
electronics

Article

Extending TOSCA for Edge and Fog Deployment Support

Andreas Tsagkaropoulos 1,* , Yiannis Verginadis 1,2 , Maxime Compastié 3 , Dimitris Apostolou 1,4

and Gregoris Mentzas 1

����������
�������

Citation: Tsagkaropoulos, A.;

Verginadis, Y.; Compastié, M.;

Apostolou, D.; Mentzas, G. Extending

TOSCA for Edge and Fog

Deployment Support. Electronics 2021,

10, 737. https://doi.org/10.3390/

electronics10060737

Academic Editor: Rashid Mehmood

Received: 24 February 2021

Accepted: 16 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Information Management Unit (IMU), Institute of Communication and Computer Systems,
National Technical University of Athens (NTUA), 15780 Athens, Greece; jverg@aueb.gr (Y.V.);
dapost@unipi.gr (D.A.); gmentzas@mail.ntua.gr (G.M.)

2 Department of Business Administration, Athens University of Economics and Business (AUEB),
10434 Athens, Greece

3 ActiveEon S.A.S, 06560 Sophia-Antipolis, France; maxime.compastie@activeeon.com
4 Department of Informatics, University of Piraeus, 18534 Piraeus, Greece
* Correspondence: atsagkaropoulos@mail.ntua.gr

Abstract: The emergence of fog and edge computing has complemented cloud computing in the
design of pervasive, computing-intensive applications. The proximity of fog resources to data
sources has contributed to minimizing network operating expenditure and has permitted latency-
aware processing. Furthermore, novel approaches such as serverless computing change the structure
of applications and challenge the monopoly of traditional Virtual Machine (VM)-based applications.
However, the efforts directed to the modeling of cloud applications have not yet evolved to exploit
these breakthroughs and handle the whole application lifecycle efficiently. In this work, we present
a set of Topology and Orchestration Specification for Cloud Applications (TOSCA) extensions to
model applications relying on any combination of the aforementioned technologies. Our approach
features a design-time “type-level” flavor and a run time “instance-level” flavor. The introduction of
semantic enhancements and the use of two TOSCA flavors enables the optimization of a candidate
topology before its deployment. The optimization modeling is achieved using a set of constraints,
requirements, and criteria independent from the underlying hosting infrastructure (i.e., clouds, multi-
clouds, edge devices). Furthermore, we discuss the advantages of such an approach in comparison to
other notable cloud application deployment approaches and provide directions for future research.

Keywords: TOSCA; function-as-a-service; fog computing; cloud computing; model-driven engineer-
ing; cloud applications

1. Introduction

Cloud computing has become a widely valued commodity with constantly increasing
popularity among large and small to mid-sized enterprises (SMEs), as well as public or-
ganizations. According to the report by Gartner, an 18.4% increase in total public cloud
computing revenue is expected for 2021 compared to 2020, reaching 304.9 billion USD [1].
Furthermore, the infrastructure-as-a-service segment of cloud computing is forecasted to
experience the highest growth.

As more applications make use of the cloud and more cloud providers appear, “ven-
dor lock-in” becomes an increasingly important issue. The lack of common standards and
the heterogeneity of cloud provider solutions put at risk the portability of data and applica-
tions, as moving to a technology supported by a different provider may be associated with
high costs [2]. The need for a common and interoperable standard is further augmented
due to the appearance of fog computing, which relies on edge devices to complement cloud
resources. Fog computing has been gaining a firm foothold as a means to reduce cost,
both in the form of networking and hosting expenditures. To handle the massive volume
of IoT data with lower latency and to address privacy concerns (e.g., by ensuring that
the processing of data is performed in the vicinity of its generation) [3], fog computing

Electronics 2021, 10, 737. https://doi.org/10.3390/electronics10060737 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6552-2016
https://orcid.org/0000-0003-3213-6124
https://orcid.org/0000-0001-7399-709X
https://orcid.org/0000-0002-5815-8033
https://orcid.org/0000-0002-3305-3796
https://doi.org/10.3390/electronics10060737
https://doi.org/10.3390/electronics10060737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10060737
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060737?type=check_update&version=2

Electronics 2021, 10, 737 2 of 48

requires advanced deployment capabilities. Therefore, an advanced common standard can
not only contribute towards provider-agnostic orchestration, but can also fill gaps in the
management of application assets in fog environments.

Based on the review by Bergmayr et al. [4], one of the most prominent modeling
languages for handling principally cloud deployments is TOSCA [5], which is an Orga-
nization for the Advancement of Structured Information Standards (OASIS) standard
that sets the tone for all other cloud modeling languages that try to be compatible with
it. There are numerous [6–8] implementations based on this standard that have been
regularly maintained.

Notwithstanding the efforts towards its adoption, TOSCA orchestration is impeded by
several limitations preventing its direct usage within a hybrid cloud and edge environment.
Firstly, TOSCA lacks a native mechanism to track run time deployments and factor-in any
reconfiguration decisions [9]. For example, TOSCA’s most prominent implementations
Alien4Cloud [6], Cloudify [7], and OpenTOSCA [8] focus on the design of the application
topology—the modification of the initial template requires the manual intervention of the
DevOps or else risks a discrepancy between the model and the real deployment. Especially
due to this first issue, the adoption of TOSCA to address the needs of cloud application
deployments in production has been met by solutions such as HashiCorp’s Terraform
(https://www.terraform.io) and Red Hat’s Ansible (https://www.ansible.com). Secondly,
a TOSCA template created based on the approaches in [6–8] is required to explicitly define
the properties of the application and configure the usage of different cloud providers,
along with the characteristics of the VMs that are needed. The need to specify this informa-
tion limits the dynamicity in deployments using these platforms, which is a prerequisite in
edge and fog environments. Finally, even when the application is manually reconfigured,
optimization cannot be supported [4]. Thus, it becomes difficult to maintain a model of
a real-world application featuring a dynamic topology, which may not scale predictably.
These last two issues are also evident in the Terraform and Ansible solutions. These open-
source platforms use declarative and pre-defined run time configuration languages to state
the desired final state of the cloud application deployment. As a consequence, this chan-
nels the responsibilities of Development and Operations (DevOps) engineers towards
maintaining a cloud application topology that must address contradicting requirements,
such as the cost and quality of service. Therefore, such solutions may be popular at the
moment since they provide a straightforward way of deploying applications in several
cloud vendors, however they still lack real and automatic cross-cloud optimization capabil-
ities. Additionally, their ability to cope with new paradigms, such as edge computing and
other distributed execution approaches, may rely on tedious procedures that will result in
bespoke solutions that may endanger their portability.

The VM-based paradigm has lately been challenged by the newer serverless comput-
ing paradigm. A serverless computing platform is defined in [10] as “a platform that hides
server usage from developers and runs code on-demand, automatically scaled and billed
only for the time the code is running”. Serverless computing has given rise to numerous
function-as-a-service (FaaS) platforms, some of which have been successfully coupled
with deployments on edge resources, e.g., OpenWhisk [11] and OpenWhisk Lean [12].
The available TOSCA specification [5] is very extensible but also quite generic and lacking
explicit modeling artefacts for fog applications, serverless approaches, or other distributed
execution approaches—e.g., the Java Parallel Processing Framework (JPPF) [13]. Thus,
any custom solutions that are developed pose a barrier to wider adoption of a reference
TOSCA-based methodology to handle basic concepts in these fields.

Based on our experience working on the PrEstoCloud framework [14], we argue that in
such dynamic environments there is an urgent need to shift some of the core responsibilities
of DevOps to an appropriate middleware. This middleware will automatically support the
separation of resources between the design time and run time and will provide appropriate
error-free maintenance of dynamic topologies. Therefore, the DevOps should be able to
model the deployment requirements as generically as possible, without having to make

https://www.terraform.io
https://www.ansible.com

Electronics 2021, 10, 737 3 of 48

concrete decisions on the initial deployment, optimization, and reconfiguration of cross-
clouds and fog computing applications. This is needed in modern organizations that need
to make sure they optimally use their resources. To achieve this, we first provide elaborated
extensions to TOSCA, which is the current cloud modeling standard, and secondly we
present a proof-of-concept on the implementation of a middleware that can exploit the
extended TOSCA. We decided to propose extensions to TOSCA, since they can be made
a part of this standard, which then can be used to extend in a bespoke manner any
other solution that is used now or in the future for cloud applications in production
(e.g., Terraform, Ansible). Additionally, continuous cloud modeling support (through
the use of standards and TOSCA specifically) has been argued before [4] as desirable
for aligning existing and potential cloud modeling languages, and therefore achieving
interoperability. As such, in this article, the research questions we aim to answer are
the following:

• Which semantic enhancements should be made to TOSCA to describe and enact
fog deployments?

• What is the methodology that should be followed to model deployments featuring
distributed execution paradigms?

• How can the optimization aspects regarding the deployment be included in the
modeling artefacts?

To address the above research questions, we propose a modeling approach for the
definition of applications using TOSCA. We argue that TOSCA should support generic use-
case patterns and deployments using serverless and other distributed execution paradigms
by providing a set of relevant generic constructs. To this end, we propose a series of
custom approaches, addressing deployments in hybrid clouds (i.e., combined use of private
and public cloud resources), multi-clouds (i.e., combined use of public cloud resources
from different vendors), edge-based applications, and FaaS-based applications, extending
the base YAML Ain’t Markup Language (YAML) TOSCA implementation [5]. To allow
the optimization of the topology, we suggest that two versions of the TOSCA model
should be used—initially an abstract version focusing on the structure of the topology and
subsequently a more concrete version, which would include more specific details of the
actual deployment. We validate our approach using a qualitative evaluation method based
on a motivational scenario.

The remainder of the article is structured as follows. In Section 2, we discuss the
state-of-the-art related to our approach. In Section 3, we introduce a motivating scenario,
which is used to highlight the new additions. Section 4 presents a model-driven approach
to guide the definition of the TOSCA semantic enhancements and artefacts to address our
research questions. In Section 5, the extensions to TOSCA are detailed, while Section 6
details the contributions for supporting FaaS and other distributed execution paradigms.
Section 7 includes details on the new TOSCA structures, which support optimization factors
and placement constraints. Section 8 includes an evaluation of our approach, which is
compared with one of the most prominent commercial offerings. Finally, we present a
discussion of the results of this work and conclude the paper.

2. Related Work

The OASIS TOSCA standard [5] is based on the definition of a cloud application
through the usage of templates or blueprints. There are several implementations (although
none are officially endorsed), some of which support more features and are more actively
maintained than others. Indicative examples include Alien4Cloud (also used by the Apache
Brooklyn project) [6], Cloudify [7], and OpenTOSCA [8]. All of these implementations allow
the definition of new node types, the generation of TOSCA deployment templates, and the
orchestration of the deployment. They are designed for single deployments of a cloud
application and do not incorporate any optimization capabilities. Moreover, the high level
of detail in these TOSCA templates provides a complete view of the application, however
imposes difficulties in terms of the comprehension of its overall structure. Conversely,

Electronics 2021, 10, 737 4 of 48

the description of the model of an application is difficult in these platforms, without first
describing a complete proof-of-concept. For this reason, we introduce a clear distinction
between an initial, modeling-oriented (and more abstract), “type-level” “flavor” and
a final, “instance-level” flavor of TOSCA. Moreover, the blueprints that are generated
by our type-level TOSCA generator are vendor-neutral and can be deployed on any
(combination of) cloud(s) and edge resources. In doing so, we maintain consistency with
the intent-based design, which is endorsed by TOSCA. This is an application design method
combining the power of expression of policy-based approaches with the modeling power of
steady-state approaches [15]. Our approach emphasizes the maintenance of relationships
between components by defining appropriate TOSCA relationships and capabilities.

In Reference [16], Wurster et al. proposed an extension of OpenTOSCA to describe
FaaS-based applications. In addition to purely FaaS-focused applications, their work
is also valid for mixed architectures consisting of FaaS-based and VM-based solutions.
Their modeling scheme is specifically applied on an Amazon Web Services (AWS)-Lambda-
based application. Our solution can work alongside such a modeling approach, as it does
not focus on the support of provider-specific components or services. The contribution of
our work on FaaS support in TOSCA is a FaaS application abstraction based on general-
purpose VMs and concretely defined relationships mainly targeted to the development of
FaaS applications.

RADON [17] is another approach that is based on TOSCA. RADON extensively uses
TOSCA inheritance to define abstract and derived concrete, deployable entities. Overall,
RADON is considered closer to our concept of instance-level TOSCA, as it contains detailed
information related to deployment parameters of particular cloud application types and
serverless functions. Similar to our approach, the modeling specification of RADON allows
the definition of a custom FaaS architecture. VM deployment is mentioned in the RADON
reference technologies [18], however we did not find any reference for edge deployment.
Without edge deployment support, the low cost and high data processing locality offered
by edge nodes is impossible to exploit. Moreover, the appropriateness of particular edge
nodes for particular fragments cannot be modeled.

CAMEL [19,20] is described as a domain-specific language (DSL), which enables
dynamic and cross-cloud deployments. The authors support that while TOSCA and
CAMEL are similar, the latter can also be used not only during design, but also at run time
because it can specify the instances to be used. CAMEL relies on multiple specialized DSLs,
each focusing on a particular aspect. It emphasizes the creation of UML-based metamodels,
enriched with additional domain semantics. The models that are created are always
synchronized with the actual topology that is deployed at the time. Both direct (manual)
and programmatic access to these models is allowed, enabling self-adaptive cross-cloud
applications. Furthermore, CAMEL has already been extended to support the specification
of commercial FaaS services [9]. While CAMEL provides some advanced features and can
already manage cross-cloud deployment and adaptivity, we have found significant aspects
requiring improvement. First, no language features specifically target edge devices (for
example to account for the volatility of the devices or the migration of components from
the cloud to the edge). Thus, the topology can only partially be optimized to consider
the benefits of fog computing. Also, FaaS services are modeled from the perspective of a
FaaS framework consumer (i.e., user of already-existing commercial offerings such as AWS
Lambda), rather than a FaaS framework designer (i.e., creator of any FaaS service).

Another significant modeling effort is the Open Cloud Computing Interface (OCCI),
which according to [21] is a protocol and API for all kinds of management tasks. It is also
stated that the main focus of OCCI is to create a remote management API for IaaS model-
based services allowing for the development of interoperable tools for common tasks,
including deployment, autonomic scaling, and monitoring. In Reference [22], the authors
support the idea that the focus of OCCI is to provide a standardized API and that it
does not define concepts to handle reusability, composability, and scalability. Conversely,
TOSCA offers means to express reusability, composability, and scalability. These advantages

Electronics 2021, 10, 737 5 of 48

grant TOSCA a superiority in its modeling capabilities over OCCI. Moreover, TOSCA can
be used alongside OCCI [22,23] to achieve full-standard-based deployments [23].

Terraform is a popular declarative language oriented towards cloud deployments, also
supporting FaaS services, backed by open-source implementation. Different plugins exist to
instantiate nodes on different cloud providers and interact with external services providing
content delivery network (CDN) and domain name service (DNS) facilities using a unified
syntax. All of these features grant versatility and robustness to Terraform. Pulumi (https://
www.pulumi.com) is another open-source framework similar to Terraform, which provides
the additional advantage of using programming languages to express cloud topologies
rather than requiring the use of a specific cloud application language. As with Terraform, it
is also capable of handling FaaS deployments. However, when considering model-driven
deployments, Terraform and Pulumi present certain disadvantages compared to TOSCA.
These disadvantages originate from the fact that while resources are properly declared,
there are no language features offered that can be used to generalize the relationships
among application components. Thus, no means are offered to (i) extract generic, reusable
blueprints and (ii) optimize the deployment of components, taking into account any other
dependent components. Additionally, the computing resources and their roles are very
specific and detailed, which while providing a concrete view of the state of the deployment,
also obstructs the higher-level understanding of the model of the cloud application. The use
of edge devices is possible, but it requires manual configuration of the details of the
topology, as we illustrate in Section 8. TOSCA, on the other hand, excels in its capability for
modeling and abstraction of an application, while also being capable of specifying concrete
actions that should be considered when instantiating a topology (through its workflows
feature). In this work, we enhance the modeling capabilities of TOSCA, suggesting a set
of new constructs to assist the representation of hybrid clouds, multi-clouds, edge-, VM-,
and FaaS-based applications.

In addition, proprietary software systems such as Amazon Cloud Development
Kit (Amazon CDK) have been developed, providing capabilities traditionally offered
by Cloud DSLs. Using Amazon CDK, a DevOps can model the application directly from
the integrated development environment (IDE) used and specify the requirements of the
application using a preferred programming language (TypeScript, JavaScript, Python, Java,
and C#/.Net are currently available). Although such an offering allows deep integration
with the existing Amazon constructs and offers a good abstraction over the Amazon ser-
vices that are used, it is nevertheless difficult to introduce it without the prior expertise
of the DevOps with the specific technology products offered by Amazon. Furthermore,
services can only be developed in connection with the AWS cloud computing provider,
leading to vendor lock-in.

The vendor lock-in problem also applies to other DSL-based solutions, such as Azure
Resource Manager, Google Cloud Compute, OpenStack Heat, and CloudFormation AWS
templates. Although Heat templates strive to maintain compatibility with CloudFormation
templates, these templates are not recognized as a global standard. Moreover, all of
the templates cited above contain too many technical details that are associated with the
solution offered by a particular vendor. Our approach, on the other hand, strives to simplify
the model of the application, providing two views: a model view before the deployment of
the application featuring the least amount of technical details and an instance view after
the instantiation of the topology (type-level and instance-level TOSCA, respectively).

Wurster et al. [24] reviewed prominent deployment automation approaches to derive
the essential deployment metamodel. The metamodel refers to a technology-independent
baseline, containing the core parts of deployment automation technologies such as Chef,
Puppet, Ansible, Kubernetes, and OpenStack Heat. The authors state in their work that the
generated metamodel uses only a subset of the entities described in TOSCA. Approaches
similar to the metamodel can further be used to introduce or map other technologies to the
terminology of TOSCA, and vice versa.

https://www.pulumi.com
https://www.pulumi.com

Electronics 2021, 10, 737 6 of 48

Edge applications have attracted considerable research interest over recent years.
Applications that use processing nodes at the edge of the network can attain considerably
better performance for applications that are either response-time-sensitive or privacy-
oriented or that aim to minimize energy consumption [25]. Among the 384 studies related
to fog or edge computing analyzed in [3], we are aware of only three of these studies
containing a proposal to model the handling of processing for fog resources. The study by
van Lingen et al. [26] extended the YANG language [27] with support for fog nodes. We also
follow a similar approach using TOSCA, which is directly aimed at cloud deployments and
is already an OASIS standard. Noghabi et al. [28] worked on Steel, a high-level abstraction
for the development and deployment of edge–cloud applications. Their work emphasizes
the ability to migrate services from the cloud to the edge, and the ability to optimize
the placement of services while respecting constraints. Mortazavi et al. [29] proposed
CloudPath, a multitier computing framework, in which the location and rest path of a
FaaS system running on fog resources were configured using web.xml Java deployment
descriptors. Our semantic enhancements of the TOSCA standard can also support the
definition of placement constraints, while we additionally allow the definition of conflicting
optimization criteria. Since there are plenty of deployment automation tools built on top of
it, extending TOSCA would make sense from the perspective of reusability, as the implied
extensions to the TOSCA-based deployment tools should be manageable.

