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Abstract: Diabetic Retinopathy (DR) is one of the major causes of blindness. If the lesions observed
in DR occur in the central part of the fundus, it can cause severe vision loss, and we call this symptom
Diabetic Macular Edema (DME). All patients with DR potentially have DME since DME can occur in
every stage of DR. While synthesizing future fundus images, the task of predicting the progression of
the disease state is very challenging since we need a lot of longitudinal data over a long period of
time. Even if the longitudinal data are collected, there is a pixel-level difference between the current
fundus image and the target future image. It is difficult to train a model based on deep learning for
synthesizing future fundus images that considers the lesion change. In this paper, we synthesize
future fundus images by considering the progression of the disease with a two-step training approach
to overcome these problems. In the first step, we concentrate on synthesizing a realistic fundus
image using only a lesion segmentation mask and vessel segmentation mask from a large dataset
for a fundus generator. In the second step, we train a lesion probability predictor to create a
probability map that contains the occurrence probability information of the lesion. Finally, based on
the probability map and current vessel, the pre-trained fundus generator synthesizes a predicted
future fundus image. We visually demonstrate not only the capacity of the fundus generator that can
control the pathological information but also the prediction of the disease progression on fundus
images generated by our framework. Our framework achieves an F1-score of 0.74 for predicting
DR severity and 0.91 for predicting DME occurrence. We demonstrate that our framework has a
meaningful capability by comparing the scores of each class of DR severity, which are obtained by
passing the predicted future image and real future image through an evaluation model.

Keywords: future diabetic retinopathy image synthesis; prediction occurrence probability; generative
adversarial network

1. Introduction

Diabetic Retinopathy (DR) is a disease in which micro-blood vessels in the retina
are damaged, and related blood vessel damage is one of the most fatal complications of
diabetes. DR is a major cause of blindness worldwide. Neovascularization, which can
be observed at all severities of DR, results in poor vascular wall structures, which can
cause internal materials to leak out of the blood vessels or burst blood vessels, causing
inflammation and edema and obstructing vision. In particular, bleeding or edema in the
central part of the retina (macula), where the visual cells are concentrated and projected
images are in focus, can lead to severe vision loss and blindness. This symptom is called
Diabetic Macular Edema (DME). All patients with this DR disease potentially have a
DME symptom. Therefore, predicting the occurrence of symptoms of DME in advance is
important in predicting future DR severity from current information to preserve the vision
of patients.
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Nowadays, deep learning is used in various medical fields as a technique for analyzing
medical images. Rachmadi et al. [1] predicted the evolution of White Matter Hyperintensi-
ties in small vessel disease based on a Generative Adversarial Network (GAN) model and
an irregularity map. Xia et al. [2] synthesized brain images that vary over time by learning
a joint distribution of the patient age and brain morphology to predict the future state of
the brain. Schlegl et al. [3] proposed fast unsupervised anomaly detection with a GAN,
which is able to detect the abnormal parts of an image using only healthy OCT images.
Baumgartner et al. [4] used 2D ultrasound data for detecting 13 fetal standard views with
convolutional neural networks. Guan et al. [5] generated synthetic mammography images
to use as a dataset for detecting abnormal volumes in the breast. In particular, Deep Con-
volutional Neural Networks (DCNNs) are mainly used to check the condition of fundus
disease. Khojasteh et al. [6] compared several deep learning methods to maximize the
sensitivity and specificity for detecting exudates. To deal with multi-class classification to
automatically classify the severity of DR, Wang et al. [7] employed the deep learning-based
Convolutional Neural Network (CNN) for DR severity classification, and Zhao et al. [8]
introduced a model that combines an attention model for feature extraction and a bilinear
model for classification. For improving the capacity of both the disease severity classifi-
cation and semantic segmentation task, Zhou et al. [9] proposed a collaborative learning
method that uses semi-supervised learning with an attention mechanism. To diagnose
these symptoms, Ren et al. [10] proposed a screening system that classifies the severity of
DME by considering the representative features and vector quantization. Syed et al. [11]
used knowledge of exudates and macula for the grading of DME severity.

