
electronics

Article

A Lightweight Motional Object Behavior Prediction System
Harnessing Deep Learning Technology for Embedded
ADAS Applications

Wen-Chia Tsai 1, Jhih-Sheng Lai 1, Kuan-Chou Chen 1, Vinay M.Shivanna 1,* and Jiun-In Guo 1,2,3

����������
�������

Citation: Tsai, W.-C.; Lai, J.-S.; Chen,

K.-C.; M.Shivanna, V.; Guo, J.-I. A

Lightweight Motional Object

Behavior Prediction System

Harnessing Deep Learning

Technology for Embedded ADAS

Applications. Electronics 2021, 10, 692.

https://doi.org/10.3390/electronics

10060692

Academic Editor:

Pedro Roncero-Sanchez

Received: 15 January 2021

Accepted: 8 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics Engineering and Institute of Electronics, National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan; waker.ee06g@nctu.edu.tw (W.-C.T.); raikka.ee08g@nctu.edu.tw (J.-S.L.);
gregar.ee06g@nctu.edu.tw (K.-C.C.); jiguo@nctu.edu.tw (J.-I.G.)

2 Pervasive Artificial Intelligence Research Labs (PAIR Labs), National Yang Ming Chiao Tung University,
Hsinchu 30010, Taiwan

3 Wistron-NCTU Embedded Artificial Intelligence Research Center, National Yang Ming Chaio Tung
University, Hsinchu 30010, Taiwan

* Correspondence: vinay.ms23@gmail.com

Abstract: This paper proposes a lightweight moving object prediction system to detect and recognize
pedestrian crossings, vehicles cutting-in, and vehicles ahead applying emergency brakes based on a
3D Convolution network for behavior prediction. The proposed design significantly improves the
performance of the conventional 3D convolution network (C3D) adapted to predict the behaviors
employing behavior recognition network capable of performing object localization, which is pivotal
in detecting the numerous moving objects’ behaviors, combining and verifying the detected objects
with the results of the YOLO v3 detection model with that of the proposed C3D model. Since the
proposed system is a lightweight CNN model requiring far lesser parameters, it can be efficiently
realized on an embedded system for real-time applications. The proposed lightweight C3D model
achieves 10 frames per second (FPS) on a NVIDIA Jetson AGX Xavier and yields over 92.8% accuracy
in recognizing pedestrian crossing, over 94.3% accuracy in detecting vehicle cutting-in behavior,
and over 95% accuracy for vehicles applying emergency brakes.

Keywords: behavior recognition; deep learning; embedded ADAS applications; lightweight CNN
model; pedestrian detection; vehicle cut-in; emergency brakes

1. Introduction

With the breakthrough of Artificial Intelligence (AI), technology is swiftly progressing—
from traditional machine learning methods to deep learning methods that uses neural
networks (NNs) and from image classification networks to object detection networks.
Additionally, the technological evolutions of both hardware and software designs have
enabled AI networks to own the capability to judge just like human beings, or sometimes,
even better than human beings.

Advanced Driving Assistance Systems (ADAS) are electronic systems embedded as
a crucial part of modern day motor vehicles, increasing not just the user-friendliness of
the motor vehicles but also enhancing the overall safety of the passengers as well as the
pedestrians. The ADAS systems are expected to decrease the damage to roads and other
probable properties in driving environments, occurring due to crashes and other accidents,
by maximizing the human-vehicle interaction, and sometimes autonomously changing
motor vehicles behavior to prevent risks and crashes. Various ADAS applications adapting
NNs have been flourishing rapidly in recent years. In order to let the individuals driving
motor vehicles become capable of avoiding potential risks and dangers, it is desirable to
have a highly accurate ADAS system to assess any situation in real-time while driving and
alert the driver, and at times take certain decisions. A group of applications such as the

Electronics 2021, 10, 692. https://doi.org/10.3390/electronics10060692 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9434-5899
https://orcid.org/0000-0003-0402-2621
https://doi.org/10.3390/electronics10060692
https://doi.org/10.3390/electronics10060692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10060692
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060692?type=check_update&version=2