3. Motivating Scenario: Fog Surveillance Application

In this section, we introduce a motivating scenario to assist the reader in understanding
our approach. Below, we describe an application deployment based on the need for a
surveillance company to deploy a number of processing components in both the edge
and the cloud. For our scenario, we assume that our test bench includes a number of
Raspberry Pi devices equipped with cameras and connected to the Internet, ARM-based
servers situated near the edge, and VM assets in public or private clouds, conforming to
the budget allocation. The processing components—or “fragments”—that are considered
in the scenario are described in Table 1.

Table 1. Fog surveillance application fragments.

Fragment Name Description

VideoStreamer The fragment is responsible for the transmission of video from the edge to the host of the
VideoTranscoder fragment

VideoTranscoder The fragment is responsible for changing the format of a video

FaceDetector The fragment is responsible for face detection in a captured video scene

AudioCaptor The fragment is responsible for continuously capturing audio

PercussionDetection The fragment is responsible of detecting any captured percussion sounds and triggering the
FaceDetector component

MultimediaManager The fragment hosts various necessary assets to perform the detection of suspects and present alerts to a
user of the platform

Hereafter, the term “processing component” will be used interchangeably with the
term “fragment”, as we consider that the “whole” of an application consists of one or
more fragments. Throughout this work, we assume that fragments are containerized,
using the de facto standard for containerization, Docker.

For all fragments that can be executed on edge resources, we pursue the deployment
on suitable edge hosts. However, if a fragment cannot be executed on edge resources
(or none are available), we use deployment criteria to govern its deployment on one
or more cloud providers. For the VideoStreamer and MultimediaManager fragments,
the primary objective that should govern the cloud deployment is the reduction of latency.
The secondary objective preferred is the usage of the AWS cloud provider, and finally the
reduction of cost is considered an additional business goal. For the FaceDetector fragment,

Electronics 2021, 10, 737 7 of 48

the first priority is the usage of the AWS provider, as a stringent agreement was reached
with the particular provider on the handling of sensitive data.

Since the VideoTranscoder, FaceDetector, and PercussionDetector fragments are as-
sumed to perform stateless operations, all of them can be attached to a common FaaS Proxy,
which will balance and redirect incoming requests appropriately.

The operating system for all fragments is defined to be Ubuntu Linux. In addition,
the Google Cloud Compute provider must be excluded. Moreover, the budget available
for cloud deployments is set as equal to €1000 and the time-frame for which it will be
available is set to 1 month (720 h). Fine-grained optimization criteria (cost, distance,
friendliness—explained in detail in Section 7.2) are set for the VideoStreamer, FaceDetec-
tor, and MultimediaManager fragments, according to the requirements of the fragments
described. The overall optimization objective is cost reduction, through the reduction of
fragment instances scheduled for execution in the cloud.

To illustrate the data flow dependencies, a deployment graph was created in a proto-
type UI, corresponding to a deployment using the above fragments. The application graph
is shown in Figure 1. The arrows indicate (from right to left) that the MultimediaManager
fragment depends on data from the VideoTranscoder, FaceDetector, and PercussionDetec-
tor fragments, which in turn depend on data from the VideoStreamer, VideoTranscoder,
and AudioCaptor fragments, respectively.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 50

Figure 1. The deployment graph for the illustrative example. The green text on each line indicates the name of the interface between two components (relevant only for the user interface).

Figure 1. The deployment graph for the illustrative example. The green text on each line indicates the name of the interface
between two components (relevant only for the user interface).

The requirements for each fragment are listed in Table 2.

Electronics 2021, 10, 737 8 of 48

Table 2. Fragment processing requirements and constraints.

Fragment Name

Hosting
Requirements (CPU

Cores–RAM
GBs–Free Disk GBs)

Acceptable Hosting
Resource

Processing
Architectures

Collocation
Dependencies/Anti-

Affinity
Requirements

Precedence
Dependencies

Optimization
Criteria 1

(Cost–Distance–
Friendliness)

Elasticity
Mechanism

VideoStreamer 1-1-4 Edge arm64, armel, armhf VideoTranscoder
(collocation) - 2-8-{aws:5, gce:0,

azure:1} None

VideoTranscoder 2-4-4 Edge/Cloud arm64, armel, armhf,
x86_64, i386

VideoStreamer
(collocation) VideoStreamer 1-1-(1, implied) FaaS (Lambda) Proxy

FaceDetector 1-1-4 Edge/Cloud arm64, armel, armhf,
x86_64, i386 - VideoTranscoder 1-1-{aws:5, gce:0,

azure:1} FaaS (Lambda) Proxy

AudioCaptor 1-1-4 Edge arm64, armel, armhf PercussionDetector
(collocation) - 1-1-(1,implied) None

PercussionDetector 1-1-4 Edge/Cloud arm64, armel, armhf AudioCaptor
(collocation) AudioCaptor 1-1-(1,implied) FaaS (Lambda) Proxy

MultimediaManager 2-4-128 Cloud x86_64, i386 -
FaceDetector,

VideoTranscoder,
PercussionDetector

2-8-{aws:5, gce:0,
azure:1} None

1 The definitions for these optimization criteria are presented in Section 7.2.

Electronics 2021, 10, 737 9 of 48

4. Model-Driven Application Specification Using Extended TOSCA

In accordance with most efforts analyzed in Section 2, we follow a model-driven
engineering approach because it offers portability and reusability, which are important con-
siderations for cloud applications. Specifically, we propose an extension of the TOSCA mod-
eling standard, adopting two views of the topology—type-level and instance-level TOSCA.
Each of these is used to create a document reflecting the initial abstract view and the
processed deployment view of the topology, respectively. We claim that the decoupling of
the information contained in type-level TOSCA and instance-level TOSCA aids modeling
and allows for the optimization of applications across the cloud computing continuum.
These models are not bound to a specific provider, and given a TOSCA orchestrator can be
used at any time.

Type-level TOSCA encapsulates the user’s requirements, preferences, and business
goals and provides a high-level overview of the topology to be deployed. This model—
which is the main contribution of this work—can subsequently be optimized, finalized with
provider-specific characteristics (e.g., network parameters), and deployed. During this pro-
cess, the final “instance-level” model of the application is created. External monitoring
mechanisms, e.g., Prometheus (https://prometheus.io), can be used to create an updated
“type-level” deployment, which will trigger a reconfiguration of the platform. This work-
flow is in line with the challenges and research directions for cloud adaptations that were
described in our previous paper [30].

The definition of a fog application (e.g., similar to the one depicted in Figure 1 can be
seen in the steps presented in Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 50

4. Model-Driven Application Specification Using Extended TOSCA

In accordance with most efforts analyzed in Section 2, we follow a model-driven

engineering approach because it offers portability and reusability, which are important

considerations for cloud applications. Specifically, we propose an extension of the TOSCA

modeling standard, adopting two views of the topology—type-level and instance-level

TOSCA. Each of these is used to create a document reflecting the initial abstract view and

the processed deployment view of the topology, respectively. We claim that the

decoupling of the information contained in type-level TOSCA and instance-level TOSCA

aids modeling and allows for the optimization of applications across the cloud computing

continuum. These models are not bound to a specific provider, and given a TOSCA

orchestrator can be used at any time.

Type-level TOSCA encapsulates the user’s requirements, preferences, and business

goals and provides a high-level overview of the topology to be deployed. This model—

which is the main contribution of this work—can subsequently be optimized, finalized

with provider-specific characteristics (e.g., network parameters), and deployed. During

this process, the final “instance-level” model of the application is created. External

monitoring mechanisms, e.g., Prometheus (https://prometheus.io), can be used to create

an updated “type-level” deployment, which will trigger a reconfiguration of the platform.

This workflow is in line with the challenges and research directions for cloud adaptations

that were described in our previous paper [30].

The definition of a fog application (e.g., similar to the one depicted in Figure 1 can be

seen in the steps presented in Figure 2.

Figure 2. Overview of our approach. Although the optimization of the type-level TOSCA template

and the generation of the instance-level TOSCA are essential constituents of our approach, we do

not provide an implementation approach for an optimizer or an instance-level TOSCA.

To facilitate the use of our modeling extensions, we provide a tool [31] that aids in

application definition and application goal definition as a proof-of-concept for our

approach. Our tool was developed as part of the PrEstoCloud framework [14], and is able

to parse the input requirements, optimization criteria, and constraints, generating type-

level TOSCA as its output. In the following subsections, we provide more details for each

of the steps illustrated in Figure 2.

4.1. Application Conception

In the application conception stage, the base for our modeling approach is

established, as the DevOps structures the fragments that will comprise the application.

Firstly, the architecture of the application is determined, as well as its input(s) and

output(s) and the components that will be used in it. Following, the DevOps examines the

Figure 2. Overview of our approach. Although the optimization of the type-level TOSCA template and the generation of
the instance-level TOSCA are essential constituents of our approach, we do not provide an implementation approach for an
optimizer or an instance-level TOSCA.

To facilitate the use of our modeling extensions, we provide a tool [31] that aids in
application definition and application goal definition as a proof-of-concept for our approach.
Our tool was developed as part of the PrEstoCloud framework [14], and is able to parse the
input requirements, optimization criteria, and constraints, generating type-level TOSCA
as its output. In the following subsections, we provide more details for each of the steps
illustrated in Figure 2.

4.1. Application Conception

In the application conception stage, the base for our modeling approach is established,
as the DevOps structures the fragments that will comprise the application. Firstly, the ar-
chitecture of the application is determined, as well as its input(s) and output(s) and the
components that will be used in it. Following, the DevOps examines the fragments used
in the application to determine whether there are common application paradigms that

https://prometheus.io

Electronics 2021, 10, 737 10 of 48

are used in it (e.g., load-balancing or functions-as-a-service) and the number of instances
necessary for the processing of each fragment. In addition, generic information related to
the fragments themselves (e.g., a known functional configuration, as well as the interfaces
that are provided and the interfaces that are needed) should be collected. Then, the DevOps
should determine for each fragment the Docker image and Docker registry that should
be used, the respective environmental variables, their port mappings, and their application
paradigm (if any—see Section 6 for details). All of these attributes should later be mapped
to the respective TOSCA constructs.

Finally, global constraints and preferences can be provided by the DevOps, specifying
the providers that are preferred or should be excluded and the budget constraints that
should be respected for this application.

4.2. Application Definition

During this step, the DevOps should enter more precise information describing the
processing context of each of the fragments, as well as any application paradigm that is
followed by the fragment. The information provided for the processing instances and
the processing resources for each fragment are critical, as all further deployments and
optimization steps will be primarily based on these factors. The DevOps is required to
provide data for the fragment attributes, which are described in Table 3.

Table 3. Fragment attributes that should be defined by the DevOps.

Fragment Processing Attribute Description

Number of cores The minimum and maximum numbers of CPU cores needed to process the particular fragment

Processor architecture The architecture of the CPU processor

Memory requirements The minimum and maximum amounts of main memory required by a fragment

Disk capacity requirements The minimum and maximum amounts of disk space required by a fragment

Sensors required The input or output sensors required for the processing of this fragment

Operating system The operating system and version that should be used for the processing of this fragment

Number of instances The minimum and maximum numbers of instances of a particular fragment

Execution zone The eligible locations for the processing of a particular fragment (cloud, edge)

Elasticity mechanism—paradigm The elasticity mechanism that is required for a fragment implementing a particular paradigm
(we propose extensions to TOSCA for FaaS, load-balanced, and JPPF applications)

The medium used to define these properties (as well as those mentioned in Section 4.3)
is agnostic to our approach. However, our tool [31] supports both the usage of an external
prototype UI, as well as code-level annotations coupled with a policy file. In the first
case, informative application graphs similar to the one illustrated in Figure 1 can be
retrieved and the input is provided to our component through graphical forms in a machine-
readable json format. In the second case, annotations can capture details concerning the
deployment requirements of each fragment, while the policy file contains global constraints
and preferences that guide the deployment of the topology. The handling and specification
of annotations is an integral part of our TOSCA generator, allowing the software to be
used without depending on an external component. The main advantage of using an
annotation-driven deployment lies in the potential to combine annotations with code
introspection techniques to influence the behavior of the application. In Reference [32],
information present in annotations was used to govern the addition of new workers and
removal of existing workers or to modify their behavior.

An annotation is expected firstly to include information on the memory, CPU, and stor-
age load that the particular application fragment will use, which is translated into a range of
values using information from the policy file. The translation is currently performed using
configurable static mappings (e.g., for CPU or memory, VERY_LOW = 1 core/1Gb of ram,
LOW = 2 cores/2Gb of ram, MEDIUM = 4 cores/4Gb of ram, HIGH = 8 cores/8Gb of ram

Electronics 2021, 10, 737 11 of 48

and VERY_HIGH = 16 cores/16Gb of ram). Each annotation on the workload of a particular
resource reflects the least amount of resources required to carry out the processing needed
by the particular fragment.

Then, information on the possible processing zone should be provided—whether the
fragment is onloadable (i.e., can be deployed on edge devices), offloadable (i.e., can be
deployed on cloud VMs), or both. Afterward, information on the Docker configuration
(here using the edge_docker_registry and edge_docker_image fields) of the component
should be provided. Additionally, the application paradigm followed by the particular
fragment can be specified using the elasticity_mechanism annotation. It should be noted
that each of the fragments can follow a different paradigm and multiple paradigms may
co-exist in the same application.

Our annotations also enable us to provide the minimum and maximum numbers
of instances that should be provided for a fragment. While one may argue that it is
difficult to enforce a particular number of instances on a volatile edge topology, we include
this capability as it is a business requirement that is very common and that provides to
the DevOps the capability to precisely define the requirements of the topology. Further,
we assume that the information that is input by the DevOps in a type-level TOSCA template
is not static but subject to (automatic) updates based on the state of the processing topology,
as illustrated in our previous work [30].

Listing 1 contains an example annotation for a Java class representing the percussion
detector fragment (it can either be a placeholder or its actual implementation), which is
defined in the illustrative scenario. In the case of an annotation-driven deployment,
one annotation needs to exist over each fragment that can be autonomously executed.
As mentioned before, our tool can also accept input from a prototype user interface.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 50

@PrestoFragmentation(
 memoryLoad = PrestoFragmentation.MemoryLoad.LOW,
 cpuLoad = PrestoFragmentation.CPULoad.VERY_LOW,
 storageLoad = PrestoFragmentation.StorageLoad.LOW,
 onloadable = true,
 offloadable = true,
 edge_docker_registry = “prestocloud.test.eu”,
 edge_docker_image = “percussion_detector:latest”,
 elasticity_mechanism = faas,
 min_instances = 1,
 max_instances = 5,
 dependencyOn = {“imu_fragments.AudioCaptor”},
 precededBy = {“imu_fragments.AudioCaptor”},
 optimization_cost_weight = 1,
 optimization_distance_weight = 1,
 optimization_providerFriendliness_weights = {“aws”, “1”,
 “gce”, “1”,
 “azure”, “1”
 }
)
public class PercussionDetector {
}

Listing 1. Annotations example for the PercussionDetector fragment of the illustrative scenario.

Listing 1 also contains (for completeness) certain annotations that are not mapped to
the requirements, which should be set for each fragment at this stage—these are discussed
in Section 4.3.

4.3. Application Goal Definition
During this step—with the architecture of the application determined and the

application components fully described—the DevOps can finally specify the application
goals in terms of the optimization criteria that should be used for the deployment of the
fragments, as well as any constraints that should be applied. The available fragment
optimization criteria and constraints appear in Table 4.

Table 4. Fragment goals (optimization criteria and constraints) available to be defined by the DevOps.

Application Goal Type Definition Level
Precedence Constraint Defined for groups of two or more fragments
Collocation Constraint Defined for groups of two or more fragments

Anti-Affinity Constraint Defined for groups of two or more fragments
Distance Optimization criterion Defined for each fragment

Cost Optimization criterion Defined for each fragment
Friendliness Optimization criterion Defined for each fragment

If no constraints are chosen, the application deployment will be guided only by the
automatic device exclusion constraint(s) (see Section 7.2), the optimization criteria
specified for each fragment (where these exist), and the overall business goal that has been
set for the application (e.g., the minimization of cost). If no optimization criteria are
specified for one or more fragments, the application deployment will be performed based
on the overall business goal, fulfilling any placement or precedence constraints. Naturally,

Listing 1. Annotations example for the PercussionDetector fragment of the illustrative scenario.

Listing 1 also contains (for completeness) certain annotations that are not mapped to
the requirements, which should be set for each fragment at this stage—these are discussed
in Section 4.3.

Electronics 2021, 10, 737 12 of 48

4.3. Application Goal Definition

During this step—with the architecture of the application determined and the applica-
tion components fully described—the DevOps can finally specify the application goals in
terms of the optimization criteria that should be used for the deployment of the fragments,
as well as any constraints that should be applied. The available fragment optimization
criteria and constraints appear in Table 4.

Table 4. Fragment goals (optimization criteria and constraints) available to be defined by the DevOps.

Application Goal Type Definition Level

Precedence Constraint Defined for groups of two or more fragments
Collocation Constraint Defined for groups of two or more fragments

Anti-Affinity Constraint Defined for groups of two or more fragments
Distance Optimization criterion Defined for each fragment

Cost Optimization criterion Defined for each fragment
Friendliness Optimization criterion Defined for each fragment

If no constraints are chosen, the application deployment will be guided only by
the automatic device exclusion constraint(s) (see Section 7.2), the optimization criteria
specified for each fragment (where these exist), and the overall business goal that has
been set for the application (e.g., the minimization of cost). If no optimization criteria are
specified for one or more fragments, the application deployment will be performed based
on the overall business goal, fulfilling any placement or precedence constraints. Naturally,
the set of constraints and optimization values, which will be adopted for the fragments of
the application, can lead to completely different deployments.

