. In [24], the beam
was shaped for having China-wide coverage. In [25] an efficient single-layer unit cell
was introduced to enhance the bandwidth of a shaped-beam RA; in [26] it was used in
conjunction with a typical machine learning method, support vector regression analysis,
to design the reflectarray. Another approach for the design of shaped-beam RAs was
introduced in [27], according to which the antenna synthesis was formulated as an inverse
scattering problem, and the non-radiating currents were used as additional degrees of
freedom for design.

In this paper, the design of a shaped-beam RA with a cosecant squared radiation
pattern is based on the use of an efficient EA, the Social Network Optimization (SNO) [28],
which mimics the behavior of the people interacting through a social network [29]. This
algorithm has been previously applied to different antenna optimization problems, ranging
from the sparse array optimization [30] to the design of a pencil-beam reflectarray [31],
and of a transmitarray [32]: in all the cases it showed good convergence and reliability.
Moreover, in [33], some very preliminary numerical results on its application to the design
of a center-fed shaped-beam RA are summarized: in view of them, here a more complex,
offset-fed configuration is considered, and the design procedure is also validated through
the experimental characterization of a prototype.

The paper is structured as follows: in Section 2 the SNO features are summarized;
in Section 3 the shaped-beam design process is described; in Section 4, the performance
of the SNO is first compared with that of other optimization algorithms applied to the
same problem, and then it is validated through the full-wave analysis of an optimized
configuration and with the measurements of a prototype. Finally, in Section 5 some
conclusions are drawn.

2. Social Network Optimization

Social Network Optimization is a population-based evolutionary optimization algo-
rithm inspired by the online social network information sharing mechanism.

Like most of the other EAs, SNO is based on a population of candidate solutions
that evolves during the optimization process. The general algorithm procedure (shown
in Figure 1) consists of three different phases: the candidate solutions’ evaluations, the
information selection and the creation of a new population of candidate solutions.
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Figure 1. General flow chart of Social Network Optimization (SNO).

Each user of the Social Network is characterized by an opinion that is shared with the
other users by means of posts. The process of of creating a post starting from an opinion is
called linguistic transposition and it is implemented in SNO by means of a suitably defined
Gaussian mutation. The posts, out of metaphor, represent the candidate solutions of the
problem to be optimized, and their effectivity may be measured in terms of their visibility
value that maps the cost value associated with each candidate solution (Figure 2).

Figure 2. Details of the post-evaluation process.

The information sharing and selection process requires one to update his opinion, and
therefore the post population, at each iteration; this is performed through the action of two
different groups of influencers that are active for the users: the friends, who evolve working
on proximity rules, on the basis of the opinions; and the trusted, who are selected according
to the visibility values of their posts. Once these two groups are updated, each user of the
social network selects the information that concurs to his new opinion’s definition. These
new opinions, which may differ at every single run, are then combined for creating an
appealing idea.
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The appealing ideas are the basic elements for the third algorithm step, i.e., the creation
of the new population. The interaction operator implemented in SNO is based on the
assumption of a [34]:

ot+1 = ot + α[ot − ot−1] + β[at − ot] (1)

where ot+1, ot and ot−1 are the user’s opinions respectively at time t + 1, t and t− 1; at is
the user’s appealing idea; and α and β are two algorithm parameters, whose value highly
affects the algorithm behavior: when α is predominant

ot+1 ≈ (1 + α)ot − αot−1 (2)

i.e., the past history of the user strongly affects its evolution and the algorithm behaves
similarly to the PSO. Otherwise, when α→ 0

ot+1 ≈ (1 + β)ot − βot (3)

and the influence of the appealing ideas is predominant over the user past history. The
effects of α and β and the selection of their best value have been discussed in detail in [35].

The SNO performance has already been assessed through its comparison with other
EAs (such as GA and PSO) when applied to standard benchmarks and to different an-
tenna problems [30,36]: the results summarized in these papers confirm that the SNO
outperformed, in most of the analyzed cases, the other considered methods in terms of
convergence rate, solution quality and reliability. These features make the SNO suitable for
the solution of the problem considered here, characterized by a high number of variables
and a computationally expensive cost function.