There are relatively few studies that diagnose the fundus state of patients who have
a DR or DME lesion. There are further significant shortages of studies that predict the
future state of the fundus after a certain period of time. To predict the progression of DR,
Arcadu et al. [12] proposed a deep-learning algorithm to predict the risk of worsening
DR in individual patients. However, to the best of our knowledge, there is no work for
synthesized fundus images for retinal disease progression. There are some problems, such
that a large quantity of data is needed to generate images, and longitudinal data from the
same patient is needed to predict the future state. It is also hard to correct paired fundus
images from the same patient over time. Moreover, even though we collect the longitudinal
images from the same patients, the images may have different lesion locations because the
angle of the eye and equipment is different for each test.

To overcome the challenges and analyze the progression of DR disease, we propose
a future prediction framework to synthesize the future fundus image for visualizing
the future state of the fundus. Our framework has been trained with two training steps:
(1) Fundus generator training, and (2) lesion probability predictor training. For the first step,
we first train a fundus generator to synthesize a realistic fundus image that requires a lesion
segmentation mask and a vessel segmentation mask with an adversarial method. Since the
fundus generator produces realistic fundus images with only vessel and lesion information,
various DR datasets can be used as data needed for learning, if we are able to extract vessel
and lesion information from the fundus image. Therefore, we do not need longitudinal
data for training in the first step. Then, the trained generator can synthesize a realistic
fundus image no matter what vessel mask and segmentation mask are used as input values.
By using this pre-trained generator, we again train a lesion probability predictor with
the adversarial method. In the training step of the lesion probability predictor, we give
a current fundus image and a vector representing the interval between the future and
current image to the lesion probability predictor. Then, the predictor predicts a probability
map that has the same size as the given current image and indicates where the lesion will
occur. It can be used as a future lesion segmentation mask. During the training of the
lesion probability predictor, we need to compare the difference between the real future
lesion segmentation mask and the predicted probability map. However, even though we
performed pre-processing with a regularization method to reduce the difference between
the current fundus image and future fundus image on the pixel level, lesion-coordinate
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differences between the two images for the longitudinal data can still occur. To solve this
problem, we introduce a regularization loss function to give a penalty of this pixel level
distinction. By calculating the difference between the real current vessel coordinate and
future vessel coordinate, the larger the calculated difference value, the smaller the effect
of the regularization loss on the total loss. This regularization loss can help the lesion
probability predictor accurately generate the probability map. Finally, the probability map
and the current vessel mask are given to the pre-trained fundus generator, then we can
synthesize the predicted future fundus image by passing through the pre-trained fundus
generator. Overall, our contributions to this research are described as follows:

• We propose a future prediction framework for future fundus image synthesis of pa-
tients with DR to observe a progression of the disease by preserving the vessel identity
of patients based on an adversarial learning mechanism. The framework, which
consists of a fundus generator and a lesion probability predictor, effectively addresses
the issue of longitudinal patient data shortages for future image visualization by
separating the training sequence.

• We combine the reconstruction loss and an adversarial loss to improve the perfor-
mance of fundus image synthesis to effectively control the pathological information
by using the lesion and vessel mask in fundus generator training. Furthermore, in the
lesion probability predictor training step, we introduce a regularization loss function
to accurately predict the lesion occurrence probability by calculating the structural
similarity between the current vessel and target future vessel at the pixel level.

2. Methods

Our proposal aims to synthesize the future fundus images based on the current state
of information to observe the progression of the disease with a deep learning method.
As shown in Figure 1, we introduce a prediction framework for the synthesis of a future
fundus image with two training steps. In the first step, the fundus generator, employing a
mechanism based on a Conditional Generative Adversarial Network (cGAN), synthesizes a
realistic fundus image by using a lesion segmentation mask and vessel segmentation mask.
In the second step, the lesion probability predictor takes the current fundus image and
interval vector, which is the difference between two time periods, and creates a probability
map that can be used as the future lesion mask. The probability map shows a position
where the symptom of the disease will occur after the interval time period. Then, the
generator, which is pre-trained in the first step, takes the probability map and a current
vessel mask to generate a predicted future fundus image.