Using the example of the illustrative scenario, based on Table 2 we can determine
that a collocation constraint is required between the VideoStreamer and VideoTranscoder
fragments and the PercussionDetector and AudioCaptor fragments. Moreover, the preva-
lent optimization criterion that will govern the processing zone (cloud or edge) and pro-
cessing location (provider data center or edge device) of the VideoStreamer instances
will be “distance” (for more details see Section 7.2). For annotation-driven deployments
(as in Listing 1), the precedence constraints are indicated using the precededBy anno-
tation, while the collocation constraints are indicated using the dependsOn annotation.
Individual optimization criteria are indicated using the optimization_cost_weight, opti-
mization_distance_weight, and optimization_providerFriendliness_weights annotations,
respectively.

As soon as the requirements of the application have been provided, the initial type-
level TOSCA model should be created. This procedure is undertaken by a TOSCA generator
(e.g., [31]) which receives the input gathered at the first stage of the processing and converts
it to TOSCA format, producing a type-level model of the topology. We completed this
process for the application described in Section 3 and created the type-level TOSCA model
corresponding to it using a prototypical, open-source TOSCA generator (the full type-
level document is included in Appendix A). This model file should then be sent to a
TOSCA orchestrator—for example by uploading to a repository node, which will enable
file artefacts to be communicated and stored.

4.4. Processing and Deployment of Requirements

During this step, the application requirements and structure that have been defined in
the previous steps are received in the form of a type-level TOSCA template.

Then, a dedicated optimizer component (e.g., developed using Choco Solver [33] or
BtrPlace [34]) is required to parse the received type-level TOSCA and solve the constraint
programming problem associated with the optimization goals and placement constraints
in it. The output of this process should include as a minimum the zone of the processing
instances (cloud or edge), the provider(s) to be used, the optimal number of instances,
and their flavor in a machine-readable format (e.g., json). Then, the network details

Electronics 2021, 10, 737 13 of 48

can be specified and the Docker environmental variables can be updated. Finally, the
instance-level TOSCA file reflecting the deployment can be generated. We consider that
the optimization process and instance-level TOSCA generation process should be triggered
automatically once a new type-level TOSCA document is published to provide a fully
automated deployment process.

4.5. TOSCA Fog Application Definition Algorithm

To aid the comprehension of our approach, we provide in Listing 2 the algorithmic
steps that should be performed by a DevOps prior to the automatic generation of the
TOSCA template.

Electronics 2021, 10, x FOR PEER REVIEW 14 of 50

4.4. Processing and Deployment of Requirements
During this step, the application requirements and structure that have been defined

in the previous steps are received in the form of a type-level TOSCA template.
Then, a dedicated optimizer component (e.g., developed using Choco Solver [33] or

BtrPlace [34]) is required to parse the received type-level TOSCA and solve the constraint
programming problem associated with the optimization goals and placement constraints
in it. The output of this process should include as a minimum the zone of the processing
instances (cloud or edge), the provider(s) to be used, the optimal number of instances, and
their flavor in a machine-readable format (e.g., json). Then, the network details can be
specified and the Docker environmental variables can be updated. Finally, the instance-
level TOSCA file reflecting the deployment can be generated. We consider that the
optimization process and instance-level TOSCA generation process should be triggered
automatically once a new type-level TOSCA document is published to provide a fully
automated deployment process.

4.5. TOSCA Fog Application Definition Algorithm
To aid the comprehension of our approach, we provide in Listing 2 the algorithmic

steps that should be performed by a DevOps prior to the automatic generation of the
TOSCA template.

Input
F:Fragments
FPA:Fragment processing attributes//Defined in Table 3
FG:Fragment goals//Defined in Table 4

Algorithm

//Application Concept Definition

AC ← determine_coarse_grained_application _constraints
F ← determine_application _fragments

for fragment in F
 fragment.determine_application_paradigm
 fragment.determine_interfaces
 fragment.determine_environmental_variables
 fragment.determine_docker_properties
 fragment.determine_necessary_number_of_processing_instances

//Application Definition
for fragment in F
 for processing_attribute in FPA
 fragment.assign_value(processing_attribute,DevOps_value)

//Application Goal Definition
for fragment in F
 for fragment_goal in FG
 fragment.assign_value(fragment_goal,DevOps_value)

type_level_TOSCA_document ← TOSCAgenerator(AC,F)
return type_level_TOSCA_document

Listing 2. Algorithmic steps necessary for the definition of a fog application in type-level TOSCA.

In the next sections, we will detail how each of the three research questions set
in the introduction of our work was answered. First, we will discuss the type-level
TOSCA semantic enhancements to support fog deployments, then we will elaborate on our
approach to support additional distributed software paradigms, and thirdly we will detail
the support provided for placement constraints and optimization criteria.

5. Type-Level TOSCA Semantic Enhancements

The official TOSCA specification [5] provides sample configurations of processing
nodes and cloud application topologies, however no reference is made to fog topologies,
which commonly need processing nodes both on the edge and the cloud. While a fog

Electronics 2021, 10, 737 14 of 48

topology could be implemented using TOSCA or any other DSL, an important issue that
would not be solved would be the ability to use a different configuration for a fragment
depending on its processing zone (cloud or edge), while still qualifying as the “same”
fragment type for scaling purposes. A second challenge encountered when creating a
service template is to accurately describe the model of the service while still allowing for
its optimization.

To resolve the first issue and be able to seamlessly describe cloud-only, edge-only,
and fog applications, we introduce a modeling schema, which decouples the software from
the hardware it is installed on but still maintains their relationship. The second challenge
is mainly tackled by the separation of concerns between type-level and instance-level
TOSCA approaches.

Although the extensions of TOSCA involve numerous aspects of the deployment,
the proposed changes to the language are non-intrusive and can be used within the original
language features. This means that we do not modify the core logic of TOSCA templates
and that our model maintains the traditional structure of a TOSCA application. A summary
of these changes is presented in Table 5.

An important consideration related to the implemented improvements is the small
learning curve of the type-level TOSCA model, which allows a DevOps to quickly become
familiar with and inspect the structure of a cloud application.

Electronics 2021, 10, 737 15 of 48

Table 5. Overview of the extensions to core TOSCA concepts.

TOSCA Feature Extended Summary of Changes Indicative Extensions Related Sections

Metadata Introduction of new fields relating to optimization
support TimePeriod, CostThreshold Section 7.1

Node_types
New node types are introduced to denote particular

processing characteristics that are desired on a processing
node

prestocloud.nodes.agent.faas,
prestocloud.nodes.agent.loadBalanced Section 5.1

Node_templates
New node templates are presented to allow Docker

support, optimization support, as well as the expression
of edge-related attributes and coordination paradigms

prestocloud.nodes.fragment.faas,
prestocloud.nodes.fragment.jppf Section 5.1, Section 5.2

Policies New policies are added to indicate the manner in which
application deployment should be managed

prestocloud.placement.Gather,
prestocloud.placement.Spread Section 7.1

Relationships New TOSCA relationships are developed to indicate the
relationship of the processing between components

prestocloud.relationships.executedBy.faas,
prestocloud.relationships.executedBy.loadBalanced Section 5.1, Section 5.2, Section 6

Capabilities New TOSCA capabilities are developed to indicate the
special processing capabilities offered by some devices

prestocloud.capabilities.proxying.faas,
prestocloud.capabilities.proxying.jppf Section 5.1, Section 5.2, Section 6

Electronics 2021, 10, 737 16 of 48

5.1. Fragment and Processing Host Decoupling

A crucial aspect of our approach is the introduction of optimization capabilities to the
TOSCA template. Unfortunately, as most of the existing approaches follow an analytical
approach by specifying the topology in detail (i.e., specifying the provider to be used at
the time of model formulation and the exact VM details), there is little room left for opti-
mization. However, using our approach, the optimizer determines the exact processing
zone and processing location. Furthermore, the number of fragment instances can be easily
changed from components external to those involved in the TOSCA generation process
(e.g., a topology scaling director—see Figure 2) without adding unnecessary complexity to
our type-level model.

These advantages are only possible if a clear distinction between the software compo-
nents of the application from the hardware that they are installed on is made using distinct
TOSCA structures. Each application, therefore, consists of fragment nodes (reflecting the
software components), which are each related to a processing node (reflecting the hosting
hardware). Fragment nodes contain a description of a fragment, which will run indepen-
dently within the context of the application, while the hardware and operating-system
level requirements that are imposed by each fragment are modeled on so-called “process-
ing nodes”. Each processing node defines a relevant TOSCA node type and each “fragment
node” corresponds to an instance of a TOSCA node template. While processing nodes are
generic (and could each be used by many fragments), fragment nodes are tightly coupled
to the fragment that they describe—hence the naming of the nodes. Fragment nodes are
mapped to processing nodes, using “mapping nodes” (minimal TOSCA node templates).
The definitions of both processing and fragment nodes are based on the hosting require-
ments expressed either through the annotations mechanism or the UI. Processing, fragment,
and mapping nodes themselves are each defined in a new TOSCA node type, respectively.
An example of the relationships between processing, fragment, and mapping nodes is
illustrated in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 17 of 50

An important consideration related to the implemented improvements is the small

learning curve of the type-level TOSCA model, which allows a DevOps to quickly become

familiar with and inspect the structure of a cloud application.

5.1. Fragment and Processing Host Decoupling

A crucial aspect of our approach is the introduction of optimization capabilities to

the TOSCA template. Unfortunately, as most of the existing approaches follow an

analytical approach by specifying the topology in detail (i.e., specifying the provider to be

used at the time of model formulation and the exact VM details), there is little room left

for optimization. However, using our approach, the optimizer determines the exact

processing zone and processing location. Furthermore, the number of fragment instances

can be easily changed from components external to those involved in the TOSCA

generation process (e.g., a topology scaling director—see Figure 2) without adding

unnecessary complexity to our type-level model.

These advantages are only possible if a clear distinction between the software

components of the application from the hardware that they are installed on is made using

distinct TOSCA structures. Each application, therefore, consists of fragment nodes

(reflecting the software components), which are each related to a processing node

(reflecting the hosting hardware). Fragment nodes contain a description of a fragment,

which will run independently within the context of the application, while the hardware

and operating-system level requirements that are imposed by each fragment are modeled

on so-called “processing nodes”. Each processing node defines a relevant TOSCA node

type and each “fragment node” corresponds to an instance of a TOSCA node template.

While processing nodes are generic (and could each be used by many fragments),

fragment nodes are tightly coupled to the fragment that they describe—hence the naming

of the nodes. Fragment nodes are mapped to processing nodes, using “mapping nodes”

(minimal TOSCA node templates). The definitions of both processing and fragment nodes

are based on the hosting requirements expressed either through the annotations

mechanism or the UI. Processing, fragment, and mapping nodes themselves are each

defined in a new TOSCA node type, respectively. An example of the relationships

between processing, fragment, and mapping nodes is illustrated in Figure 3.

Figure 3. The relationships between fragment, processing, and mapping nodes. Figure 3. The relationships between fragment, processing, and mapping nodes.

An excerpt from the type-level TOSCA showing the sections related to the connection
of application fragments (according to our motivation scenario of Section 3) with their
respective processing nodes is shown in Listing 3.

Electronics 2021, 10, 737 17 of 48

Electronics 2021, 10, x FOR PEER REVIEW 18 of 50

An excerpt from the type-level TOSCA showing the sections related to the connection
of application fragments (according to our motivation scenario of Section 3) with their
respective processing nodes is shown in Listing 3.

deployment_node_imu_fragments_FaceDetector:
 type: processing_node_imu_fragments_FaceDetector_4

imu_fragments_FaceDetector:
 type: prestocloud.nodes.fragment.faas
 ………………
 requirements:
 - execute: deployment_node_imu_fragments_FaceDetector
 - proxy: deployment_node_LambdaProxy

Listing 3. The connection of fragments with processing nodes.

In the example in Listing 3, the “deployment_node_imu_fragments_FaceDetector” is
the mapping node, while the “imu_fragments_FaceDetector” is the fragment node. The
“proxy” field of the fragment node indicates the mapping node that will host the Lambda
Proxy of the topology (this node is not part of Listing 3—see Section 6 for more details).
When the TOSCA blueprint is parsed, the TOSCA orchestrator will deploy a Lambda
Proxy, which will enable the deployment of the FaceDetector fragment as a serverless
function.

The processing node defining the type of mapping node
(processing_node_imu_fragments_FaceDetector_4) that will be used to deploy the above
fragment (imu_fragments_FaceDetector) is specified in Listing 4.

processing_node_imu_fragments_FaceDetector_4:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 resource:
 properties:
 - type: { equal: cloud }
 - host:
 capability: tosca.capabilities.Container

Listing 3. The connection of fragments with processing nodes.

In the example in Listing 3, the “deployment_node_imu_fragments_FaceDetector” is
the mapping node, while the “imu_fragments_FaceDetector” is the fragment node. The
“proxy” field of the fragment node indicates the mapping node that will host the Lambda
Proxy of the topology (this node is not part of Listing 3—see Section 6 for more details).
When the TOSCA blueprint is parsed, the TOSCA orchestrator will deploy a Lambda Proxy,
which will enable the deployment of the FaceDetector fragment as a serverless function.

The processing node defining the type of mapping node (processing_node_imu_fragments
_FaceDetector_4) that will be used to deploy the above fragment (imu_fragments_FaceDetector)
is specified in Listing 4.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 50

An excerpt from the type-level TOSCA showing the sections related to the connection
of application fragments (according to our motivation scenario of Section 3) with their
respective processing nodes is shown in Listing 3.

deployment_node_imu_fragments_FaceDetector:
 type: processing_node_imu_fragments_FaceDetector_4

imu_fragments_FaceDetector:
 type: prestocloud.nodes.fragment.faas
 ………………
 requirements:
 - execute: deployment_node_imu_fragments_FaceDetector
 - proxy: deployment_node_LambdaProxy

Listing 3. The connection of fragments with processing nodes.

In the example in Listing 3, the “deployment_node_imu_fragments_FaceDetector” is
the mapping node, while the “imu_fragments_FaceDetector” is the fragment node. The
“proxy” field of the fragment node indicates the mapping node that will host the Lambda
Proxy of the topology (this node is not part of Listing 3—see Section 6 for more details).
When the TOSCA blueprint is parsed, the TOSCA orchestrator will deploy a Lambda
Proxy, which will enable the deployment of the FaceDetector fragment as a serverless
function.

The processing node defining the type of mapping node
(processing_node_imu_fragments_FaceDetector_4) that will be used to deploy the above
fragment (imu_fragments_FaceDetector) is specified in Listing 4.

processing_node_imu_fragments_FaceDetector_4:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 resource:
 properties:
 - type: { equal: cloud }
 - host:
 capability: tosca.capabilities.Container

Listing 4. Cont.

Electronics 2021, 10, 737 18 of 48
Electronics 2021, 10, x FOR PEER REVIEW 19 of 50

 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter: capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }

Listing 4. The description of a processing node.

As can be noted in Listing 4, the processing node definition allows for different
requirements for the cloud and the edge version of a fragment. This facility can be used
to adjust the processing requirements on edge devices, to account for the disparity in
performance between them and cloud instances.

Furthermore, in the case of fragments that should be only executed on edge devices,
a further constraint can be specified to ensure that candidate devices possess the necessary
sensors to acquire input. To represent this constraint, we introduced a sensors property
on extended TOSCA compute node specification, which includes a list of all required
sensors. Any device that does not possess one or more of these sensors is not eligible to
host the particular fragment.

An example of the sensors property used to limit (using the TOSCA nodefilter
structure) possible hosts to those possessing a microphone and camera is shown in Listing
5.

- sensors:
 properties:
 - microphone: { equal: “/dev/snd/mic0” }
 - camera: { equal: “/dev/video/camera0” }

Listing 5. Example of the “sensors” property.

5.2. TOSCA Specification of Fragment Nodes
Fragments are the central elements in our extended TOSCA document, as they

contain the actual business logic that will be carried out by the cloud application.
Fragments can represent software components that run on the edge, on the cloud, or
both—using the same or a different set of properties. The connection of fragments with
processing nodes and with their processing requirements is achieved using a new TOSCA
relationship.

The definition of a fragment node begins with a declaration of the type to which it
belongs. Immediately afterward follows the property segment, which begins with generic
information on the id and the name of the fragment. This information is followed by the
scalable and occurrences fields, which indicate if the fragment is scalable and the number
of instances that are needed for it to operate, respectively. The specification of the number
of occurrences at the fragment level drastically reduces the size of type-level TOSCA files

Listing 4. The description of a processing node.

As can be noted in Listing 4, the processing node definition allows for different
requirements for the cloud and the edge version of a fragment. This facility can be used
to adjust the processing requirements on edge devices, to account for the disparity in
performance between them and cloud instances.

Furthermore, in the case of fragments that should be only executed on edge devices, a
further constraint can be specified to ensure that candidate devices possess the necessary
sensors to acquire input. To represent this constraint, we introduced a sensors property on
extended TOSCA compute node specification, which includes a list of all required sensors.
Any device that does not possess one or more of these sensors is not eligible to host the
particular fragment.

An example of the sensors property used to limit (using the TOSCA nodefilter struc-
ture) possible hosts to those possessing a microphone and camera is shown in Listing 5.

Electronics 2021, 10, x FOR PEER REVIEW 19 of 50

 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter: capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }

Listing 4. The description of a processing node.

As can be noted in Listing 4, the processing node definition allows for different
requirements for the cloud and the edge version of a fragment. This facility can be used
to adjust the processing requirements on edge devices, to account for the disparity in
performance between them and cloud instances.

Furthermore, in the case of fragments that should be only executed on edge devices,
a further constraint can be specified to ensure that candidate devices possess the necessary
sensors to acquire input. To represent this constraint, we introduced a sensors property
on extended TOSCA compute node specification, which includes a list of all required
sensors. Any device that does not possess one or more of these sensors is not eligible to
host the particular fragment.

An example of the sensors property used to limit (using the TOSCA nodefilter
structure) possible hosts to those possessing a microphone and camera is shown in Listing
5.

- sensors:
 properties:
 - microphone: { equal: “/dev/snd/mic0” }
 - camera: { equal: “/dev/video/camera0” }

Listing 5. Example of the “sensors” property.

5.2. TOSCA Specification of Fragment Nodes
Fragments are the central elements in our extended TOSCA document, as they

contain the actual business logic that will be carried out by the cloud application.
Fragments can represent software components that run on the edge, on the cloud, or
both—using the same or a different set of properties. The connection of fragments with
processing nodes and with their processing requirements is achieved using a new TOSCA
relationship.