Electronics 2021, 10, 692 2 of 21

detection of lanes, obstacles, traffic signs, and many more in real-time driving environments
can be detected just by perceiving their positions, although there exist certain limitations
where not all these applications are favored by drivers [1]. However, certain scenarios
on roads, such as pedestrian crossings (as shown in Figure 1a), cars cutting-in quickly
to the lanes ahead [2] (as in Figure 1b), and cars ahead applying emergency brakes [3]
(as in Figure 1c), require a stable, accurate predictive method to evaluate the behavior of
the aforementioned moving objects so as to determine the behavior and direction of the
motion of pedestrians, scooters, motorcycles, and vehicles to avoid feasible uncertainties
and accidental dangers.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 22

it is desirable to have a highly accurate ADAS system to assess any situation in real-time
while driving and alert the driver, and at times take certain decisions. A group of appli-
cations such as the detection of lanes, obstacles, traffic signs, and many more in real-time
driving environments can be detected just by perceiving their positions, although there
exist certain limitations where not all these applications are favored by drivers [1]. How-
ever, certain scenarios on roads, such as pedestrian crossings (as shown in Figure 1a), cars
cutting-in quickly to the lanes ahead [2] (as in Figure 1b), and cars ahead applying emer-
gency brakes [3] (as in Figure 1c), require a stable, accurate predictive method to evaluate
the behavior of the aforementioned moving objects so as to determine the behavior and
direction of the motion of pedestrians, scooters, motorcycles, and vehicles to avoid feasi-
ble uncertainties and accidental dangers.

(a) (b) (c)

Figure 1. (a) Pedestrian crossing, (b) cars cutting-in quickly to the lanes ahead, (c) cars ahead applying emergency brakes.

Breakthroughs in the application of image classifications and object detections are
rapidly maturing. Since the introduction of AlexNet [4] in 2012, NNs for image classifica-
tion based on AlexNet, like ZF-net [5] or VGG [6], distinctly evolved in terms of object
detection and classification. The newest of the NNs of object detection, like Single-Shot
MultiBox detectors (SSD) [7] and You Only Look Once (YOLO) [8], achieve amazing ac-
curacy with faster computational speed. However, most of the above-mentioned net-
works just focus on a single image classification and object detection. With further evolu-
tions in the fields of image classification and object detection, researchers are challenging
more complicated issues related to behavioral detection. The temporal feature infor-
mation [9–14] in the behavior NNs predicts the behavior that may happen with a prepar-
atory action. Behavior recognition should not only recognize if the specific object exists in
images but also predict if the specific object is performing a particular behavior in the
image, as extracted from the UCF101-action recognition dataset (University of Central
Florida 101) [15] shown in Figure 2. Behavior detection should detect not only the position
of specific objects in images, but also the specific behavior of the objects in the images.

Figure 1. (a) Pedestrian crossing, (b) cars cutting-in quickly to the lanes ahead, (c) cars ahead applying emergency brakes.

Breakthroughs in the application of image classifications and object detections are
rapidly maturing. Since the introduction of AlexNet [4] in 2012, NNs for image classification
based on AlexNet, like ZF-net [5] or VGG [6], distinctly evolved in terms of object detection
and classification. The newest of the NNs of object detection, like Single-Shot MultiBox
detectors (SSD) [7] and You Only Look Once (YOLO) [8], achieve amazing accuracy with
faster computational speed. However, most of the above-mentioned networks just focus
on a single image classification and object detection. With further evolutions in the fields
of image classification and object detection, researchers are challenging more complicated
issues related to behavioral detection. The temporal feature information [9–14] in the
behavior NNs predicts the behavior that may happen with a preparatory action. Behavior
recognition should not only recognize if the specific object exists in images but also predict
if the specific object is performing a particular behavior in the image, as extracted from
the UCF101-action recognition dataset (University of Central Florida 101) [15] shown in
Figure 2. Behavior detection should detect not only the position of specific objects in
images, but also the specific behavior of the objects in the images.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 22

Figure 2. Human behavior recognition of UCF101 (University of Central Florida 101 dataset).