Figure 1. The proposed future-prediction framework by separating the two training steps for efficient learning: Fundus
generator training and lesion probability predictor training.
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2.1. First Step: Fundus Generator Training

The purpose of the first step is to have a capacity for synthesizing a realistic fundus im-
age. Since this is an image generation task, we employ an adversarial learning mechanism
that is widely used for image synthesis based on given inputs. We build two models: A
fundus generator (G), and a discriminator (D1). The first step in Figure 1 shows the fundus
generator training process. The generator G takes the two inputs of the lesion segmentation
mask (l) and vessel segmentation mask (v). Micro aneurysms, hemorrhage, soft exudates,
and hard exudates are typical lesions observed in DR patients. The lesion mask used in this
paper is a one-channel image representing the four representative lesions. The masks l and
v are passed through G, then G generates a synthesized fundus image, S f , which resembles
the real fundus image, O f , based on the lesion and vessel information. Simultaneously, the
discriminator D1 tries to learn the distribution of both O f and S f to distinguish them.

Even though we employ an adversarial learning mechanism that normally uses only
the adversarial loss function for training, G needs to be trained to have a capacity that
accurately synthesizes the identity of the lesion and vessel in the same position on S f
compared to O f . This is similar to the process that reconstructs the real image by using
the elements extracted from the real image. To further ensure that the identity of lesion
and vessel of S f will be located in the same position as O f , we combine the adversarial loss
(Ladv) and the reconstruction loss (Lrecon) to have a pixel-space benefit and to improve the
performance of image synthesis. Furthermore, to classify the real fundus image from the
synthesized fundus image, and to determine whether the synthesized fundus image has
the lesion in the same location as O f , we use O f , l, and the v as a real pair set, and S f , l,
and v as the fake pair set for training D1. To train G and D1, the total loss function Lstep1 in
the first step is defined as:

Lstep1 = Ladv + Lrecon (1)

Ladv =El,v,O f∼pdata
[log(D1(O f , l, v))] + El,v∼pdata

[log(1− D1(S f , l, v))] (2)

Lrecon = El,v,O f∼pdata
L1(O f , S f ). (3)

2.2. Second Step: Lesion Probability Predictor Training

Our aim is to predict future retina states and to synthesize a future fundus image,
which can be used to diagnose and understand the progression of the disease. The second
step in Figure 1 shows an overview of the lesion probability predictor training. We employ
three networks: A lesion probability predictor (P), the generator (G) that is trained in the
first step, and a discriminator (D2).

To generate future images, we use the time interval information between a given
current fundus image and a target future fundus image, calculated by day. After extracting
all the interval information (e.g., the longitudinal data) in advance, we divide it by the
maximum interval value and multiply it by 100 to make the value of interval information
as a non-integer number among [0, 100]. At this time, we only use natural numbers.
Then, using an ordinal encoding method, we make a 100-dim ordinal interval vector. For
example, if the interval value is 30, the first 30 elements are set as 1, and the others are 0 in
the interval vector.

Given a current fundus image (C f ) and an interval vector (i) corresponding to P, we
predict a probability map, pm, which involves the occurrence probability of future lesions
that will occur on the retina after the interval. Since pm can play a role as a future lesion
segmentation mask, the pre-trained G can synthesize a predicted future fundus image (Pf )
based on the probability information by taking pm and a current vessel mask cv as inputs.
This training mechanism allows to preserve the identity of the current vessel information.
Then D2 takes Pf , C f , and i to distinguish them as a fake sample, and takes the real future
fundus image (R f ), C f , and i to distinguish them as a real sample. During the training
phase, D2 learns two tasks: (1) Whether the predicted future fundus image is real or not and
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(2) whether the relationship between the current image, future image, and time information
is well considered. For training P and D2 without G, the adversarial loss Ladv is defined as:

Ladv =ER f ,C f ,i∼pdata [logD2(R f , C f , i)] + EC f ,i∼pdata [log(1− D2(Pf , C f , i)]. (4)

To accurately predict the position of the lesion that will occur to create a probability
map, the network P needs to be trained by considering a pixel-level comparison with the
target future lesion mask fm. Even though we collect the longitudinal fundus images of
the same size from the same patients, the images may have slightly different locations
for the lesions because of various reasons, for example the angle between the equipment
and patient can be changed whenever taking a fundus image and the equipment can
change over time. For those reasons, even if we apply image pre-processing, such as
registration to reduce the pixel-level difference between the current fundus image and
the real future fundus image, we will inevitably obtain a difference. Therefore, the lesion
masks extracted both from the current fundus image and the real future fundus image have
different positions of lesions. These differences may lead to the calculation of different
positions between the probability map and target future lesion mask at a pixel level. This
can interfere with the training of P to predict the progression from the current state. Thus,
if the coordinate between the current vessel mask cv and the target future vessel mask fv is
different at the pixel level, a penalty that is as much as the difference should be given to
the loss function. The Mean Square Error (MSE) is a function that can be used to calculate
the similarity of images, and the pixel-wise distance (difference) between the two images is
averaged to determine the similarity. Thus, the MSE has a large value if the similarity of the
two compared images is small. For enhancing the prediction capacity of P, we introduce
a regularization loss function using the MSE that allows it to give a penalty, which is the
difference between cv and fv on the pixel level when we train P, as:

Lpred = EC− f ,i, fm ,cv , fv∼,pdata
Ldice(pm, fm) ∗

1
1 + 1

mn ∑m−1
i=0 ∑n−1

j=0 [cv(i, j)− fv(i, j)]2 (5)

1
1 + 1

mn ∑m−1
i=0 ∑n−1

j=0 [cv(i, j)− fv(i, j)]2
=∆

1
1 + MSE (6)

where Ldice is a Dice coefficient loss [13] that is widely used as a metric to calculate the
similarity between two images. The Dice loss is used to calculate the difference between
pm and fm, and m and n are the respective height and width of cv. The regularization
term (in Equation (6)) captures the fact that if the difference of pixel values between the
current vessel mask and the target future vessel mask is large, the regularization term
should be small. Thus, the regularization loss function helps to reduce calculation errors
from abnormal and normal positions at the pixel level. We combine Ladv and Lpred for the
second step of the training loss function. The overall training loss is defined as:

Lstep2 = Ladv + Lpred. (7)

3. Experiments and Result
3.1. Datasets

We collect three datasets: The ISBI2018 [14] dataset, EyePACS [15] dataset, and the
Kangbuk Samsung Hospital dataset.

ISBI2018: The ISBI2018 dataset consists of three kinds of data for the sub-challenge,
lesion segmentation, disease grading, the optic disc, and fovea detection. The disease grad-
ing purpose in the challenge is to directly compare the methods developed for automatic
image grading for DR and DME. We use only disease grading data. The medical experts
graded the full set of 516 images with a variety of pathological conditions of DR and DME
with 516 images, which consist of 5 classes for the DR severity scale and 3 classes for the
risk of DME.
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EyePACS: These sources provide a large DR dataset of high-resolution retina images
taken under a variety of imaging conditions. A clinician divides the five classes of DR
severity (No DR, Mild, Moderate, Severe, and Proliferative DR). The EyePACS data contains
DR images with artifacts that we may encounter as noise when using the images. There are
about 35,000 images, but we choose 30,000 images by excluding the images that have a lot
of artifacts.