The definition of a fragment node begins with a declaration of the type to which it
belongs. Immediately afterward follows the property segment, which begins with generic
information on the id and the name of the fragment. This information is followed by the
scalable and occurrences fields, which indicate if the fragment is scalable and the number
of instances that are needed for it to operate, respectively. The specification of the number
of occurrences at the fragment level drastically reduces the size of type-level TOSCA files

Listing 5. Example of the “sensors” property.

5.2. TOSCA Specification of Fragment Nodes

Fragments are the central elements in our extended TOSCA document, as they contain
the actual business logic that will be carried out by the cloud application. Fragments can
represent software components that run on the edge, on the cloud, or both—using the same
or a different set of properties. The connection of fragments with processing nodes and
with their processing requirements is achieved using a new TOSCA relationship.

The definition of a fragment node begins with a declaration of the type to which
it belongs. Immediately afterward follows the property segment, which begins with
generic information on the id and the name of the fragment. This information is followed
by the scalable and occurrences fields, which indicate if the fragment is scalable and the
number of instances that are needed for it to operate, respectively. The specification of
the number of occurrences at the fragment level drastically reduces the size of type-level
TOSCA files (the alternative would be to copy large, identical specification blocks) and aids
their comprehensibility. We consider that it is necessary to allow the DevOps to define the
number of instances available to a fragment as a starting point to deploy the topology.

Electronics 2021, 10, 737 19 of 48

The major share of the fragment specification belongs to the definition of Docker
properties, either for edge or cloud versions of the fragment, or both. These properties
include the Docker image, the registry, the environmental variables, the specification of
port forwarding within Docker, and a custom Docker command line that can be executed
by the fragment (if needed). The ability to specify different properties on the cloud and
edge versions of a fragment provides the means for applications to adapt their execution
according to the resources of the host (generally inferior in an edge device compared to
a cloud VM). This is exemplified in Listing 6, where lower precision is used for the edge
version of FaceDetection and for more iterations in order to diminish the probability of an
edge device becoming overloaded (it is presumed here that the face detection algorithm
can either iterate more times using a coarse model to detect faces in the image or fewer
times by running calculations with higher precision). On the other hand, the cloud version
can operate at full effectiveness, requiring a much lower number of iterations to verify the
result. Further, it is important to mention that environmental variables may be dynamic,
using the get_property function available to TOSCA. Thus, IP addresses that are unknown
at the time of the deployment of the fragment may be denoted by a variable, which is later
replaced in instance-level TOSCA by an appropriate IP address. Following the specification
of Docker properties, the optimization variables section contains the weights for the cost
and distance criteria, while the friendliness criterion accepts a list of providers and the
weight that is assigned to each of them. The optimization criteria for each fragment of
the motivating scenario are specified in Table 2. For example, the DevOps has set for the
VideoStreamer fragment a weight value of 8 for distance, a weight value of 2 for cost, a
weight value of 1 for the friendliness of the “Azure” provider, and a weight value of 5
for the friendliness of the “AWS” provider (meaning that providers favoring low latency
should be favored, then the AWS provider, then providers offering low cost, and then any
provider—higher weights involve a higher preference for this criterion). This segment is
concluded by the definition of a custom health check command line and an integer interval
between two successive health check commands.

The last elements in the specification of a fragment are the mapping node that will
execute the particular fragment and the coordinator node (in this case a Lambda proxy)
that is related to the particular fragment. Coordinator nodes are discussed in depth in
Section 6.

Listing 6 provides the full specifications for an application fragment.

Electronics 2021, 10, x FOR PEER REVIEW 20 of 50

(the alternative would be to copy large, identical specification blocks) and aids their
comprehensibility. We consider that it is necessary to allow the DevOps to define the
number of instances available to a fragment as a starting point to deploy the topology.

The major share of the fragment specification belongs to the definition of Docker
properties, either for edge or cloud versions of the fragment, or both. These properties
include the Docker image, the registry, the environmental variables, the specification of
port forwarding within Docker, and a custom Docker command line that can be executed
by the fragment (if needed). The ability to specify different properties on the cloud and
edge versions of a fragment provides the means for applications to adapt their execution
according to the resources of the host (generally inferior in an edge device compared to a
cloud VM). This is exemplified in Listing 6, where lower precision is used for the edge
version of FaceDetection and for more iterations in order to diminish the probability of an
edge device becoming overloaded (it is presumed here that the face detection algorithm
can either iterate more times using a coarse model to detect faces in the image or fewer
times by running calculations with higher precision). On the other hand, the cloud version
can operate at full effectiveness, requiring a much lower number of iterations to verify the
result. Further, it is important to mention that environmental variables may be dynamic,
using the get_property function available to TOSCA. Thus, IP addresses that are unknown
at the time of the deployment of the fragment may be denoted by a variable, which is later
replaced in instance-level TOSCA by an appropriate IP address. Following the
specification of Docker properties, the optimization variables section contains the weights
for the cost and distance criteria, while the friendliness criterion accepts a list of providers
and the weight that is assigned to each of them. The optimization criteria for each
fragment of the motivating scenario are specified in Table 2. For example, the DevOps has
set for the VideoStreamer fragment a weight value of 8 for distance, a weight value of 2
for cost, a weight value of 1 for the friendliness of the “Azure” provider, and a weight
value of 5 for the friendliness of the “AWS” provider (meaning that providers favoring
low latency should be favored, then the AWS provider, then providers offering low cost,
and then any provider—higher weights involve a higher preference for this criterion).
This segment is concluded by the definition of a custom health check command line and
an integer interval between two successive health check commands.

The last elements in the specification of a fragment are the mapping node that will
execute the particular fragment and the coordinator node (in this case a Lambda proxy)
that is related to the particular fragment. Coordinator nodes are discussed in depth in
Section 6.

Listing 6 provides the full specifications for an application fragment.

imu_fragments_FaceDetector:
 type: prestocloud.nodes.fragment.faas
 properties:
 id: 3
 name: imu_fragments.FaceDetector
 scalable: true
 occurrences: 1
 docker_edge:
 image: “face_detector_edge:latest”
 registry: “local.prestocloud.test.eu”
 variables: { “PRECISION”: “50”, “ITERATIONS”: “10” }
 docker_cloud:
 image: “face_detector_cloud:latest”
 registry: “prestocloud.test.eu”
 variables: { “PRECISION”: “100”, “ITERATIONS”: “2” }
 optimization_variables:

Listing 6. Cont.

Electronics 2021, 10, 737 20 of 48
Electronics 2021, 10, x FOR PEER REVIEW 21 of 50

 cost: 1
 distance: 1
 friendliness: { “aws”: “5”, “gce”: “0”, “azure”: “1” }
 health_check:
 interval: 1
 cmd: “curl health.prestocloud.test.eu FaceDetector”
 requirements:
 - execute: deployment_node_imu_fragments_FaceDetector
 - proxy: deployment_node_LambdaProxy

Listing 6. Full application fragment specifications for the FaceDetector fragment.

5.3. Description of Instance-Level TOSCA
Although our contribution emphasizes the modeling capabilities offered by the

introduction of type-level TOSCA, instance-level TOSCA is also a major asset for the
reconfiguration of the application topology. As the instance-level document contains the
processing zone selected for each fragment, this information can be consumed by
components external to the generation of TOSCA templates to understand the mixture of
fragment instances that were deployed on edge devices and cloud VM’s and to improve
the quality of the updated blueprint (e.g., by adding one more instance for a component
that is chiefly deployed on edge devices, which typically have lower processing power).

The creation of the instance-level TOSCA document should be automatically
triggered each time a new type-level document is produced. This involves as a first step
the extraction of the information contained in the type-level TOSCA document by the
optimizer. The cost constraints and the time interval included in type-level TOSCA are
evaluated to create an average cost that is admissible for the topology. Then, the
collocation and precedence constraints are evaluated, as well as the optimization
preferences provided in each fragment, to determine the final deployment of the
application (for more details on the optimization process see Section 7.2). It is clear that
the policies segment contained in type-level TOSCA is not necessary in instance-level
TOSCA, as the constraints included there are taken into account during the allocation of
resources. If the optimizer can produce a valid configuration satisfying the constraints of
the topology described in the type-level document, this configuration is sent to the
instance-level TOSCA generator, which produces the final instance-level TOSCA
document.

The average cost of the suggested deployment is evaluated against the maximum
admissible cost threshold of the DevOps. If it is lower, it is admitted and the deployment
can be implemented. The processing resources, networking configuration details, as well
as the cost of the VM or edge device used are then added for each fragment to new
“node_type” definitions of the processing nodes that will host them. The TOSCA type of
each processing node is different to represent different edge devices and cloud providers.
Thus, provider-specific information can be abstracted in the definition of certain
normative TOSCA “provider types”.

However, the instance-level TOSCA template shares with the type-level TOSCA
template the definitions of fragments, as well as the relationships between fragment nodes
and mapping nodes.

An example description of a processing node in instance-level TOSCA is described
in Listing 7.

processing_node_fragments_FaceDetector_1:
 type: prestocloud.nodes.compute.cloud.amazon
 properties:
 type: cloud

Listing 6. Full application fragment specifications for the FaceDetector fragment.

5.3. Description of Instance-Level TOSCA

Although our contribution emphasizes the modeling capabilities offered by the intro-
duction of type-level TOSCA, instance-level TOSCA is also a major asset for the reconfigu-
ration of the application topology. As the instance-level document contains the processing
zone selected for each fragment, this information can be consumed by components external
to the generation of TOSCA templates to understand the mixture of fragment instances that
were deployed on edge devices and cloud VM’s and to improve the quality of the updated
blueprint (e.g., by adding one more instance for a component that is chiefly deployed on
edge devices, which typically have lower processing power).

The creation of the instance-level TOSCA document should be automatically triggered
each time a new type-level document is produced. This involves as a first step the extrac-
tion of the information contained in the type-level TOSCA document by the optimizer.
The cost constraints and the time interval included in type-level TOSCA are evaluated
to create an average cost that is admissible for the topology. Then, the collocation and
precedence constraints are evaluated, as well as the optimization preferences provided
in each fragment, to determine the final deployment of the application (for more details
on the optimization process see Section 7.2). It is clear that the policies segment con-
tained in type-level TOSCA is not necessary in instance-level TOSCA, as the constraints
included there are taken into account during the allocation of resources. If the optimizer
can produce a valid configuration satisfying the constraints of the topology described in
the type-level document, this configuration is sent to the instance-level TOSCA generator,
which produces the final instance-level TOSCA document.

The average cost of the suggested deployment is evaluated against the maximum
admissible cost threshold of the DevOps. If it is lower, it is admitted and the deployment
can be implemented. The processing resources, networking configuration details, as well
as the cost of the VM or edge device used are then added for each fragment to new
“node_type” definitions of the processing nodes that will host them. The TOSCA type of
each processing node is different to represent different edge devices and cloud providers.
Thus, provider-specific information can be abstracted in the definition of certain normative
TOSCA “provider types”.

However, the instance-level TOSCA template shares with the type-level TOSCA
template the definitions of fragments, as well as the relationships between fragment nodes
and mapping nodes.

An example description of a processing node in instance-level TOSCA is described in
Listing 7.

Electronics 2021, 10, 737 21 of 48

Electronics 2021, 10, x FOR PEER REVIEW 22 of 51

The average cost of the suggested deployment is evaluated against the maximum
admissible cost threshold of the DevOps. If it is lower, it is admitted and the deployment
can be implemented. The processing resources, networking configuration details, as well
as the cost of the VM or edge device used are then added for each fragment to new
“node_type” definitions of the processing nodes that will host them. The TOSCA type of
each processing node is different to represent different edge devices and cloud providers.
Thus, provider-specific information can be abstracted in the definition of certain
normative TOSCA “provider types”.

However, the instance-level TOSCA template shares with the type-level TOSCA
template the definitions of fragments, as well as the relationships between fragment nodes
and mapping nodes.

An example description of a processing node in instance-level TOSCA is described
in Listing 7.

processing_node_fragments_FaceDetector_1:
 type: prestocloud.nodes.compute.cloud.amazon
 properties:
 type: cloud
 network:
 network_id: s-gbdpnc4s
 network_name: subnet1
 addresses:
 - 192.168.1.1
 capabilities:
 resource:
 properties:
 type: cloud
 cloud:
 cloud_name: amazon_public1
 cloud_type: amazon
 cloud_region: us-east-1
 host:
 properties:
 num_cpus: 2
 mem_size: 4.0 GB
 disk_size: 50 GB
 price: 0.120000

Listing 7. Processing node specifications for instance-level TOSCA.

In instance-level processing nodes, information described in the form of constraints
in type-level TOSCA should be concretized into specific details. The number of CPUs, the
memory, and the disk size are all fixed values; the cloud provider and the cloud region
are also chosen. These fixed values come from the solving process of the optimizer (see
Figure 2), which considers the available hosting candidates with respect to the pre-defined
optimization goals, as detailed in Section 7.2. Moreover, networking information is
available for the particular instance. The information included in instance-level TOSCA
processing nodes can also be customized by editing the relevant TOSCA type.

6. Support for FaaS and Other Coordinator-Based Paradigms
The new node types proposed for TOSCA both allow the representation of FaaS and

other distributed software paradigms, in which there is a coordinator of execution that

Listing 7. Processing node specifications for instance-level TOSCA.

In instance-level processing nodes, information described in the form of constraints
in type-level TOSCA should be concretized into specific details. The number of CPUs,
the memory, and the disk size are all fixed values; the cloud provider and the cloud
region are also chosen. These fixed values come from the solving process of the optimizer
(see Figure 2), which considers the available hosting candidates with respect to the pre-
defined optimization goals, as detailed in Section 7.2. Moreover, networking information is
available for the particular instance. The information included in instance-level TOSCA
processing nodes can also be customized by editing the relevant TOSCA type.

6. Support for FaaS and Other Coordinator-Based Paradigms

The new node types proposed for TOSCA both allow the representation of FaaS and
other distributed software paradigms, in which there is a coordinator of execution that
handles a number of workers. It is assumed that these distributed software paradigms are
followed by one or more of the application components. We propose their definition here
as a means to provide a reusable type of collection for certain common application patterns,
which can also be exploited by other TOSCA applications.

FaaS-based applications are assumed to consist of a set of application fragments that
are independent of other application components and have a self-contained execution flow.
Fragments are assumed to be hosted inside Docker containers, which are in turn hosted
inside VMs. Access to fragments is allowed through REST calls, which are managed by a
publicly-facing load-balancer component. If more than one fragment type are managed
by the load-balancer, the component is referred to as a Lambda Proxy, since it serves as
a proxy for AWS-Lambda-like, serverless functions. Unlike some serverless platforms,
which limit the processing time and the languages that can be used to develop functions,
our approach supports all fragment types that can be dockerized, running for any desired
amount of time.

Fragments following the FaaS paradigm use the custom prestocloud.nodes.fragment.faas
fragment type. The “proxy” field of the fragment type accepts the name of the Lambda Proxy

Electronics 2021, 10, 737 22 of 48

mapping node that will manage requests to this fragment. FaaS fragments are installed
on FaaS agents (workers), which are modeled using the prestocloud.nodes.agent.faas type.
FaaS agents satisfy by definition the prestocloud.relationships.executedBy.faas relation-
ship required by FaaS fragments. FaaS Lambda Proxies are modeled with the presto-
cloud.nodes.proxy.faas type and possess the prestocloud.capabilities.proxying.faas capabil-
ity, which allows them to coordinate worker agents hosting a FaaS fragment. The relation-
ships between FaaS fragments, their executing processing nodes, and the Lambda Proxy
can be seen in Figure 4.

Electronics 2021, 10, x FOR PEER REVIEW 23 of 50

prestocloud.relationships.executedBy.faas relationship required by FaaS fragments. FaaS

Lambda Proxies are modeled with the prestocloud.nodes.proxy.faas type and possess the

prestocloud.capabilities.proxying.faas capability, which allows them to coordinate

worker agents hosting a FaaS fragment. The relationships between FaaS fragments, their

executing processing nodes, and the Lambda Proxy can be seen in Figure 4.

Figure 4. The relationships between the fragment, processing, and mapping nodes of the Lambda Proxy and the proxied

FaaS fragments.

We also propose a similar modeling approach for applications using the load-

balancing paradigm. In this paradigm, we consider that the application fragment can run

in parallel on a number of workers, which each host an instance of the fragment and can

handle a fraction of its workload. This is achieved with the help of a load-balancing node,

which receives all incoming HTTP REST calls and invokes the correct worker. As is the

case for FaaS-based applications, fragments are assumed to be deployed in Docker

containers, while the container of each fragment is deployed on its own VM. The custom

type that is created for load-balanced fragments is

prestocloud.nodes.fragment.loadBalanced. Load-balanced fragments are installed on

prestocloud.nodes.agent.loadBalanced agents (workers), which by definition satisfy the

prestocloud.relationships.executedBy.faas relationship. Workers are load-balanced by the

Load-Balancer component, which is modeled by the prestocloud.nodes.proxy and

possesses the prestocloud.capabilities.proxying capability. The connection of a worker to

its load-balancer is achieved with the help of the “proxy” field in the

prestocloud.nodes.fragment.loadBalanced TOSCA. The relationships between load-

balanced fragments, their executing processing nodes, and the Load-Balancer can be seen

in Figure 5 below.

Figure 4. The relationships between the fragment, processing, and mapping nodes of the Lambda Proxy and the proxied
FaaS fragments.

We also propose a similar modeling approach for applications using the
load-balancing paradigm. In this paradigm, we consider that the application fragment can
run in parallel on a number of workers, which each host an instance of the fragment and
can handle a fraction of its workload. This is achieved with the help of a load-balancing
node, which receives all incoming HTTP REST calls and invokes the correct worker. As is
the case for FaaS-based applications, fragments are assumed to be deployed in Docker con-
tainers, while the container of each fragment is deployed on its own VM. The custom type
that is created for load-balanced fragments is prestocloud.nodes.fragment.loadBalanced.
Load-balanced fragments are installed on prestocloud.nodes.agent.loadBalanced agents
(workers), which by definition satisfy the prestocloud.relationships.executedBy.faas rela-
tionship. Workers are load-balanced by the Load-Balancer component, which is modeled by
the prestocloud.nodes.proxy and possesses the prestocloud.capabilities.proxying capability.
The connection of a worker to its load-balancer is achieved with the help of the “proxy”
field in the prestocloud.nodes.fragment.loadBalanced TOSCA. The relationships between
load-balanced fragments, their executing processing nodes, and the Load-Balancer can be
seen in Figure 5 below.

Electronics 2021, 10, 737 23 of 48Electronics 2021, 10, x FOR PEER REVIEW 24 of 50

Figure 5. The relationships between the fragment, processing, and mapping nodes of the Load-Balancer and the balanced

fragments.