However, the existing behavior recognition or detection NNs focus largely on spe-
cific mankind or sports activities. Moreover, a large number of current action recognition
NNs [16–19] are concentrated on offline video recognition rather than real-time behavior
recognition. In order to implement the behavior NNs on ADAS, it is a requisite to have a
real time, high accurate, and reliable model. Moreover, there are diversified situations that
occur while driving, such as many people crossing roads at the same time, as shown in
Figure 3. If a single model is used to learn every solitary behavior of individuals or vehi-
cles in real-traffic environments, it consumes an abundance of time and requires higher
processing capabilities. Therefore, this paper proposes an NN model capable of detecting
multiple behaviors of distinct objects simultaneously in real time, as prescribed for real-
time ADAS applications.

Figure 3. Several people crossing roads simultaneously.

2. Background
The NNs employed for behavior recognitions can be broadly classified into two ma-

jor types: behavior recognition based on 2D convolution and behavior recognition based
on 3D convolution. The behavior recognition based on 2D convolution has a lesser num-
ber of parameters than the latter. Further, behavior recognition based on 2D convolution
can conveniently use a pre-trained model from 2D image recognition. However, certain
additional efforts are necessary to obtain and maintain the temporal information [8]. On
the other hand, behavior recognition based on 3D convolution can easily get temporal
information by just performing convolution but the 3D convolution always suffers from
a large number of parameters and requires supplemental efforts to fit a 2D pre-trained
model into a 3D network structure.

Figure 2. Human behavior recognition of UCF101 (University of Central Florida 101 dataset).

Electronics 2021, 10, 692 3 of 21

However, the existing behavior recognition or detection NNs focus largely on specific
mankind or sports activities. Moreover, a large number of current action recognition
NNs [16–19] are concentrated on offline video recognition rather than real-time behavior
recognition. In order to implement the behavior NNs on ADAS, it is a requisite to have
a real time, high accurate, and reliable model. Moreover, there are diversified situations
that occur while driving, such as many people crossing roads at the same time, as shown
in Figure 3. If a single model is used to learn every solitary behavior of individuals or
vehicles in real-traffic environments, it consumes an abundance of time and requires higher
processing capabilities. Therefore, this paper proposes an NN model capable of detecting
multiple behaviors of distinct objects simultaneously in real time, as prescribed for real-time
ADAS applications.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 22

Figure 2. Human behavior recognition of UCF101 (University of Central Florida 101 dataset).

However, the existing behavior recognition or detection NNs focus largely on spe-
cific mankind or sports activities. Moreover, a large number of current action recognition
NNs [16–19] are concentrated on offline video recognition rather than real-time behavior
recognition. In order to implement the behavior NNs on ADAS, it is a requisite to have a
real time, high accurate, and reliable model. Moreover, there are diversified situations that
occur while driving, such as many people crossing roads at the same time, as shown in
Figure 3. If a single model is used to learn every solitary behavior of individuals or vehi-
cles in real-traffic environments, it consumes an abundance of time and requires higher
processing capabilities. Therefore, this paper proposes an NN model capable of detecting
multiple behaviors of distinct objects simultaneously in real time, as prescribed for real-
time ADAS applications.

Figure 3. Several people crossing roads simultaneously.

2. Background
The NNs employed for behavior recognitions can be broadly classified into two ma-

jor types: behavior recognition based on 2D convolution and behavior recognition based
on 3D convolution. The behavior recognition based on 2D convolution has a lesser num-
ber of parameters than the latter. Further, behavior recognition based on 2D convolution
can conveniently use a pre-trained model from 2D image recognition. However, certain
additional efforts are necessary to obtain and maintain the temporal information [8]. On
the other hand, behavior recognition based on 3D convolution can easily get temporal
information by just performing convolution but the 3D convolution always suffers from
a large number of parameters and requires supplemental efforts to fit a 2D pre-trained
model into a 3D network structure.

Figure 3. Several people crossing roads simultaneously.