Kangbuk Samsung Hospital dataset: The Kangbuk Samsung Hospital dataset is
a longitudinal dataset with a collection of the fundus images of DR patients observed
over 10 years, which serves as a disease progression dataset. Several fundus images
were obtained from each patient at different times, and the first of the images obtained
is considered the current fundus, and then the others obtained are referred to as a future
fundus on the forthcoming longitudinal date. The dataset contains 4231 of the fundus
images from 1184 subjects who have DR and in addition, 224 of the DME fundus images
are included from the subjects who have the disease of DR. For the first step, we selected
200 fundus images for validation and the rest for training. Otherwise, we would need to
build pair data, which consists of the current fundus image and future image including
the DME disease, for training in the second step. We therefore built 724 pairs of data for
training and 100 pairs of data for validation in the second step.

3.2. Pre-Processing

Since the fundus images from different datasets have various illuminations, we must
clarify the fundus images so as to enable the model to learn the feature more effectively,
we resized all DR data to a 3 × 512 × 512 size and then applied a Gaussian blur to bring
out distinctive features in the images. In the Gaussian blur operation, the image is applied
with a Gaussian filter, which is a low-pass filter, to remove the high-frequency components.
Generally, a fundus image is a color image, but in this paper, we call the image applied with
a Gaussian filter, a fundus image. To train the fundus generator in the first step, we require
a lesion mask and a vessel mask. Using the Kangbuk Samsung Hospital data, an expert
made lesion annotations by manually segmenting the micro aneurysms, hemorrhage, soft
exudates, and hard exudates. Those conditions and symptoms are important factors in
DR. Then, we built a segmentation model to extract the important factors and apply the
segmentation model to extract the lesion mask from other data for creating a pseudo lesion
mask. We also employed the pre-trained vessel segmentation model [16] for the role of a
vessel extractor to obtain the vessel mask from all datasets. Using DRIVE data [17], the
vessel segmentation model [16] is trained based on an adversarial learning method for
vessel segmentation from the fundus image.

3.3. Implementation

We trained G and P with reconstruction loss and regularization loss to improve
the respective generation and prediction performance by employing the ResNet-based
conditional. In the first step, we used the ISBI2018 disease grading data, EyePACS data,
and the Kangbuk Samsung Hospital data for training the G and the D1. In the second step,
we only used the Kangbuk Samsung Hospital data for training P and D2, without G, by
freezing all parameters of the G. We set the batch size to 10 and used the Adam optimizer
with β1 = 0.5, β2 = 0.999 and the learning rates for P, G, D1, and D2 were set to 10−4, while
those of the lesion segmentation model were set to the default for β1, β2, with only Dice
loss function. In the first step and the second step, we set 100 epochs for training G and D1
using approximately 32,000 images and set 2000 epochs for training P and D2 with 724 pair
images respectively. Since we used a lot of data to train G and D1, we were able to obtain
the G and D1 even if we set up a relatively small number of epochs. Our framework aims
to synthesize future fundus images to predict future lesion states. The important thing
is to know the stage of a lesion if it happens to be found in the future image. Therefore,
we excluded normal cases in future fundus images when we set the current-future pair of
fundus images using the Kangbuk Samsung Hospital dataset. Additionally, the mild case
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and moderate case had similar features and did not have meaningful clinically significant
changes. Consequently, we demarcate significant clinical differences by categorizing the
DR severity as mild, severe, or Proliferative Diabetic Retinopathy (PDR).

3.4. Qualitative Results

Image Synthesis of the Fundus Generator: Once the fundus generator is trained,
we can synthesize not only the realistic fundus images, which can be coarsely predicted
from the corresponding grading images, but also control the pathological information by
switching the lesion mask. We randomly selected 2500 images from each different DR
grading for validation and the rest for training by using three datasets. As we can see in
Figure 2, the results of the fundus generator show the similarity between the synthesized
fundus images and real fundus images for a given input value with lesion information and
vessel structure. We observe that the fundus generator can synthesize fundus images that
reflect the lesion information and vessel structure within the corresponding two masks
at the same position. Moreover, in order to demonstrate the capability of controlling the
pathological information arbitrarily, we synthesized the DR fundus images with different
DR lesion masks. As shown in Figure 3, based on the fundus images which are real fundus
images in the red box, the other synthesized fundus images contain different pathological
information from different lesion masks by preserving vessel identity. Therefore, the
generator can synthesize future fundus images by preserving the current vessel information
based on the predicted probability mask in our framework.