Specification of JPPF applications is also supported by our approach. JPPF allows a

Client to offload a processing task to a JPPF Agent with the help of a suitable coordinator

(JPPF Master) node. Any JPPF fragment can be modeled using the

prestocloud.nodes.fragment.jppf type and is installed on a JPPF Agent that uses the

prestocloud.nodes.agent.jppf type, which by definition satisfies the

prestocloud.relationships.executedBy.jppf relationship required by JPPF fragments. JPPF

Masters are modeled using the prestocloud.nodes.jppf.master type and have the

prestocloud.capabilities.endpoint.jppf capability, which indicates that they provide an

endpoint that JPPF Agents can connect to in order to retrieve processing tasks.

The relationships between the JPPF Clients, their executing processing nodes, and

the JPPF Master can be seen in Figure 6 below.

Figure 5. The relationships between the fragment, processing, and mapping nodes of the Load-Balancer and the bal-
anced fragments.

Specification of JPPF applications is also supported by our approach. JPPF allows
a Client to offload a processing task to a JPPF Agent with the help of a suitable co-
ordinator (JPPF Master) node. Any JPPF fragment can be modeled using the presto-
cloud.nodes.fragment.jppf type and is installed on a JPPF Agent that uses the presto-
cloud.nodes.agent.jppf type, which by definition satisfies the prestocloud.relationships.ex-
ecutedBy.jppf relationship required by JPPF fragments. JPPF Masters are modeled using the
prestocloud.nodes.jppf.master type and have the prestocloud.capabilities.endpoint.jppf ca-
pability, which indicates that they provide an endpoint that JPPF Agents can connect to in
order to retrieve processing tasks.

The relationships between the JPPF Clients, their executing processing nodes, and the
JPPF Master can be seen in Figure 6 below.

In our approach, more than one of these software paradigms can co-exist in the same
application and each functions independently from the others. The relationships between
coordinator, processing, and fragment nodes within an application topology are depicted
in Figure 7.

Electronics 2021, 10, 737 24 of 48
Electronics 2021, 10, x FOR PEER REVIEW 25 of 50

Figure 6. The relationships between the fragment, processing, and mapping nodes of the JPPF master and the JPPF tasks

(fragments).

In our approach, more than one of these software paradigms can co-exist in the same

application and each functions independently from the others. The relationships between

coordinator, processing, and fragment nodes within an application topology are depicted

in Figure 7.

Figure 6. The relationships between the fragment, processing, and mapping nodes of the JPPF master and the JPPF
tasks (fragments).

Electronics 2021, 10, x FOR PEER REVIEW 26 of 50

Figure 7. The structure of the topology template segment in a coordinator-driven, type-level TOSCA

blueprint. Multiple agent nodes may be connected to one coordinator node and there can be an

arbitrary number of coordinator nodes.

7. Optimization and Application Constraints

The TOSCA extensions that are introduced include support for the optimization of

the deployment of fragments. Type-level TOSCA processing nodes specify ranges of

satisfactory values for most of their attributes (e.g., cpu cores, available ram and disk

space). This permits a reasonable number of alternative providers to be researched for the

availability of similar VMs (in resources), while ensuring a minimum performance

standard. The final selection of provider resources and edge devices should obey the

coarse-grained and fine-grained constraints set for the application, as well as any

placement policies set for one or more fragments.

7.1. Coarse-Grained Application Constraints

The vanilla TOSCA language specification [5] already permits the definition of a

metadata segment inside the TOSCA file. In our approach, this native construct is used to

hold extended constraints and preferences of the application. Its key-value body contains:

the data relevant to the business goals pursued by the application; the providers that are

preferred or excluded; and the budget constraints that should be respected. These

constraints can be used by the optimization engine to select the most appropriate flavor

and locations for the processing nodes.

An example of the usage of metadata fields to denote some of the constraints outlined

above is presented in Listing 8:

metadata:

 template_name: IMU generated types definition

 template_author: IMU

 template_version: 1.0.0-SNAPSHOT

Figure 7. The structure of the topology template segment in a coordinator-driven, type-
level TOSCA blueprint. Multiple agent nodes may be connected to one coordinator node and
there can be an arbitrary number of coordinator nodes.

Electronics 2021, 10, 737 25 of 48

7. Optimization and Application Constraints

The TOSCA extensions that are introduced include support for the optimization of
the deployment of fragments. Type-level TOSCA processing nodes specify ranges of satis-
factory values for most of their attributes (e.g., cpu cores, available ram and disk space).
This permits a reasonable number of alternative providers to be researched for the avail-
ability of similar VMs (in resources), while ensuring a minimum performance standard.
The final selection of provider resources and edge devices should obey the coarse-grained
and fine-grained constraints set for the application, as well as any placement policies set
for one or more fragments.

7.1. Coarse-Grained Application Constraints

The vanilla TOSCA language specification [5] already permits the definition of a
metadata segment inside the TOSCA file. In our approach, this native construct is used to
hold extended constraints and preferences of the application. Its key-value body contains:
the data relevant to the business goals pursued by the application; the providers that
are preferred or excluded; and the budget constraints that should be respected. These
constraints can be used by the optimization engine to select the most appropriate flavor
and locations for the processing nodes.

An example of the usage of metadata fields to denote some of the constraints outlined
above is presented in Listing 8:

Electronics 2021, 10, x FOR PEER REVIEW 27 of 51

metadata:
 template_name: IMU generated types definition
 template_author: IMU
 template_version: 1.0.0-SNAPSHOT
 CostThreshold: 1000
 TimePeriod: 720
 ProviderName_0: OpenStack_local
 ProviderRequired_0: false
 ProviderExcluded_0: true
 MetricToMinimize: Cost

Listing 8. Example of metadata fields used for application-level constraints.

In the above example, aside from some generic informative fields concerning the
particular template version, the name, and the author, definitions exist for the business
goals, provider, and budget requirements related to the application as a whole. The
budget available is set to 1000 monetary units (e.g., euros), which should be used over a
time period of 720 h. The “OpenStack_local” provider is set to be excluded, and the
primary objective to be minimized is set to “cost”.

7.2. Fine-Grained Constraints and Optimization Criteria
As mentioned in Section 5.2, in each fragment definition, a number of optimization

criteria are identified, namely the cost, distance, and friendliness. The cost optimization
criterion reflects the monetary cost of choosing a particular hosting VM for a time period.
The distance optimization criterion reflects the distance of the host of the fragment from
the centroid of edge devices. The friendliness criterion reflects a preference towards a
particular cloud provider (for any reason, e.g., data locality). While these criteria are
modeled in a specific construct, more optimization criteria can of course be defined to
supplement or replace the above. An example of the specification of optimization criteria
appears in Listing 6.

Additionally, these application constraints can be coupled with a set of tools that
enables the DevOps to guide the deployment of fragments by considering their
relationships. We suggest implementing these using a set of proper placement
optimization policies. In the context of TOSCA, we introduce three different optimization
policies: collocation policies, anti-affinity policies, and precedence policies. The formal
definitions of these policies appear in Listing 9.

Listing 8. Example of metadata fields used for application-level constraints.

In the above example, aside from some generic informative fields concerning the
particular template version, the name, and the author, definitions exist for the business
goals, provider, and budget requirements related to the application as a whole. The budget
available is set to 1000 monetary units (e.g., euros), which should be used over a time
period of 720 h. The “OpenStack_local” provider is set to be excluded, and the primary
objective to be minimized is set to “cost”.

7.2. Fine-Grained Constraints and Optimization Criteria

As mentioned in Section 5.2, in each fragment definition, a number of optimization
criteria are identified, namely the cost, distance, and friendliness. The cost optimization
criterion reflects the monetary cost of choosing a particular hosting VM for a time period.
The distance optimization criterion reflects the distance of the host of the fragment from the
centroid of edge devices. The friendliness criterion reflects a preference towards a particular
cloud provider (for any reason, e.g., data locality). While these criteria are modeled in
a specific construct, more optimization criteria can of course be defined to supplement
or replace the above. An example of the specification of optimization criteria appears in
Listing 6.

Additionally, these application constraints can be coupled with a set of tools that en-
ables the DevOps to guide the deployment of fragments by considering their relationships.
We suggest implementing these using a set of proper placement optimization policies. In the
context of TOSCA, we introduce three different optimization policies: collocation policies,

Electronics 2021, 10, 737 26 of 48

anti-affinity policies, and precedence policies. The formal definitions of these policies
appear in Listing 9.

Electronics 2021, 10, x FOR PEER REVIEW 28 of 51

Input

xi:Cloud providers

fi:Fragments

di:Devices

Provider: f → x Function mapping from fragments to providers

Hosting: d →f Function mapping from hosting (edge) devices to fragments

DeploymentTime: f → ℝ+ Function mapping from fragments to the positive real
numbers

Policy definitions

Collocated (fi,fj) → Provider(fi) = Provider (fj)

Collocated(fi,fj,fk,…,fn-1,fn) = Collocated(fi,fj) and Collocated(fi,fk) and … and
Collocated(fi,fn)

and Collocated(fj,fk) and…and Collocated(fj,fn) and … and Collocated(fn-1,fn)

Antiaffinity(fi,fj)→Provider(fi) ≠ Provider(fj)

Antiaffinity (fi,fj,fk,…,fn-1,fn) = Antiaffinity(fi,fj) and Antiaffinity(fi,fk) and … and
Antiaffinity(fi,fn) and Antiaffinity(fj,fk) and … and Antiaffinity(fj,fn) and … and
Antiaffinity(fn-1,fn)

Precedence(fi,fj) → DeploymentTime(fi) < DeploymentTime(fj)

Precedence(fi,fj,…,fn) → DeploymentTime(fi) < DeploymentTime(fj) < ⋯ <
DeploymentTime(fn)

Excluded(fi,(d1,d2,…,dn)) → not Hosting(d1,fi) and not Hosting(d2,fi) and … and not
Hosting(dn,fi)

Listing 9. Formal definitions of optimization policies.

Our collocation policies indicate that a fragment should be collocated with other
fragments (using the same cloud provider), unlike the collocation policies that are briefly
mentioned in the TOSCA specifications, which imply the use of the same compute node.
This allows low-latency communication and results in improved compatibility and
communication between processing nodes. However, the optimization component cannot
consider the option of using different cloud providers for the fragments to lower the total
costs. In the motivating example, a collocation policy is needed for the VideoStreamer and
VideoTranscoder fragments (Table 2).

Our anti-affinity policies specify that a fragment should not be collocated with other
fragments. This results in the placement of this fragment and all target fragments in
different cloud providers (and is, thus, different from the anti-collocation policies briefly
mentioned in the TOSCA specifications). Using this policy enhances the security of a

Listing 9. Formal definitions of optimization policies.

Our collocation policies indicate that a fragment should be collocated with other
fragments (using the same cloud provider), unlike the collocation policies that are briefly
mentioned in the TOSCA specifications, which imply the use of the same compute node.
This allows low-latency communication and results in improved compatibility and com-
munication between processing nodes. However, the optimization component cannot
consider the option of using different cloud providers for the fragments to lower the to-
tal costs. In the motivating example, a collocation policy is needed for the VideoStreamer
and VideoTranscoder fragments (Table 2).

Our anti-affinity policies specify that a fragment should not be collocated with
other fragments. This results in the placement of this fragment and all target fragments in
different cloud providers (and is, thus, different from the anti-collocation policies briefly
mentioned in the TOSCA specifications). Using this policy enhances the security of a critical
information system that is communicating with a potentially vulnerable component, as it is

Electronics 2021, 10, 737 27 of 48

easier to isolate systems in case of a breach. However, this also means that the optimization
component cannot request instances from the same provider for the fragments, and as a
result some of the lower-cost options might be lost. In the motivating example (Table 2),
an anti-affinity policy is needed for the AudioCaptor and PercussionDetector to ensure that
(violent percussion) detection happens reliably and quickly (i.e., away from edge nodes on
which AudioCaptor fragments are hosted).

Precedence policies describe that fragments should be instantiated and deployed in the
order that is mentioned. An advantage of precedence policies is that all required interfaces—
indicating data needed from a data flow for each component—are automatically satisfied by
the time they are instantiated. Precedence policies guarantee the satisfaction of interfaces,
however increased deployment time is required in return, as Docker containers should be
spawned sequentially.

Device exclusion policies ensure that fragments are optimally scheduled for processing
at the edge. They enhance the response of the system by marking a certain set of devices as
unsuitable for deployment—therefore being excluded from the scheduling of instances of a
particular fragment. The suitability of a device for a fragment depends on historical data
processing results and the availability status, which can be detected and analyzed using
machine learning techniques (for more details see [35]). The details of such a component
are not detailed here, since this is considered out of the scope of this article.

The placement policies are modeled at the level of TOSCA using the fragment nodes.
They offer a significant benefit over the usage of native TOSCA relationships, in that
they permit the easy visualization of the most important constraints associated with the
deployment application. In addition, the implementation of their enforcement is much
simpler than the resolution of TOSCA relationships between fragments.

An example of the four deployment policies based on the motivating example is
included in Listing 10.

Electronics 2021, 10, x FOR PEER REVIEW 30 of 51

topology_template:
 policies:
 - collocation_policy_group_0:
 type: prestocloud.placement.Gather
 targets: [imu_fragments_VideoStreamer, imu_fragments_VideoTranscoder]

 - anti_affinity_policy_group_0:
 type: prestocloud.placement.Spread
 targets: [imu_fragments_PercussionDetector, imu_fragments_AudioCaptor]

 - precedence_policy_group_0:
 type: prestocloud.placement.Precedence
 targets:
[imu_fragments_VideoStreamer,imu_fragments_VideoTranscoder,imu_fragments_Face
Detector,imu_fragments_MultimediaManager,imu_fragments_AudioCaptor,imu_fragm
ents_PercussionDetector]

 - exclude_fragment_from_devices_0:
 type: prestocloud.placement.Ban
 properties:
 excluded_devices:
 - “a6f2:d8bd:bf45a:de2a:d1e8:5f58:c256:0492”,
 - “c2c1:def1:2c38:c83b:6b0d:b7bd:a0d2:95c2”,
 - “b3ef:58d8:39d0:86ce:81d2:6e93:5f7d:23cd”,
 - “b28e:9f32:2076:3599:39c3:6cc5:794a:5140”
 targets: [imu_fragments_VideoStreamer]

Listing 10. Full example of the available deployment policies.

7.3. Constraints and Optimization Handling

Input

X:Cloud providers

F:Fragments

D:Candidate Edge Devices

CLP:collocation policies

AAP:anti-affinity policies

PRP:precedence policies

DEP:device exclusion policies

Algorithm

for fragment in F

Listing 10. Full example of the available deployment policies.

Electronics 2021, 10, 737 28 of 48

7.3. Constraints and Optimization Handling

The enforcement of the optimization policies presented in this work is delegated to
the optimization engine that consumes the type-level TOSCA. Additionally, in order to
provide a clearer understanding of the effects of each optimization policy, we describe the
necessary steps to be performed by any optimizer implementation process.

We consider that the optimizer first retrieves the available cloud provider VM types
and edge devices that can be used for the deployment. Then, any device exclusion policies
are applied and the excluded edge devices are removed from the candidate hosts. If there
are not any contradictory policies (e.g., an anti-affinity policy and a collocation policy set
for the same set of fragments, or cyclic precedence policies), a list of valid configurations
that satisfy all collocation and anti-affinity policies is proposed; otherwise, the list of valid
configurations is set as empty. In the creation of valid configurations, precedence is given to
the assignment of fragment instances to edge processing hosts satisfying the requirements
of a fragment. If the list of valid configurations is not empty, the configurations are sorted
according to the optimization criteria that have been defined, and the best configuration
that satisfies the global constraints should be chosen to be translated to instance-level
TOSCA.

Otherwise, if no configuration is found to satisfy the constraints and deploy all frag-
ment instances, the deployment fails and the DevOps should resubmit a new template.
Finally, at deployment time, the containers of different fragments should be started accord-
ing to the priority, which is set in one or more precedence policies.

The process described above appears in pseudocode in Listing 11. Note that we
intentionally do not proceed with optimization of the data structures and algorithmic logic,
as we aim to provide an easy-to-follow overview of our proposal.

Electronics 2021, 10, x FOR PEER REVIEW 30 of 51

 - “c2c1:def1:2c38:c83b:6b0d:b7bd:a0d2:95c2”,
 - “b3ef:58d8:39d0:86ce:81d2:6e93:5f7d:23cd”,
 - “b28e:9f32:2076:3599:39c3:6cc5:794a:5140”
 targets: [imu_fragments_VideoStreamer]

Listing 10. Full example of the available deployment policies.

7.3. Constraints and Optimization Handling

Input

X:Cloud providers

F:Fragments

D:Candidate Edge Devices

CLP:collocation policies

AAP:anti-affinity policies

PRP:precedence policies

DEP:device exclusion policies

Algorithm

for fragment in F

 for collocation-policy in fragment_CLP

 for anti-affinity policy in fragment_AAP

 if collocation-policy contradicts anti-affinity-policy then return
FAILED_DEPLOYMENT

Listing 11. Cont.

Electronics 2021, 10, 737 29 of 48
Electronics 2021, 10, x FOR PEER REVIEW 31 of 50

for precedence-policy in fragment_PRP

 for other-precedence-policy in fragment_PRP

 if precedence-policy contradicts other-precedence-policy then return
FAILED_DEPLOYMENT

for fragment in F

 for device in fragment_DEP

 D ← D-{device}//remove the device from the eligible hosts

Configurations ← find_eligible_configurations (F,D,X)

Configurations ← apply_coarse_grained_application_constraints (Configurations)

if Configurations is not Empty

 maximum_utility ← -∞

 best_configuration ← None

 for configuration in Configurations

 configuration.utility ← calculate_utility_from_optimization_criteria
(configuration)

 if configuration.utility > maximum_utility then

 maximum_utility ← configuration.utility

 best_configuration ← configuration

 return best_configuration

else return FAILED_DEPLOYMENT

Listing 11. Optimization process pseudocode.

8. Evaluation
8.1. Comparative Assessment

In order to evaluate our approach, we illustrate a comparison of our extended
TOSCA with one of the most prominent commercial solutions, Terraform, as the most
representative of the other approaches in terms of features that are offered. Following this,
we provide a definition of the example application presented in Section 3 with Terraform
and highlight the advantages of both approaches. We consider that the application
deployment should try to respect the optimization criteria specified in Table 2.

The first question that should be answered concerns the choice of the cloud provider
that should be used. To create the Terraform template, we assume that the DevOps of the
application invests a thorough amount of time balancing the pros and cons of deployment

Listing 11. Optimization process pseudocode.