3. Shaped-Beam Reflectarray Design

The problem addressed here is the design of a reflectarray antenna, with a shaped-
beam radiation pattern. From a practical point of view, it consists of determining the
optimal phase distribution on the RA surface (and therefore its layout) to satisfy given
constraints on the radiation pattern for a fixed type and position of the feed.

Assuming that the reflectarray surface is discretized with Nc unit cells, the degrees of
freedom of the problem are in general Nd f = Nc × Np, where Np is the number of variable
geometrical parameters characterizing each unit cell. Without loosing in generality, in the
examples considered here Np = 1, and therefore Nd f = Nc; moreover, if the configuration
to design is symmetrical with respect to a plane (here the vertical one), the number of
free variables reduces to Nd f = Nc/2. Nd f represents the dimensions of the optimization
problem: since even a medium size aperture is generally discretized with some hundreds
of unit cells, it is evident that the problem size is quite large. Moreover, the variables
can be defined on different ranges of variation (this occurs especially when Np 6= 1) and
therefore a normalized search space for the optimization algorithm is defined as [0, 1]Nd f :
the encoded variables are mapped to the physical ones by means of a linear transformation
that takes into account the lower and upper bounds of their range of variation.

The constraints on the radiation patterns are taken into account by proper masks.
Differently to what was done in [33], where the radiation pattern had to satisfy two masks
defined in the two principal planes, here 3D masks have been defined, to avoid the risk
that the side lobe level (SLL) increases in the angular regions that are out of the control
of the optimization process. The cut of the two masks in the principal planes is shown
in Figure 3: on the left there are those in the E-plane, that corresponds to the yz plane in
Figure 4, while the plot on the right refers to the H-plane (corresponding to to the xz plane
in Figure 4). The upper mask serves to shape the radiation pattern in the E-plane: it is
described by a csc2(θ) dependence with θ in the range [20◦, 50◦]. For the other directions
(θ, φ) out of the main beam the SLL limit below −15 dB has been imposed. The lower mask
is mainly used to control the ripple of the shaped-beam. The cut of the two masks in the
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E-plane is shown on the left of Figure 3, while the cut in the H-plane (corresponding to the
xz plane in Figure 4), where the radiation pattern is just characterized by a pencil beam
and side lobes below −15 dB and therefore only the upper mask is used, is plotted on the
right of Figure 3.

Figure 3. Masks implementing the constraints on the radiation pattern. (left): cut in the E-plane; (right): cut in the H-plane.

Once the masks have been introduced, a first cost value is defined as the sum of the
errors between the masks themselves and the radiation pattern:

cmasks = ∑
θ,φ

errUM(θ, φ) + γ ∑
θ,φ

errLM(θ, φ) (4)

where errUM(θ, φ) and errLM(θ, φ) represent the error between the upper (or lower) mask
and the radiation pattern, computed for a given direction (θ, φ); γ is a proper scaling factor
used to drive the optimization process toward the desired target.

In addition to this error, a second cost component has been introduced to ensure the
correct pointing direction of the shaped beam. Mathematically, this is expressed in the
following way:

cscan = (θmax − θdes)
2 (5)

where θmax is the actual direction of the maximum gain, evaluated at each iteration of the
optimization procedure, and θdes is the desired pointing direction.

The cost value that the SNO minimizes at each iteration is therefore a linear combina-
tion of (4) and (5).

Figure 4. Sketch of the considered reflectarray (RA) configuration.

The choice to force the radiation pattern to satisfy 3D masks would increase the
computational cost of the optimization procedure: to keep it under control, it is not possible
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to evaluate the radiation pattern at each step of the procedure with a full-wave approach,
but it is instead necessary to use a sufficiently accurate but also less computationally
expensive method; here, the Aperture Field Method (AFM) introduced in [6] is adopted.