Figure 2. Images showing the synthesized samples of the fundus generator based on the vessel mask and lesion mask.

Predicted Future Fundus Images: We show several examples of the predicted future
fundus images from 4 patients and visualize the differences between the synthesized
fundus images and real fundus images for the qualitative comparison in Figure 4. From the
results, we can find that the lesions are not only located in the same position based on the
vessel structure but also predicted the changing pattern over time. Furthermore, we also
have made almost similar predictions for the patient that has no significant variation in the
lesions, even though we only employ a binary segmentation mask as the lesion mask.
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Figure 3. A qualitative comparison of the fundus generator for fundus image synthesis. The fundus generator can synthesize
the fundus image by changing the lesion mask with a fixed vessel mask compared to the real fundus images, which are in
the red box.

Figure 4. The sample results of predicted future fundus image produced with the regularization loss function. We can
properly predict the progressions of different diseases from each patient over time and confirm them by synthesizing
the future fundus image. The text label (e.g., 2.7 later) means a predicted future image after 2.7 years from the current
input image.
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3.5. Quantitative Results

The important concern in our framework is to evaluate that how well the framework
generates predicted future fundus images to observe the progression of the disease over
time. We compared four methods: cGAN [18], Tub-sGAN [19], and Ours (n), and Ours
(r). We trained cGAN [18] and Tub-sGAN [19], Ours (n), and Ours (r) to adjust the models
for our purpose using 724 pairs of data for training and 100 of pairs data for validation
from the Kangbuk Samsung Hospital dataset. To synthesize future fundus images, we
train cGAN [18] with the current fundus image and interval value to directly obtain
future fundus images. Tub-sGAN [19], which needs a vessel mask and random noise z to
synthesize realistic fundus images, was trained based on a vessel mask and a lesion mask
and an interval vector to generate a future fundus image. Ours (n), Ours (r) means that we
use normal Dice pixel-level loss and the regularization loss in the second step respectively.

For assessing each method capacity that predict the DR severity and DME occurrence
from the predicted future fundus image, we built two proxy evaluation models with the
well-known classification models of ResNet-50 [20], EfficientNet-b0 [21], and Se-ResNet-
50 [22]. To build two proxy evaluation models, we used 724 future fundus images for
training and 100 future fundus images for validation, with image-level expert grades from
the Kangbuk Samsung Hospital dataset. Each image has DR and DME grade information.

DR Severity Evaluation: As illustrated in Table 1, the F1-scores are employed for
the evaluation, and SE-Resnet-50 [22] has the best performance. Thus, we choose SE-
Resnet-50 [22] as the DR severity evaluation model for evaluating the predicted future
fundus image. Table 2 presents a comparison of the image-level DR severity detection
accuracy, specificity, sensitivity, and F1 score. Most importantly, our framework, trained
with two steps, has a higher accuracy than all other approaches. Furthermore, based on the
comparison results of Ours (n) and Ours (r), we were able to confirm that the regularization
loss helps to generate accurate images. In addition, to demonstrate that our proposal has
a meaningful capacity for prediction, the predicted future images and real future images
are passed through the SE-ResNet-50 [22] evaluation model to obtain severity prediction
results. Then, we compared the ground truth of severity and the prediction results of each
class. Table 3 shows that the performance results of the predicted future fundus images are
similar to the result from real future fundus images. Therefore, we can indirectly confirm
that the images predicted by our proposal have DR severity information similar to that of
the real future fundus images.

Table 1. Performance of the models for Diabetic Retinopathy (DR) severity.

Model F1 Score

ResNet-50 [20] 0.68
EfficientNet-B0 [21] 0.72
Se-ResNet-50 [22] 0.79

Table 2. Evaluation of the DR severity prediction. Conditional Generative Adversarial Network:
cGAN.