8. Evaluation
8.1. Comparative Assessment

In order to evaluate our approach, we illustrate a comparison of our extended TOSCA
with one of the most prominent commercial solutions, Terraform, as the most representative
of the other approaches in terms of features that are offered. Following this, we provide a
definition of the example application presented in Section 3 with Terraform and highlight
the advantages of both approaches. We consider that the application deployment should
try to respect the optimization criteria specified in Table 2.

The first question that should be answered concerns the choice of the cloud provider
that should be used. To create the Terraform template, we assume that the DevOps of the
application invests a thorough amount of time balancing the pros and cons of deployment
on a particular cloud provider, while also factoring in the requirements of a particular
fragment in order to choose the VMs that have the lowest price for a satisfying deployment.
This process is difficult, error-prone, and time-consuming. On the other hand, our ap-

Electronics 2021, 10, 737 30 of 48

proach depends on an initial investment of time to create a component able to solve a
constraint programming problem. Subsequently, the optimizer component will be able
to automatically evaluate the available cloud offerings and provide the most appropriate
processing location for each fragment instance.

Firstly, we consider the creation of the topology template of our fog application using
Terraform. A major disadvantage of Terraform—and the majority of the approaches listed
in Table 6—is that the mixture of edge and cloud devices should be known beforehand
and be static in order to accurately describe the topology. However, the assumption
of a static topology is very difficult to make, as it requires considerable expertise on
the offerings of cloud providers, while more importantly the available edge resources
are opportunistic. On the other hand, if the topology is not static (and a tool similar to
Kubernetes is used to abstract this), then there is a risk the instances will be deployed on a
possibly suboptimal location (in the case that the cluster consists of both edge devices and
cloud VMs, a component may be assigned to a VM when an edge device could support it).
Furthermore, in the case that two processing clusters are used, one for edge devices and
one for cloud VMs, it is possible that the topology will not be deployable at all (for example,
if a component is set to be deployed on the edge cluster but there are insufficient resources
in it).

For our comparison, let us assume that aside from the public cloud resources, the
application can also use Raspberry Pi devices to host application fragments.

Based on these requirements, a simplified topology template (omitting most of the
network-related details), which can be created using Terraform, appears in Appendix B.
Listing 12 contains excerpts from this template, which will help us to perform a comparison
with our approach.

Electronics 2021, 10, x FOR PEER REVIEW 32 of 51

on a particular cloud provider, while also factoring in the requirements of a particular
fragment in order to choose the VMs that have the lowest price for a satisfying
deployment. This process is difficult, error-prone, and time-consuming. On the other
hand, our approach depends on an initial investment of time to create a component able
to solve a constraint programming problem. Subsequently, the optimizer component will
be able to automatically evaluate the available cloud offerings and provide the most
appropriate processing location for each fragment instance.

Firstly, we consider the creation of the topology template of our fog application using
Terraform. A major disadvantage of Terraform—and the majority of the approaches listed
in Table 6 —is that the mixture of edge and cloud devices should be known beforehand
and be static in order to accurately describe the topology. However, the assumption of a
static topology is very difficult to make, as it requires considerable expertise on the
offerings of cloud providers, while more importantly the available edge resources are
opportunistic. On the other hand, if the topology is not static (and a tool similar to
Kubernetes is used to abstract this), then there is a risk the instances will be deployed on
a possibly suboptimal location (in the case that the cluster consists of both edge devices
and cloud VMs, a component may be assigned to a VM when an edge device could
support it). Furthermore, in the case that two processing clusters are used, one for edge
devices and one for cloud VMs, it is possible that the topology will not be deployable at
all (for example, if a component is set to be deployed on the edge cluster but there are
insufficient resources in it).

For our comparison, let us assume that aside from the public cloud resources, the
application can also use Raspberry Pi devices to host application fragments.

Based on these requirements, a simplified topology template (omitting most of the
network-related details), which can be created using Terraform, appears in Appendix B.

provider “aws” {
 profile = “default”
 region = “us-east-1”
}
Network configuration …
resource “aws_instance” “FaceDetector” {
 ami = “ami-2757f631”
 instance_type = “t2.micro”
 key_name = “${aws_key_pair.auth.id}”
 vpc_security_group_ids = [“${aws_security_group.default.id}”]
 subnet_id = “${aws_subnet.default.id}”
 depends_on = [aws_instance.VideoTranscoder]
}
Other cloud components…
resource “aws_instance” “MultimediaManager” {
 ami = “ami-2757f611”
 instance_type = “t3a.medium “
 key_name = “${aws_key_pair.auth.id}”
 vpc_security_group_ids = [“${aws_security_group.default.id}”]
 subnet_id = “${aws_subnet.default.id}”
 depends_on =

[aws_instance.FaceDetector,aws_instance.VideoTranscoder,docker_container.percussion
_detector]

}
Configure the Docker providers
provider “docker” {

Listing 12. Cont.

Electronics 2021, 10, 737 31 of 48
Electronics 2021, 10, x FOR PEER REVIEW 33 of 51

 host = “tcp://192.168.1.2:2375/”
}
provider “docker” {
 alias = “worker_2”
 host = “tcp://192.168.1.3:2375/”
}
 provider “docker” {
 alias = “worker_3”
 host = “tcp://192.168.1.4:2375/”
}
Create a container
resource “docker_container” “video_streamer” {
 image = docker_image.vs_image.latest
 name = “vs_cont”
}
resource “docker_container” “audio_captor” {
 provider = docker.worker_2
 image = docker_image.ac_image.latest
 name = “ac_cont”
}
resource “docker_container” “percussion_detector” {
 provider = docker.worker_3
 image = docker_image.pd_image.latest
 name = “pd_cont”
 depends_on = [docker_container.audio_captor]
}
resource “docker_image” “vs_image” {
 name = “video_streamer:latest”
}
resource “docker_image” “ac_image” {
 provider = docker.worker_2
 name = “audio_captor:latest”
}
resource “docker_image” “pd_image” {
 provider = docker.worker_3
 name = “percussion_detector:latest”
}

Listing 12. Sample deployment using a Terraform template.

Similar to our approach, this template can be used for repeated deployments of the
application relieving the DevOps from the need to manually provision new processing
nodes and instantiate software on them. Additionally, Terraform (and other similar
approaches) provides a mature, industry-backed, domain-specific language—unlike our
approach, which is based on a well-recognized standard but is a research effort.
Furthermore, Terraform allows the use of variables, which is not yet exploited in our
approach. As a result, components that are used in one use-case can also be used in a
similar but different setting by changing only a few values (for example by changing a
variable holding the deployment region for a resource or changing a variable holding the
Amazon Machine Image (AMI) that will be used by some resources).

However, the explicit nature of Terraform templates also means that they are not
easily adaptable. It is also difficult to define relationships between components, which is

Listing 12. Sample deployment using a Terraform template.

Electronics 2021, 10, 737 32 of 48

Table 6. Notable cloud application deployment approaches.

Name Type Abstract
Model View

Instance
Model View

Multi-Cloud
Topology Support

Cloud and
Edge Modeling

Semantic
Enhancements

Optimization
Readiness FaaS Support Comments

Cloudify DSL
(TOSCA-Based) No Yes Yes Partial No No AWS Lambda -

Alien4Cloud DSL
(TOSCA-Based) No Yes No Partial No No No

Partial edge deployment support could
be implemented using the concept of
“bring your own node” (BYON) for

hosting applications

OpenTOSCA DSL
(TOSCA-Based No Yes Yes Partial No No Yes FaaS support can be implemented as

in [16]

CAMEL DSL Yes Yes Yes Partial No Yes Yes
Multi-DSL language built for

multi-clouds deployment and recently
extended for FaaS support

OCCI API No No No Partial No No No Only few providers are actively backed
by an OCCI implementation

Provider-specific
languages/tools DSL No Yes No Provider-

Dependent
Provider-

Dependent No Provider-
Dependent

e.g., OpenStack Heat, Azure
Resource Manager, etc.

Terraform DSL No Yes Yes Partial No No Yes
Partial edge deployment support could

be manually implemented using a
Docker provider

Pulumi Programming-
language-based No Yes Yes Partial No No Yes

Partial edge deployment support could
be manually implemented using a

Docker provider

Our approach DSL Yes Yes Yes Full Yes Yes Yes Modeling of a custom FaaS architecture
is possible

Electronics 2021, 10, 737 33 of 48

Similar to our approach, this template can be used for repeated deployments of the ap-
plication relieving the DevOps from the need to manually provision new processing nodes
and instantiate software on them. Additionally, Terraform (and other similar approaches)
provides a mature, industry-backed, domain-specific language—unlike our approach,
which is based on a well-recognized standard but is a research effort. Furthermore, Ter-
raform allows the use of variables, which is not yet exploited in our approach. As a result,
components that are used in one use-case can also be used in a similar but different setting
by changing only a few values (for example by changing a variable holding the deployment
region for a resource or changing a variable holding the Amazon Machine Image (AMI)
that will be used by some resources).

However, the explicit nature of Terraform templates also means that they are not
easily adaptable. It is also difficult to define relationships between components, which is
a native characteristic of TOSCA. As a result, the detailed Terraform templates need to
be cautiously inspected to reveal any possible relationships between components. In Ter-
raform, expressing software architecture paradigms in a provider-independent manner
is a rather difficult task, as the only relevant tool that can be used is the “depends_on”
statement. In contrast, building on the ability of TOSCA to create relationships and capa-
bilities, our approach renders a template that is much simpler and easier to understand
(see Appendix A). This is especially relevant in the cases of JPPF-based, load-balanced,
function-as-a-service applications.

Continuing this evaluation, we consider that the topology should be adapted due to in-
creased load and that two more processing nodes are required for the VideoTranscoder frag-
ment. This leads to a need for a template update to depict the two new nodes that should
be added to the topology. However, where should these nodes be physically instantiated?
Even if we make the unrealistic assumption that the DevOps can know the most appropri-
ate cloud site (e.g., in terms of cost and performance), choosing a cloud-based VM may be a
suboptimal solution if one or more edge devices could handle the processing of a fragment.
Thus, the DevOps should be additionally burdened with the knowledge of all edge devices
that are available for processing if any degree of optimization is sought. Clearly, while this
approach is inefficient with a small number of devices, it is totally inapplicable when a
large number of edge devices are used. The same argument applies to the knowledge of
all VM instance types offered by the cloud vendors. Even if we consider that automated
helper services are used (e.g., a script calculating a DevOps-defined utility value over all
nodes, also providing the best edge candidate nodes), the final confirmation of the DevOps
will be needed for any reconfiguration of the platform, which is impractical if we consider
large-scale applications. Even if we only consider small-scale applications, there will
always be a “man-in-the-loop”, devoting non-negligible amounts of time and effort to
implementing topology adaptation actions. In addition, while the handling of collocation
and anti-affinity constraints is tedious in a processing topology with a large number of
fragments, it is impossible when the optimization of costs is also sought. Our approach,
however, paves the way for the usage of multi-objective scheduling based on approaches
similar to those in [36–38], which can handle multiple conflicting optimization criteria that
should be implemented by the optimizer component.

The current state-of-the-art in cloud application deployment is summarized in Table 6,
listing the most prominent approaches. The first column contains the names of each ap-
proach, while the second column contains the type, which can be a programming frame-
work, a domain-specific-language (DSL), or an application programming interface (API).
The third and fourth columns discuss the availability of an abstract and an instance
model view, which allow an overview of the application and a more precise view of the
topology, respectively. Our TOSCA-based approach is the only one aside from the CAMEL-
based approach providing a type-level model and instance-level model. Unlike CAMEL,
however, we also support the modeling of execution on edge devices. The fifth column dis-
cusses the ability of the approach to deploy a topology utilizing multiple clouds. The sixth
column indicates whether certain steps have been taken by approaches to support the

Electronics 2021, 10, 737 34 of 48

modeling topologies using both the cloud and edge. In this context, if a documented
methodology to handle edge devices as part of the native language, API, or programming
facilities (alongside cloud VMs) is natively offered by an approach, it is considered to fully
support cloud and edge deployments. On the other hand, approaches that allow cloud
deployment and permit deployment on edge devices (although with manual modeling
steps or limited optimization opportunities) are considered to offer partial support for
cloud and edge deployments. The seventh column indicates whether the approach has
the semantic enhancements required to represent cloud-only, edge-only, and hybrid edge–
cloud fragments in a unified way. The eighth column indicates the ability to support the
definition of optimization criteria. The ninth column indicates whether there is support
for the representation of serverless functions. While the support of commercially available
function-as-a-service platforms (already offered by some of the existing approaches) is
considered a reasonable extension of this work, here we propose automatic modeling of an
OpenFaaS-inspired function-as-a-service implementation, allowing the fine-grained use of
the available infrastructure.

We conclude this assessment with an overview of the most important expressivity
constructs introduced in this work compared to what is available in Terraform, as shown
in Figure 8. Terraform does not support any optimization factors but it does support one
placement constraint (the depends_on constraint). Terraform does also provide support
for load-balancing features offered by individual cloud providers but no normative load-
balancing modeling across clouds. In contrast, our approach supports three provider-
independent distributed execution paradigms (see Section 6), three optimization factors,
and four placement constraints (see Section 7.2).

Electronics 2021, 10, x FOR PEER REVIEW 34 of 50

We conclude this assessment with an overview of the most important expressivity

constructs introduced in this work compared to what is available in Terraform, as shown

in Figure 8. Terraform does not support any optimization factors but it does support one

placement constraint (the depends_on constraint). Terraform does also provide support

for load-balancing features offered by individual cloud providers but no normative load-

balancing modeling across clouds. In contrast, our approach supports three provider-

independent distributed execution paradigms (see Section 6), three optimization factors,

and four placement constraints (see Section 7.2).

Figure 8. Expressivity construct support using our approach and Terraform, related to optimization factors, placement

constraints, and provider-independent distributed paradigms.

8.2. Validating the Extended TOSCA in a Prototype Evaluation

In this section, we detail the implementation work on a TOSCA interpreter,

exploiting our type-level TOSCA to determine edge deployment scenarios. The tooling

used to exploit the aforementioned TOSCA extensions is available in a public repository.

The TOSCA interpreter source code is available at (https://github.com/ow2-

proactive/prestocloud-tosca-interpreter) and can be tested as a proof-of-concept with

topologies based on the load-balancing and FaaS execution paradigms. This interpreter

originated from the TOSCA parsing engine implemented in the Alien4cloud orchestrator

(https://alien4cloud.github.io/).

The optimization of fragment deployment scenarios is achieved through the

integration of the Btrplace scheduler library [34]. The Btrplace scheduler computes

placement solutions for VMs on nodes – and is used in our case to place fragments on

processing infrastructure resources. This framework follows the constraint programming

paradigm by using the Choco solver [33]. When provided a source model describing a

VM deployment and a set of constraints, the Btrplace scheduler solves a (i) destination

model describing a VM placement in conformance with expressed constraints and (ii) the

necessary steps to migrate one model to another. The uniqueness of the solution is

acquired by selecting a variable to optimize. The TOSCA interpreter proceeds with the

following workflow to generate a deployment scenario from a type-level TOSCA

specification:

1. The interpreter parses the supporting type-level TOSCA file and the supporting

TOSCA definition and infrastructure resources files. If one file does not comply with

TOSCA standards, the interpreter interrupts the process;

2. The identified computing resources are checked for their availability to receive a

fragment. If a resource fails this availability check, it is excluded from the

Figure 8. Expressivity construct support using our approach and Terraform, related to optimization factors, placement con-
straints, and provider-independent distributed paradigms.

8.2. Validating the Extended TOSCA in a Prototype Evaluation

In this section, we detail the implementation work on a TOSCA interpreter, exploiting our
type-level TOSCA to determine edge deployment scenarios. The tooling used to exploit the
aforementioned TOSCA extensions is available in a public repository. The TOSCA interpreter
source code is available at (https://github.com/ow2-proactive/prestocloud-tosca-interpreter)
and can be tested as a proof-of-concept with topologies based on the load-balancing and
FaaS execution paradigms. This interpreter originated from the TOSCA parsing engine
implemented in the Alien4cloud orchestrator (https://alien4cloud.github.io/).

The optimization of fragment deployment scenarios is achieved through the integra-
tion of the Btrplace scheduler library [34]. The Btrplace scheduler computes placement
solutions for VMs on nodes—and is used in our case to place fragments on processing

https://github.com/ow2-proactive/prestocloud-tosca-interpreter
https://alien4cloud.github.io/

Electronics 2021, 10, 737 35 of 48

infrastructure resources. This framework follows the constraint programming paradigm by
using the Choco solver [33]. When provided a source model describing a VM deployment
and a set of constraints, the Btrplace scheduler solves a (i) destination model describing
a VM placement in conformance with expressed constraints and (ii) the necessary steps
to migrate one model to another. The uniqueness of the solution is acquired by selecting
a variable to optimize. The TOSCA interpreter proceeds with the following workflow to
generate a deployment scenario from a type-level TOSCA specification:

1. The interpreter parses the supporting type-level TOSCA file and the supporting
TOSCA definition and infrastructure resources files. If one file does not comply with
TOSCA standards, the interpreter interrupts the process;

2. The identified computing resources are checked for their availability to receive a frag-
ment. If a resource fails this availability check, it is excluded from the deployment. If
a fragment is already being operated on this resource, it is considered for reallocation;

3. A Btrplace source model is programmed with available infrastructure resources,
already deployed fragments, and their constraints. Fragments to be deployed are
specified as constraints for the destination model;

4. Btrplace is invoked to turn the model into a destination model and a deployment
plan. In the case that no solution is found (e.g., due to lack of resources or conflicting
constraints), the interpreter interrupts the process. The choice of processing resources
comprising the destination model is based on the reduction of the overall cost and is
influenced by the optimization criteria set for each fragment;

5. The deployment plan is interpreted into a set of technical steps constituting deploy-
ment scenarios, encoded in a JSON file.

9. Results and Discussion

Following the approach that we introduced, a major advantage related to the instal-
lation of any cloud application is brought to the DevOps, as it is now possible to view
an easily reviewable, provider-agnostic, standards-based model of the topology to be
instantiated. The prototype type-level TOSCA generator we developed [31] can handle
both Java annotations and JSON inputs reflecting an application graph. How this topology
will later be managed and revised is outside the scope of this work, however we have
demonstrated above that type-level and instance-level TOSCA can cope with dynamic
setups. The enhancement of TOSCA should be impossible to achieve without creating
new node types and new policies. All new language structures use the existing TOSCA
syntax and each one targets a specific enhanced behavior. The extended TOSCA speci-
fication enables the modeling of self-managed FaaS-based applications alongside more
traditional VM-based applications. Moreover, our enhancements also deliver modeling sup-
port for the more traditional paradigm of load-balanced applications, as well as JPPF [13],
which is capable of creating dynamic processing infrastructures. All of these paradigms are
“coordinator-driven”, using “coordinator” nodes for the deployment—either a FaaS Proxy,
a load-balancer, or a JPPF master.