4. Validation of the SNO-Based Procedure

The considered configuration consists of a medium-small aperture, discretized with
24× 24 re-radiating elements. Each element is a simple square patch printed on a Diclad
527 substrate, with εr = 2.57, tanδ = 0.0022 and thickness h = 0.8 mm. In order to avoid
grating lobes, the cell size has been chosen as equal to λ0/2, where λ0 is computed at the
design frequency f0 = 30 GHz. The phase and the amplitude of the reflection coefficient
provided by each unit cell as a function of the side W of the patch, were computed with
the software CST Microwave Studio, considering each element embedded in an infinite
periodic lattice. The analysis, performed considering the case of orthogonal incidence,
proves that the amplitude of Γ is almost 0 dB everywhere, with a negligible decrease in
correspondence of the patch resonant size, while the phase shows a total variation of
300◦ [33].

The planar RA is illuminated by the field radiated by a smooth-wall horn designed
to work in a frequency range centered at 30 GHz [37] and located in offset position, as
shown in the sketch in Figure 4: the focal distance f = 0.87D—D being the size of the RA
and f = FF′ in Figure 4—was chosen to obtain a tapering of –10 dB at the edges of the
reflective surface, while the angle θinc between the direction of arrival of the field radiated
by the feed and the axis ẑ, orthogonal to the RA, is specular to the direction of maximum
radiation θmax of the entire antenna, i.e. θinc = θmax = 15◦.

Since the RA configuration has a symmetry with respect to the vertical plane, the
Nd f = 24× 24 = 576 degrees of freedom reduce to Nd f = 288. The optimization has been
carried on at f0.

4.1. Comparison with Other EAs

To check the effectiveness of the described optimization process, first the algorithm’s
convergence capability and reliability have been tested. Several separate trials have been
run, assuming as the termination criterion for each of them 70,000 objective function calls,
corresponding to a population of 100 individuals and 700 iterations. This termination
criterion has been adopted since 70,000 objective function calls allow most of the trials
to reach convergence; from preliminary tests, it resulted that a further increment of the
number of objective function calls would increase linearly the computational time, without
a significant performance improvement. In Figure 5, eight randomly selected curves of
convergence are plotted, together with their average values, represented by the blue thicker
line. The computed 95% confidence interval of the stochastic process of convergence is also
highlighted by the gray area. These results show good convergence and high reliability for
the SNO, proved by the closeness of the curves relative to the different trials, which are all
in the considered confidence interval.

As a second step, the performance of SNO has been compared with that of other
EAs. In particular, more often assessed schemes as the GA, the PSO and Differential Evo-
lution [38], and more innovative methods such as Stud-GA (SGA) [39], which has better
exploitation and exploration capabilities than the GA, and the MQC10-BBO, were consid-
ered. The termination criterion for all these approaches was again set to 70,000 objective
function calls, since it guarantees the reaching of convergence for all the considered meth-
ods and a total computational time difference among them of lower than 3.5%. Figure 6
shows the curves of convergence for the considered algorithms: even if from this plot it
seems that SNO did not reach convergence, from the curves reported in Figure 5 it appears
that all the considered trials reached it with the adopted number of objective function calls.
The curves relative to SGA and particularly MQC10-BBO showed faster initial convergence,
but when the number of iterations increased they tended to stagnate, while the curve
relative to SNO continues to decreased, confirming its convergence capability.
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Figure 5. Convergence curves for the optimization process: the blue thick line is the average conver-
gence, and the gray region identifies the 95% confidence interval of the population convergence.

Figure 6. Comparison between the curves of convergence resulting by the application of different
algorithms to the problem considered here.

Table 1 shows a comparison between the algorithms in terms of mean cost value and
standard deviation. Here it is possible to see also the very high reliability of SNO that has
the lower standard deviation.

Table 1. Comparison between the mean values and the standard deviations.

Algorithm Mean Value Standard Deviation
DE 9354.38 5369.04
GA 243,774.73 485,623.66

MQC10-BBO 4554.72 4776.57
PSO 84,245.54 119,090.16
SGA 18,653.25 15,363.33
SNO 1974.42 956.48

Since the MQC10-BBO reached a sub-optimal solution with a smaller number of
iterations and then it stagnated there (see Figure 6 ), it is worth comparing that solution
with the SNO one. In Figure 7 the radiation patterns of the two solutions in the E (left) and
H (right) planes are plotted; in both planes the side lobes of the MQC10-BBO configuration
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are higher, but in any case they fulfill the mask. On the contrary, the MQC10-BBO results
show a misalignment of the direction of maximum radiation, due to the inability of the
algorithm to fulfill the constrain expressed by the cost function (5), with a consequent
reduction of the maximum gain in the H-plane. These drawbacks, added to the lower
reliability of the MQC10-BBO already discussed, confirm its lower effectiveness with respect
to SNO in solving the considered optimization problem.