Method Accuracy Specificity Sensitivity F1 Score

cGAN [18] 0.64 0.73 0.46 0.47
Tub-sGAN [19] 0.78 0.84 0.69 0.62

Ours (n) 0.80 0.85 0.70 0.69
Ours (r) 0.83 0.87 0.74 0.74

Table 3. Comparison DR severity classification results of each class using the F1-score.

Data MILD SEVERE PDR AVG

Predicted Future Fundus 0.80 0.71 0.70 0.74
Real Future Fundus 0.82 0.78 0.78 0.79
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DME Occurrence Evaluation: We also conducted experiments on whether our method
correctly predicted the occurrence of DME disease, which can cause severe vision degra-
dation or blindness, by using the predicted future fundus images from each model. The
evaluation model was conducted in the same way as the one used to select the DR Severity
evaluation model, and the best-performing ResNet-50 [20] model was chosen from Table 4.
In this case, it was divided into DME occurrence and DME non-occurrence based on the
presence of disease around the macular region. In terms of DME occurrence, as shown in
Table 5, the Ours (r) method with the regularization term obtained the best score.

Table 4. DME occurrence performance evaluation.

Model F1 Score

ResNet-50 [20] 0.94
EfficientNet-B0 [21] 0.89
Se-ResNet-50 [22] 0.92

Table 5. Evaluation for DME occurrence prediction.

Method Accuracy Specificity Sensitivity F1 Score

cGAN [18] 0.78 0.74 0.82 0.77
Tub-sGAN [19] 0.82 0.78 0.85 0.82

Ours (r) 0.94 0.95 0.92 0.91

4. Discussion and Limitations

Although our method can achieve compelling results in many cases, we did not
uniformly generate a fundus image with the information we wanted. Several typical failure
cases are shown in Figure 5a. On the fundus generation task based on the lesion mask and
vessel mask, the synthesized fundus image has different lesion information compared to
the real fundus image. For example, the real has Micro Aneurysms symptoms in the center
of the image, but the fundus generator synthesized Hard Exudates symptoms at the same
position because the fundus generator was trained on only a 1-channel combined lesion
mask that involved four sets of lesion information. We also observed poor performance in
the results of predicting symptoms, when there was not enough information of the lesion
in the current image. For example, the future image was not changed compared to the
current image, as seen in Figure 5b. In addition, the surgical marks were not synthesized.

Figure 5. In (a), the synthesized lesion is shown by comparing the lesions in the red box, unlike the
real lesion, and in (b), the future image is synthesized by predicting differently from the progression
of the real lesion.
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For removing various illumination features and effectively learning the symptoms of
DR disease change, we synthesized a fundus image which was modified by the Gaussian
blur operation, not a color fundus image. This method may have been able to efficiently
learn our model to generate fundus images. However, it can lead to confusion when experts
judge the state of the lesion by looking at the synthesized images. Therefore, we showed
the result of quantitative evaluation using evaluation models. For future research, we will
study the synthesis of color fundus images to correctly predict each lesion progression
with four lesion masks and will obtain evaluation results from a clinical expert.

5. Conclusions

We proposed a framework with a two-step training approach: A fundus generation
training step and a lesion probability prediction training step. By using several datasets for
training the fundus generator, we synthesized the fundus image, which is reflected in the
lesion and vessel information. We could train the fundus generator more easily because we
could use several simple DR fundus datasets and not longitudinal data. Then, we trained
the lesion probability predictor which makes a probability map that has lesion occurrence
probability information from the current fundus image given an interval vector. The
pre-trained generator takes the probability map and current vessel mask and synthesizes
predicted future fundus images. Of course, a large amount of data is also needed to
learn a model that predicts the probability of lesions appearing, but a relatively small
amount of data may be needed to learn a model that produces images simultaneously
with predictions. Using our proposal, we could visually observe the progression of the
disease over time. In addition, we achieved F1-scores of 0.74 and 0.91, which are the best
prediction performances of DR severity and DME occurrence, respectively, compared to
related state-of-the-art methods. We also demonstrated the meaning of our proposal by
obtaining a similar score in comparison with real data for each class of DR severity.
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