Applications comprised of coordinator-driven and more traditional architectures may
coexist or can be completely separated. It is known [39] that cloud functions as a part of a
FaaS deployment enjoy much lower startup times and offer more fine-grained cost execu-
tion options. These advantages make FaaS-based deployments preferable to conventional
VM-based deployments in certain use-case scenarios. In other cases, however, the stability
and predictability of VMs are preferred over FaaS. Our improvements enable gradual mi-
grations from VM-based deployments to FaaS-based deployments and vice versa, using the
expressiveness of TOSCA.

In addition, the extensions in the TOSCA specification also target the correct modeling
of edge devices. Both fog and edge-only deployments are targeted by our approach, sup-
porting mobility from the edge to the cloud and inversely where this can be implemented.
Naturally, fog architectures can be combined in modeling with FaaS-based applications to
describe FaaS fog deployments.

Electronics 2021, 10, 737 36 of 48

Additionally, irrespective of the topology that is actually deployed, we introduced
support for placement constraints and optimization factors at the level of each software com-
ponent (fragment) or the whole of the topology. Using our illustrative scenario, example
optimization factors are presented both at the topology and fragment levels, permitting the
run time optimization of the topology as required.

Regarding the relationship with existing solutions, in Section 8 we chose to com-
pare our work with one of the most successful current commercial solutions, Terraform.
We showed that Terraform is unable to provide an abstract view of a processing topology,
and is, therefore, unable to enforce cross-cloud optimization policies without significant
manual intervention. Secondly, exact knowledge of the edge devices that are available,
as well as the instance types that are offered by each provider, appears to be the only path
that can be taken to optimize costs while retaining performance to an acceptable level for
each application fragment. Additionally, Terraform and other vendor-specific, template-
based approaches require the meticulous configuration of all fine-grained networking
parameters on behalf of the DevOps.

In contrast, our approach isolates the specification of application components from
their deployment, can handle both small-scale and large-scale applications, can provide for
different optimization criteria, and is based on the open standard of TOSCA. Moreover,
when coupled with a proper TOSCA interpreter and topology reconfiguration tools, such as
those described in [40], it provides a fully automated approach to application deployment
and reconfiguration in a mixed edge–cloud infrastructure. Studies on improvements
of TOSCA can readily be performed and will benefit companies requiring cross-cloud
deployments on heterogeneous fog infrastructure, as TOSCA has the capacity to streamline
and abstract the view of an application topology. Using type-level and instance-level
TOSCA, the application description is not bound to any cloud provide, which allows the
application to be preserved for long-term deployments.

For larger topologies, it is expected that the type-level TOSCA templates will be-
come very lengthy. Even in this case, we believe that since the type and relative locations
of nodes related to a particular fragment are known beforehand (processing, fragment,
and mapping nodes), it will be easy to understand how a particular component is situated
in the processing topology, provided that the structure of the application is based on the
distributed software paradigms described in Section 6. When more complex relation-
ships are involved, additional software paradigms should be defined to streamline the
understanding of the application topology.

As part of this work, we provided a prototype type-level TOSCA generator, which can
be used to create type-level TOSCA for an application topology. We also provided a
prototype type-level TOSCA interpreter able to suggest the processing resources that
should be spawned. However, we showed that other components are needed, such as
the optimizer and the instance-level TOSCA generator, along with a TOSCA orchestrator,
in order to allow the full exploitation of our results. A definite future research direction
involves the development of components that can create the required outputs and further
extend the capabilities of the TOSCA ecosystem.

The creation, updating, and parsing processes for type-level TOSCA and instance-
level TOSCA are currently the responsibility of platform components that are installed
beforehand. Thus, a direction for future research could be the determination of the most
appropriate way to express the deployment and operation of these components in TOSCA,
without adding complexity to the topology template of the actual application. Additionally,
a greater number of software architecture and application-specific structures can be mod-
eled in TOSCA by any adopter choosing to customize the TOSCA generation procedure.
Another interesting research line could involve the modeling and the optimization of
services—complete topologies of microservices, as discussed in [41]—as entities in TOSCA,
which will be especially useful for organizations handling hundreds of microservices and
tens of services.

Electronics 2021, 10, 737 37 of 48

While our approach provides for the modeling of edge and cloud CPU-based resources,
we do not model the use of hardware accelerators such as field-programmable gate arrays
(FPGAs) and graphics processing units (GPUs). However, FPGAs and GPUs are popular
processing resources when increased performance, energy efficiency, and flexibility are
desired in various application domains [42]. Research on the modeling of accelerators and
the further abstraction of application fragments could lead to application topologies con-
currently featuring accelerator-based and CPU-based versions of a fragment. Coupled with
the definition of appropriate constraints for accelerator-based fragments, this modeling
effort will enable the automatic selection of the most appropriate processing form by a
suitable TOSCA orchestrator.

Finally, applications that are defined using our methodology in TOSCA can easily
profit from software components able to deploy and scale application topologies based
on monitoring data. Using the suggested approach, scaling in and out or up and down
is very easy to model and users can readily understand—even from a terminal window—
the changes that the platform has undergone. This support can be further extended,
by proposing specific modeling for scaling directives, e.g., using TOSCA policies [5].
Based on the scaling directives, it is trivial to automatically create a new TOSCA template,
which paves the way for a complete cloud adaptation approach, as described in [30].

10. Conclusions

In conclusion, we presented an approach to model some of the most important tech-
nologies that have appeared in the context of cloud computing over the past few years,
using a two-flavored TOSCA scheme, which allows the DevOps to unlock the potential
of optimized hybrid cloud–edge deployments and easily configure the criteria govern-
ing the deployment of components. Our work is backed by software implementation of
the most important modeling stage, the type-level TOSCA generation. In our approach,
classic architecture schemes can coexist with newer ones and can make use of edge de-
vices, the cloud, or both. The expression of constraints is built into the topology template,
and complete configuration over each fragment of the topology is possible. Moreover,
each node template and node type have the same structure and follow the same conven-
tions, therefore improving the understanding of the TOSCA document, whether at the
instance or type level.

This work presents many research opportunities, involving the enhancement of
TOSCA modeling at different levels. A first opportunity relates to the improvement
of the modeling of the entities involved in TOSCA generation and processing in order to
integrate them in the processing topology, and thus create self-contained deployment de-
scriptions. Further, the extension of TOSCA with definitions for more processing archi-
tectures (e.g., GPUs, FPGAs) can be considered. Our modeling effort and our type-level
TOSCA generator [31] can be used as a basis to support these extensions. Additional mod-
eling artifacts to guide the optimization and the automated reconfiguration of even more
diverse cloud application topologies can be defined. We have a vision of unified, scalable
multi-cloud and multi-edge deployments, and believe that our work can be used as a basis
for more ambitious definitions of cloud topologies.

Author Contributions: Conceptualization Y.V.; methodology, A.T., Y.V., D.A., and M.C.; soft-
ware A.T.; validation A.T.; formal analysis A.T.; investigation A.T., M.C., and Y.V.; resources, G.M. and
Y.V.; data curation, A.T.; writing-original draft preparation A.T.; writing-review and editing, Y.V., D.A.,
M.C., and G.M.; visualization, A.T.; supervision G.M.; project administration G.M. and Y.V.; fund-
ing acquisition, G.M. All authors have read and agreed to the published version of the manuscript.

Funding: Research reported in this article was funded by the European Union’s Horizon 2020
Research and Innovation program, grant agreements Prestocloud No. 732339 and Morphemic
No. 871643.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2021, 10, 737 38 of 48

Data Availability Statement: No significant datasets were analyzed in this study or created to
support it.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appendix A

Electronics 2021, 10, x FOR PEER REVIEW 38 of 51

Appendix A

tosca_definitions_version: tosca_prestocloud_mapping_1_2

metadata:
 template_name: IMU generated types definition
 template_author: IMU
 template_version: 1.0.0-SNAPSHOT
 CostThreshold: 1000
 TimePeriod: 720
 ProviderName_0: Google_Cloud_Compute
 ProviderRequired_0: false
 ProviderExcluded_0: true
 MetricToMinimize: Cost

description: Types Description

imports:
 - tosca-normative-types:1.2
 - iccs-normative-types:1.1
 - resource-descriptions:1.0
 - placement-constraints:1.0

node_types:
 #Processing node selection:
 processing_node_LambdaProxy_0:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.proxy.faas
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [2, 4] }
 - mem_size: { in_range: [2048 MB, 4096 MB] }
 - storage_size: { in_range: [10 GB, 50 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - resource:
 properties:
 - type: { equal: cloud }

 processing_node_imu_fragments_MultimediaManager_1:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:

Listing A1. Cont.

Electronics 2021, 10, 737 39 of 48
Electronics 2021, 10, x FOR PEER REVIEW 39 of 51

 properties:
 - num_cpus: { in_range: [2, 4] }
 - mem_size: { in_range: [2048 MB, 4096 MB] }
 - storage_size: { in_range: [128 GB, 1024 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - resource:
 properties:
 - type: { equal: cloud }

 processing_node_imu_fragments_VideoTranscoder_2:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [2, 4] }
 - mem_size: { in_range: [2048 MB, 4096 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - resource:
 properties:
 - type: { equal: cloud }
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [2, 4] }
 - mem_size: { in_range: [2048 MB, 4096 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }

 processing_node_imu_fragments_AudioCaptor_3:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }

Listing A1. Cont.

Electronics 2021, 10, 737 40 of 48
Electronics 2021, 10, x FOR PEER REVIEW 40 of 51

 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }
 - sensors:
 properties:
 - microphone: { equal: "/dev/snd/mic0" }

 processing_node_imu_fragments_FaceDetector_4:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent.faas
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [x86_64, i386] }
 - type: { equal: linux }
 - distribution: { equal: ubuntu }
 - resource:
 properties:
 - type: { equal: cloud }
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }

 processing_node_imu_fragments_PercussionDetector_5:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent.faas
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:

Listing A1. Cont.

Electronics 2021, 10, 737 41 of 48
Electronics 2021, 10, x FOR PEER REVIEW 41 of 51

 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }

 processing_node_imu_fragments_VideoStreamer_6:
 description: A TOSCA representation of a processing node
 derived_from: prestocloud.nodes.agent.faas
 requirements:
 - host:
 capability: tosca.capabilities.Container
 node: prestocloud.nodes.compute
 relationship: tosca.relationships.HostedOn
 node_filter:
 capabilities:
 - host:
 properties:
 - num_cpus: { in_range: [1, 2] }
 - mem_size: { in_range: [1024 MB, 2048 MB] }
 - storage_size: { in_range: [4 GB, 32 GB] }
 - os:
 properties:
 - architecture: { valid_values: [arm64, armel, armhf] }
 - type: { equal: linux }
 - distribution: { equal: raspbian }
 - resource:
 properties:
 - type: { equal: edge }
 - sensors:
 properties:
 - video_camera: { equal: "/dev/video/camera0" }

topology_template:
 policies:
 - collocation_policy_group_0:
 type: prestocloud.placement.Gather
 targets: [imu_fragments_VideoStreamer, imu_fragments_VideoTranscoder]

 - collocation_policy_group_1:
 type: prestocloud.placement.Gather
 targets: [imu_fragments_PercussionDetector, imu_fragments_AudioCaptor]

 - precedence_policy_group_0:
 type: prestocloud.placement.Precedence
 targets:
[imu_fragments_VideoStreamer,imu_fragments_VideoTranscoder,imu_fragments_FaceDetector,imu_fragments_Mul
timediaManager,imu_fragments_AudioCaptor,imu_fragments_PercussionDetector]

 node_templates:
 deployment_node_LambdaProxy:
 type: processing_node_LambdaProxy_0

 LambdaProxy:
 type: prestocloud.nodes.fragment
 properties:
 id: 6
 name: LambdaProxy
 scalable: false
 occurrences: 1
 docker_cloud:
 image: "traefik:latest"

Listing A1. Cont.

Electronics 2021, 10, 737 42 of 48
Electronics 2021, 10, x FOR PEER REVIEW 42 of 51

 registry: "hub.docker.com"
 ports:
 - target: 11111
 published: 11111
 protocol: TCP
 - target: 11198
 published: 11198
 protocol: TCP
 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 requirements:
 - execute: deployment_node_LambdaProxy

 deployment_node_imu_fragments_MultimediaManager:
 type: processing_node_imu_fragments_MultimediaManager_1

 imu_fragments_MultimediaManager:
 type: prestocloud.nodes.fragment
 properties:
 id: 0
 name: imu_fragments.MultimediaManager
 scalable: false
 occurrences: 1
 docker_cloud:
 image: "multimedia_manager:latest"
 registry: "prestocloud.test.eu"
 variables: { "VIDEO_TRANSCODER_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "FACE_DETECTOR_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "RUNNING_THREADS": "2" }
 optimization_variables:
 cost: 5
 distance: 4
 friendliness: { "aws": "5", "gce": "0", "azure": "1" }
 requirements:
 - execute: deployment_node_imu_fragments_MultimediaManager

 deployment_node_imu_fragments_VideoTranscoder:
 type: processing_node_imu_fragments_VideoTranscoder_2

 imu_fragments_VideoTranscoder:
 type: prestocloud.nodes.fragment
 properties:
 id: 1
 name: imu_fragments.VideoTranscoder
 scalable: true
 occurrences: 1
 docker_edge:
 image: "video_transcoder_edge:latest"
 registry: "prestocloud.edge.test.eu"
 ports:
 - target: 10000
 published: 10000
 protocol: TCP_UDP
 docker_cloud:
 image: "video_transcoder_cloud:latest"
 registry: "prestocloud.test.eu"
 ports:
 - target: 10000
 published: 10000
 protocol: TCP_UDP
 optimization_variables:
 cost: 2
 distance: 8
 friendliness: { "aws": "5", "gce": "0", "azure": "1" }
 requirements:
 - execute: deployment_node_imu_fragments_VideoTranscoder

Listing A1. Cont.

Electronics 2021, 10, 737 43 of 48
Electronics 2021, 10, x FOR PEER REVIEW 43 of 51

 deployment_node_imu_fragments_AudioCaptor:
 type: processing_node_imu_fragments_AudioCaptor_3

 imu_fragments_AudioCaptor:
 type: prestocloud.nodes.fragment
 properties:
 id: 2
 name: imu_fragments.AudioCaptor
 scalable: false
 occurrences: 1
 docker_edge:
 image: "audiocaptor:latest"
 registry: "prestocloud.test.eu"
 variables: { "SAMPLING_RATE": "22 kHZ" }
 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 health_check:
 interval: 1
 cmd: "cat /proc/meminfo"
 requirements:
 - execute: deployment_node_imu_fragments_AudioCaptor

 deployment_node_imu_fragments_FaceDetector:
 type: processing_node_imu_fragments_FaceDetector_4

 imu_fragments_FaceDetector:
 type: prestocloud.nodes.fragment.faas
 properties:
 id: 3
 name: imu_fragments.FaceDetector
 scalable: true
 occurrences: 1
 docker_edge:
 image: "face_detector_edge:latest"
 registry: "local.prestocloud.test.eu"
 variables: { "PRECISION": "50", "ITERATIONS": "10" }
 docker_cloud:
 image: "face_detector_cloud:latest"
 registry: "prestocloud.test.eu"
 variables: { "PRECISION": "100", "ITERATIONS": "2" }
 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { "aws": "5", "gce": "0", "azure": "1" }
 health_check:
 interval: 1
 cmd: "curl health.prestocloud.test.eu FaceDetector"
 requirements:
 - execute: deployment_node_imu_fragments_FaceDetector
 - proxy: deployment_node_LambdaProxy

 deployment_node_imu_fragments_PercussionDetector:
 type: processing_node_imu_fragments_PercussionDetector_5

 imu_fragments_PercussionDetector:
 type: prestocloud.nodes.fragment.faas
 properties:
 id: 4
 name: imu_fragments.PercussionDetector
 scalable: true
 occurrences: 1
 docker_edge:
 image: "percussion_detector_edge:latest"
 registry: "prestocloud.test.eu"
 docker_cloud:
 image: "percussion_detector_cloud:latest"
 registry: "prestocloud.test.eu"

Listing A1. Cont.

Electronics 2021, 10, 737 44 of 48
Electronics 2021, 10, x FOR PEER REVIEW 44 of 51

 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 requirements:
 - execute: deployment_node_imu_fragments_PercussionDetector
 - proxy: deployment_node_LambdaProxy

 deployment_node_imu_fragments_VideoStreamer:
 type: processing_node_imu_fragments_VideoStreamer_6

 imu_fragments_VideoStreamer:
 type: prestocloud.nodes.fragment.faas
 properties:
 id: 5
 name: imu_fragments.VideoStreamer
 scalable: true
 occurrences: 3
 docker_edge:
 image: "video_streamer:latest"
 registry: "prestocloud.test.eu"
 variables: { "VIDEO_TRANSCODER_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "VIDEO_RESOLUTION": "HD1080p" }
 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 requirements:
 - execute: deployment_node_imu_fragments_VideoStreamer
 - proxy: deployment_node_LambdaProxy

Listing A1 Generated Type-level TOSCA.

Appendix B
provider "aws" {
 profile = "default"
 region = "us-east-1"
}

Network configuration …Create a VPC to launch our instances into
resource "aws_vpc" "default" {
 cidr_block = "10.0.0.0/16"
}

Create an internet gateway to give our subnet access to the outside world
resource "aws_internet_gateway" "default" {
 vpc_id = "${aws_vpc.default.id}"
}

Grant the VPC internet access on its main route table
resource "aws_route" "internet_access" {
 route_table_id = "${aws_vpc.default.main_route_table_id}"
 destination_cidr_block = "0.0.0.0/0"
 gateway_id = "${aws_internet_gateway.default.id}"
}

Create a subnet to launch our instances into
resource "aws_subnet" "default" {
 vpc_id = "${aws_vpc.default.id}"
 cidr_block = "10.0.1.0/24"
 map_public_ip_on_launch = true
}

resource "aws_security_group" "default" {
 name = "terraform_example_lambda_proxy"
 description = "Used in the terraform"
 vpc_id = "${aws_vpc.default.id}"

Listing A1. Generated Type-level TOSCA.