Figure 7. Comparison between the radiation patterns obtained with SNO and MQC10-BBO in the E-plane (left) and
H-plane (right).

4.2. Numerical and Experimental Results

The RA layout obtained through the optimization process is shown in Figure 8. The
antenna was then analyzed with the full-wave approach implemented by the commercial
software CST Microwave Studio. The radiation patterns in the two principal planes com-
puted at f0 and at the two further frequencies of 29 and 31 GHz are plotted in Figures 9–14,
together with the masks. Since the optimization was carried out at 30 GHz, in the two
Figures 10 and 13 the patterns obtained at the end of the optimization are also shown. The
results of the full-wave analysis satisfy almost everywhere the masks in the E plane, while
the first SLLs do not respect the mask in the H plane, at 29 GHz. This happened due to
the fact that the optimization was carried out only at 30 GHz: in fact, it is out of the aim of
the present work to take into account the effect of the frequency, even if in RAs adopting a
simple re-radiating element, as the square patch used here, is not negligible.

Figure 8. Layout of the optimized RA.

In view of the good results of the antenna full-wave simulation, a prototype, shown
in Figure 15, has been manufactured. The boom has been realized using a 3D printed
technique, just to reduce the cost of the supporting structure and the weight of the entire
antenna. The antenna was tested in the spherical near field test range in the anechoic
chamber of Politecnico di Torino [40]; with an angular sampling of 1◦ in both azimuth and
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elevation. Actually, the size of the sphere (about 2 m radius) was such that the far field
conditions were already fulfilled, so that the transformed patterns were equal to those
obtained from raw measurements, without any spherical transform.

Figure 9. Radiation patterns in the E-plane at 29 GHz.

In Figures 9–14 the measured radiation patterns in the two planes and for the selected
frequencies are also plotted. At f0 they respect the masks almost everywhere in both
planes, and the small discrepancies with the numerical results can be ascribed to the fact
that in the simulations, the effect of the boom, which is not so negligible with a compact
structure like this, was not considered. Additionally, at the other frequencies there was
very good agreement between the full-wave analysis and the measurements, even if at
29 GHz some SLLs exceeded the mask, the reason for which has already been pointed out
when discussing the results of the full-wave simulation.

Finally, in Figure 16 the 3D radiation patterns at 30 GHz obtained at the end of the
optimization process and through the prototype experimental characterization are shown:
they confirm the effectiveness of the adopted procedure, and in particular of the choice
to control the radiation pattern in the whole θφ-plane, which allows one to avoid the
increasing of side lobes out of the principal planes.

Figure 10. Radiation patterns in the E-plane at 30 GHz.
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Figure 11. Radiation patterns in the E-plane at 31 GHz.

Figure 12. Radiation patterns in the H-plane at 29 GHz.

Figure 13. Radiation patterns in the H-plane at 30 GHz.
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Figure 14. Radiation patterns in the H-plane at 31 GHz.

Figure 15. Prototype of the RA with the support structure.

Figure 16. 3D radiation patterns at 30 GHz, obtained at the end of the optimization process (left) and through the prototype
measurement (right).
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5. Conclusions

In conclusion, it is possible to state that Social Network Optimization can be success-
fully applied to the design of a shaped-beam reflectarray with a cosecant squared pattern;
the results presented in this paper show fast convergence of the solution and very good
radiation features. The antenna’s performance has been validated by its full-wave analysis
and by the experimental characterization of a prototype. In view of all that, the method
introduced here will be applied to more complex RA configurations. It will also be used
for the antenna frequency behavior, and for the possibility of radiating multi-beams. These
extensions will be developed in future works.
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