Appendix B

Electronics 2021, 10, x FOR PEER REVIEW 44 of 51

 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 requirements:
 - execute: deployment_node_imu_fragments_PercussionDetector
 - proxy: deployment_node_LambdaProxy

 deployment_node_imu_fragments_VideoStreamer:
 type: processing_node_imu_fragments_VideoStreamer_6

 imu_fragments_VideoStreamer:
 type: prestocloud.nodes.fragment.faas
 properties:
 id: 5
 name: imu_fragments.VideoStreamer
 scalable: true
 occurrences: 3
 docker_edge:
 image: "video_streamer:latest"
 registry: "prestocloud.test.eu"
 variables: { "VIDEO_TRANSCODER_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "VIDEO_RESOLUTION": "HD1080p" }
 optimization_variables:
 cost: 1
 distance: 1
 friendliness: { }
 requirements:
 - execute: deployment_node_imu_fragments_VideoStreamer
 - proxy: deployment_node_LambdaProxy

Listing A1 Generated Type-level TOSCA.

Appendix B
provider "aws" {
 profile = "default"
 region = "us-east-1"
}

Network configuration …Create a VPC to launch our instances into
resource "aws_vpc" "default" {
 cidr_block = "10.0.0.0/16"
}

Create an internet gateway to give our subnet access to the outside world
resource "aws_internet_gateway" "default" {
 vpc_id = "${aws_vpc.default.id}"
}

Grant the VPC internet access on its main route table
resource "aws_route" "internet_access" {
 route_table_id = "${aws_vpc.default.main_route_table_id}"
 destination_cidr_block = "0.0.0.0/0"
 gateway_id = "${aws_internet_gateway.default.id}"
}

Create a subnet to launch our instances into
resource "aws_subnet" "default" {
 vpc_id = "${aws_vpc.default.id}"
 cidr_block = "10.0.1.0/24"
 map_public_ip_on_launch = true
}

resource "aws_security_group" "default" {
 name = "terraform_example_lambda_proxy"
 description = "Used in the terraform"
 vpc_id = "${aws_vpc.default.id}"

Listing A2. Cont.

Electronics 2021, 10, 737 45 of 48
Electronics 2021, 10, x FOR PEER REVIEW 45 of 51

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

A security group for the Lambda Proxy
resource "aws_security_group" "lambda_proxy" {
 name = "terraform_example_lambda_proxy"
 description = "Used in the terraform"
 vpc_id = "${aws_vpc.default.id}"

 ingress {
 from_port = 22
 to_port = 22
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 11111
 to_port = 11111
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }

 ingress {
 from_port = 11198
 to_port = 11198
 protocol = "tcp"
 cidr_blocks = ["0.0.0.0/0"]
 }
}

variable "key_name" {}
variable "public_key_path" {}

resource "aws_key_pair" "auth" {
 key_name = "${var.key_name}"
 public_key = "${file(var.public_key_path)}"
}

resource "aws_instance" "FaceDetector" {
 ami = "ami-2757f631"
 instance_type = "t2.micro"
 key_name = "${aws_key_pair.auth.id}"
 vpc_security_group_ids = ["${aws_security_group.default.id}"]
 subnet_id = "${aws_subnet.default.id}"
 depends_on = [aws_instance.VideoTranscoder]
}

resource "aws_instance" "VideoTranscoder" {
 ami = "ami-2757f621"
 instance_type = "c5.large "
 key_name = "${aws_key_pair.auth.id}"
 vpc_security_group_ids = ["${aws_security_group.default.id}"]
 subnet_id = "${aws_subnet.default.id}"
 depends_on = [docker_container.video_streamer]
}

resource "aws_instance" "LambdaProxy" {
 ami = "ami-2757f622"
 instance_type = "c5.large "
 key_name = "${aws_key_pair.auth.id}"
 vpc_security_group_ids = ["${aws_security_group.default.id}"]
 subnet_id = "${aws_subnet.default.id}"

Listing A2. Cont.

Electronics 2021, 10, 737 46 of 48
Electronics 2021, 10, x FOR PEER REVIEW 46 of 51

 depends_on = [docker_container.percussion_detector,aws_instance.FaceDetector,aws_instance.VideoTranscoder]
}

resource "aws_instance" "MultimediaManager" {
 ami = "ami-2757f611"
 instance_type = "t3a.medium "
 key_name = "${aws_key_pair.auth.id}"
 vpc_security_group_ids = ["${aws_security_group.default.id}"]
 subnet_id = "${aws_subnet.default.id}"
 depends_on = [aws_instance.FaceDetector,aws_instance.VideoTranscoder,docker_container.percussion_detector]
}

Configure the Docker providers
provider "docker" {
 host = "tcp://192.168.1.2:2375/"
}

provider "docker" {
 alias = "worker_2"
 host = "tcp://192.168.1.3:2375/"
}

provider "docker" {
 alias = "worker_3"
 host = "tcp://192.168.1.4:2375/"
}

Create a container
resource "docker_container" "video_streamer" {
 image = docker_image.vs_image.latest
 name = "vs_cont"
}

resource "docker_container" "audio_captor" {
 provider = docker.worker_2
 image = docker_image.ac_image.latest
 name = "ac_cont"
}

resource "docker_container" "percussion_detector" {
 provider = docker.worker_3
 image = docker_image.pd_image.latest
 name = "pd_cont"
 depends_on = [docker_container.audio_captor]
}

resource "docker_image" "vs_image" {
 name = "video_streamer:latest"
}

resource "docker_image" "ac_image" {
 provider = docker.worker_2
 name = "audio_captor:latest"
}

resource "docker_image" "pd_image" {
 provider = docker.worker_3
 name = "percussion_detector:latest"
}

Listing B1 Generated Type-level TOSCA.

References
1. Gartner Forecasts Worldwide Public Cloud End-User Spending to Grow 18% in 2021 Available online:

https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-
spending-to-grow-18-percent-in-2021 (accessed on 12 February 2021).

Listing A2. Generated Type-level TOSCA.

References
1. Gartner Forecasts Worldwide Public Cloud End-User Spending to Grow 18% in 2021. Available online: https://www.gartner.

com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18
-percent-in-2021 (accessed on 12 February 2021).

2. Opara-Martins, J.; Sahandi, R.; Tian, F. Critical Analysis of Vendor Lock-in and Its Impact on Cloud Computing Migration:
A Business Perspective. J. Cloud Comp 2016, 5, 4. [CrossRef]

https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2020-11-17-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-grow-18-percent-in-2021
http://doi.org/10.1186/s13677-016-0054-z

Electronics 2021, 10, 737 47 of 48

3. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All One Needs to Know about Fog
Computing and Related Edge Computing Paradigms: A Complete Survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]

4. Bergmayr, A.; Breitenbücher, U.; Ferry, N.; Rossini, A.; Solberg, A.; Wimmer, M.; Kappel, G.; Leymann, F. A Systematic Review of
Cloud Modeling Languages. ACM Comput. Surv. 2018, 51, 1–38. [CrossRef]

5. TOSCA Simple Profile in YAML Version 1.3. Available online: https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html (accessed on 12 February 2021).

6. Alien4cloud/Alien4cloud. Available online: https://github.com/alien4cloud/alien4cloud (accessed on 12 February 2021).
7. Cloudify-Cosmo. Available online: https://github.com/cloudify-cosmo (accessed on 12 February 2021).
8. Binz, T.; Breitenbücher, U.; Haupt, F.; Kopp, O.; Leymann, F.; Nowak, A.; Wagner, S. OpenTOSCA—A Runtime for TOSCA-Based

Cloud Applications. In Proceedings of the Service-Oriented Computing, Shanghai, China, 12–15 November 2012; pp. 692–695.
9. Kritikos, K.; Skrzypek, P.; Moga, A.; Matei, O. Towards the Modelling of Hybrid Cloud Applications. In Proceedings of the 2019

IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 291–295.
10. Castro, P.; Ishakian, V.; Muthusamy, V.; Slominski, A. The Rise of Serverless Computing. Commun. ACM 2019, 62, 44–54.

[CrossRef]
11. Baldini, I.; Castro, P.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Suter, P. Cloud-Native, Event-

Based Programming for Mobile Applications. In Proceedings of the International Conference on Mobile Software Engineering
and Systems, New York, NY, USA, 14 May 2016; pp. 287–288.

12. Kpavel/Incubator-Openwhisk. Available online: https://github.com/kpavel/incubator-openwhisk (accessed on 12 February 2021).
13. Jppf-Grid/JPPF. Available online: https://github.com/jppf-grid/JPPF (accessed on 12 February 2021).
14. Verginadis, Y.; Apostolou, D.; Taherizadeh, S.; Ledakis, I.; Mentzas, G.; Tsagkaropoulos, A.; Papageorgiou, N.; Paraskevopoulos, F.

PrEstoCloud: A Novel Framework for Data-Intensive Multi-Cloud, Fog, and Edge Function-as-a-Service Applications.
Inf. Resour. Manag. J. 2021, 34, 66–85. [CrossRef]

15. Tamburri, D.A.; Van den Heuvel, W.-J.; Lauwers, C.; Lipton, P.; Palma, D.; Rutkowski, M. TOSCA-Based Intent Modelling:
Goal-Modelling for Infrastructure-as-Code. SICS Softw.-Inensiv. Cyber-Phys. Syst. 2019, 34, 163–172. [CrossRef]

16. Wurster, M.; Breitenbucher, U.; Kepes, K.; Leymann, F.; Yussupov, V. Modeling and Automated Deployment of Serverless Applica-
tions Using TOSCA. In Proceedings of the 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA),
Paris, France, 20–22 November 2018; pp. 73–80.

17. Casale, G.; Artač, M.; van den Heuvel, W.-J.; van Hoorn, A.; Jakovits, P.; Leymann, F.; Long, M.; Papanikolaou, V.; Presenza, D.;
Russo, A.; et al. RADON: Rational Decomposition and Orchestration for Serverless Computing. SICS Softw.-Inensiv. Cyber-Phys. Syst.
2019. [CrossRef]

18. RADON Public Deliverables—D2.4 Architecture and Integration Plan II. Available online: https://radon-h2020.eu/wp-content/
uploads/2020/07/D2.4-Architecture-and-integration-plan-II.pdf (accessed on 12 February 2021).

19. Paasage Public Deliverables—D2.1.3 Camel Documentation. Available online: https://paasage.ercim.eu/images/documents/
docs/D2.1.3_CAMEL_Documentation.pdf (accessed on 12 February 2021).

20. Achilleos, A.P.; Kritikos, K.; Rossini, A.; Kapitsaki, G.M.; Domaschka, J.; Orzechowski, M.; Seybold, D.; Griesinger, F.; Nikolov, N.;
Romero, D.; et al. The Cloud Application Modelling and Execution Language. J. Cloud Comp. 2019, 8, 20. [CrossRef]

21. Nyrén, R.; Edmonds, A.; Papaspyrou, A.; Metsch, T.; Parák, B. Open Cloud Computing Interface—Core. Available online:
https://redmine.ogf.org/attachments/242/core.pdf (accessed on 12 February 2021).

22. Glaser, F.; Erbel, J.; Grabowski, J. Model Driven Cloud Orchestration by Combining TOSCA and OCCI. In Proceedings of the 7th
International Conference on Cloud Computing and Services Science, Porto, Portugal, 24–26 April 2017.

23. Challita, S.; Korte, F.; Erbel, J.; Zalila, F.; Grabowski, J.; Merle, P. Model-Based Cloud Resource Management with TOSCA
and OCCI. Softw. Syst. Modeling 2021. [CrossRef]

24. Wurster, M.; Breitenbücher, U.; Falkenthal, M.; Krieger, C.; Leymann, F.; Saatkamp, K.; Soldani, J. The Essential Deployment
Metamodel: A Systematic Review of Deployment Automation Technologies. SICS Softw.-Inensiv. Cyber-Phys. Syst. 2019.
[CrossRef]

25. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

26. van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons-Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L.; Gutierrez, A.; Montero, D.; Marti, J.; et al.
The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach to Bridge Cloud and Edge. IEEE Commun. Mag.
2017, 55, 28–35. [CrossRef]

27. Bjorklund, M. The YANG 1.1 Data Modeling Language. Available online: https://www.rfc-editor.org/info/rfc7950 (accessed on
12 February 2021).

28. Noghabi, S.A.; Kolb, J.; Bodik, P.; Cuervo, E. Steel: Simplified Development and Deployment of Edge-Cloud Applications. In Pro-
ceedings of the HotCloud’18: Proceedings of the 10th USENIX Conference on Hot Topics in Cloud Computing, Boston, MA, USA,
9 July 2018.

29. Mortazavi, S.H.; Salehe, M.; Gomes, C.S.; Phillips, C.; de Lara, E. Cloudpath: A Multi-Tier Cloud Computing Framework. In Pro-
ceedings of the Second ACM/IEEE Symposium on Edge Computing; Association for Computing Machinery, New York, NY, USA,
12 October 2017; pp. 1–13.

http://doi.org/10.1016/j.sysarc.2019.02.009
http://doi.org/10.1145/3150227
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://github.com/alien4cloud/alien4cloud
https://github.com/cloudify-cosmo
http://doi.org/10.1145/3368454
https://github.com/kpavel/incubator-openwhisk
https://github.com/jppf-grid/JPPF
http://doi.org/10.4018/IRMJ.2021010104
http://doi.org/10.1007/s00450-019-00404-x
http://doi.org/10.1007/s00450-019-00413-w
https://radon-h2020.eu/wp-content/uploads/2020/07/D2.4-Architecture-and-integration-plan-II.pdf
https://radon-h2020.eu/wp-content/uploads/2020/07/D2.4-Architecture-and-integration-plan-II.pdf
https://paasage.ercim.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
https://paasage.ercim.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
http://doi.org/10.1186/s13677-019-0138-7
https://redmine.ogf.org/attachments/242/core.pdf
http://doi.org/10.1007/s10270-021-00869-y
http://doi.org/10.1007/s00450-019-00412-x
http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/MCOM.2017.1600907
https://www.rfc-editor.org/info/rfc7950

Electronics 2021, 10, 737 48 of 48

30. Tsagkaropoulos, A.; Papageorgiou, N.; Apostolou, D.; Verginadis, Y.; Mentzas, G. Challenges and Research Directions in Big
Data-Driven Cloud Adaptivity. In Proceedings of the 8th International Conference on Cloud Computing and Services Science,
Madeira, Portugal, 19–21 March 2018.

31. PrEstoCloud/Application-Fragmentation-Deployment-Recommender. Available online: https://gitlab.com/prestocloud-
project/application-fragmentation-deployment-recommender (accessed on 12 February 2021).

32. Copil, G.; Moldovan, D.; Truong, H.-L.; Dustdar, S. RSYBL: A Framework for Specifying and Controlling Cloud Services Elasticity.
ACM Trans. Internet Technol. 2016, 16, 1–18. [CrossRef]

33. Jussien, N.; Rochart, G.; Lorca, X. Choco: An Open Source Java Constraint Programming Library. In Proceedings of the CPAIOR’08
Workshop on Open-Source Software for Integer and Contraint Programming (OSSICP’08), Paris, France, 20–23 May 2008;
pp. 1–10.

34. Hermenier, F.; Lawall, J.; Muller, G. BtrPlace: A Flexible Consolidation Manager for Highly Available Applications. IEEE Trans.
Dependable Secure Comput. 2013, 10, 273–286. [CrossRef]

35. Papageorgiou, N.; Verginadis, Y.; Apostolou, D.; Mentzas, G. Fog Computing Context Analytics. IEEE Instrum. Meas. Mag. 2019,
22, 53–59. [CrossRef]

36. Sun, Y.; Lin, F.; Xu, H. Multi-Objective Optimization of Resource Scheduling in Fog Computing Using an Improved NSGA-II.
Wireless Pers. Commun. 2018, 102, 1369–1385. [CrossRef]

37. Zhu, Z.; Zhang, G.; Li, M.; Liu, X. Evolutionary Multi-Objective Workflow Scheduling in Cloud. IEEE Trans. Parallel Distrib. Syst.
2016, 27, 1344–1357. [CrossRef]

38. Zhang, F.; Cao, J.; Li, K.; Khan, S.U.; Hwang, K. Multi-Objective Scheduling of Many Tasks in Cloud Platforms.
Future Gener. Comput. Syst. 2014, 37, 309–320. [CrossRef]

39. Jain, A.; Baarzi, A.F.; Alfares, N.; Kesidis, G.; Urgaonkar, B.; Kandemir, M. SpIitServe: Efficiently Splitting Complex Workloads
Across FaaS and IaaS. In Proceedings of the ACM Symposium on Cloud Computing, Santa Cruz, CA, USA, 20 November 2019.

40. Verginadis, Y.; Alshabani, I.; Mentzas, G.; Stojanovic, N. PrEstoCloud: Proactive Cloud Resources Management at the Edge
for Efficient Real-Time Big Data Processing. In Proceedings of the 7th International Conference on Cloud Computing and
Services Science, Porto, Portugal, 24–26 April 2017.

41. Abdelaal, M.A.; Ebrahim, G.A.; Anis, W.R. Efficient Placement of Service Function Chains in Cloud Computing Environments.
Electronics 2021, 10, 323. [CrossRef]

42. Cong, J.; Fang, Z.; Lo, M.; Wang, H.; Xu, J.; Zhang, S. Understanding Performance Differences of FPGAs and GPUs. In Proceed-
ings of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Boulder, CO, USA, 29 April–1 May 2018; pp. 93–96.

https://gitlab.com/prestocloud-project/application-fragmentation-deployment-recommender
https://gitlab.com/prestocloud-project/application-fragmentation-deployment-recommender
http://doi.org/10.1145/2925990
http://doi.org/10.1109/TDSC.2013.5
http://doi.org/10.1109/MIM.2019.8917904
http://doi.org/10.1007/s11277-017-5200-5
http://doi.org/10.1109/TPDS.2015.2446459
http://doi.org/10.1016/j.future.2013.09.006
http://doi.org/10.3390/electronics10030323

	Introduction
	Related Work
	Motivating Scenario: Fog Surveillance Application
	Model-Driven Application Specification Using Extended TOSCA
	Application Conception
	Application Definition
	Application Goal Definition
	Processing and Deployment of Requirements
	TOSCA Fog Application Definition Algorithm

	Type-Level TOSCA Semantic Enhancements
	Fragment and Processing Host Decoupling
	TOSCA Specification of Fragment Nodes
	Description of Instance-Level TOSCA

	Support for FaaS and Other Coordinator-Based Paradigms
	Optimization and Application Constraints
	Coarse-Grained Application Constraints
	Fine-Grained Constraints and Optimization Criteria
	Constraints and Optimization Handling

	Evaluation
	Comparative Assessment
	Validating the Extended TOSCA in a Prototype Evaluation

	Results and Discussion
	Conclusions
	
	
	References