2. Background

The NNs employed for behavior recognitions can be broadly classified into two major
types: behavior recognition based on 2D convolution and behavior recognition based on
3D convolution. The behavior recognition based on 2D convolution has a lesser number of
parameters than the latter. Further, behavior recognition based on 2D convolution can con-
veniently use a pre-trained model from 2D image recognition. However, certain additional
efforts are necessary to obtain and maintain the temporal information [8]. On the other
hand, behavior recognition based on 3D convolution can easily get temporal information
by just performing convolution but the 3D convolution always suffers from a large number
of parameters and requires supplemental efforts to fit a 2D pre-trained model into a 3D
network structure.

For any kind of behavior recognition, temporal information is necessary. However,
the process of behavior recognition based on 2D convolution solely extracts spatial features
and hence it needs other ways to obtain temporal information.

The two stream convolution network [20] divides the task into two NNs, of which
the first is a spatial stream network that performs traditional image recognition and is
responsible for extracting spatial features. It analyzes information from every frame and
situation. Whereas, the second is a temporal stream network, which is a 2D convolution
network using stacking optical flow as input. The temporal stream network observes the
movement information of camera and objects and then a support vector module (SVM)
fuses the information from these two NNs.

Long-term recurrent convolutional networks (LRCN) [21] support changeable inputs
and outputs. This network is an end-to-end trainable network. The recurring neural
network (RNN) unit has problems with temporal gradient that cause the adoption of LSTM
unit instead of an RNN unit.

Of the three gates in long short-term memory (LSTM) [22], the memory units and
gates enable LSTM to learn ‘when to forget previous information’ and ‘when to refresh
status’. Thus, the time information passed is longer. Since LSTM has changeable inputs
and outputs, it yields good accuracy on both behavior recognition and video captioning.

Electronics 2021, 10, 692 4 of 21

However, when applied to behavior recognition, the numbers of CNNs are equivalent to the
number of sequential frames. Although it has good recognition accuracy, its computational
time cost increases with the number of frames.

Temporal Segment Networks (TSN) [23] have impressive improvements in terms
of efficiency and processing. The key idea of this network is in its method of sparsely
sampling clips across the video, instead of randomly sampling across the entire video.
Each input video is divided into segments and one of the frames from these segments
is randomly selected so that the model can get better temporal information. The TSN
uses two convolution networks, i.e., spatial and temporal networks to extract temporal
information. The selected frame acts as the input for spatial convolution networks and the
optical flow of the selected frame is the input for temporal convolution networks. After
convolution networks, it agrees with all the segments of temporal and spatial convolution
independently by averaging across all the segments. Finally, when class scores fusion
occurs, it makes the final decision on behavior by using weighted average and applying
softmax over all classes.

The Temporal Shift Module (TSM) [12] uses a unique new module, which can mix the
features of different frames. This enables the 2D convolution to learn information from
different times and extract features with temporal information like 3D convolution does.
After convoluting each frame in 2D, the features with multiple channels for each frame are
obtained. The convolution is divided into two parts: (i) the shift part and (ii) the multiply-
accumulate part. Most of the computational cost is spent on the multiply-accumulate part,
while the cost of the shift part is extremely small. The TSM can be viewed as a temporal
information extract module, which has nearly zero cost. The existence of TSM does not
result in shape change of features, so it can be inserted into any 2D convolution network,
like ResNet [12]. The TSM ResNet [12] has far less parameters than 3D convolution
networks and has accuracy better than some 3D convolution networks.

The 3D convolution method is an easy and straightforward, yet powerful approach
to draw temporal and spatial features simultaneously. The 3D convolution utilizes deep
convolution that particularly possesses filters in three dimensions and yields a faster speed,
compared to 2D convolution behavior recognition methods in the early stages. Nonetheless,
it incurs a higher computational cost and demands a huge number of parameters in the
model, which in turn involves challenging design considerations in real-time processing
for ADAS applications.

The 3D convolution network (C3D) [24] is considered a foundational 3D convolution
network, consisting of only five convolution layers and two fully connected layers. A large
scale of supervised video datasets serves as the input training data to such networks and
achieves 52.8% accuracy on the UCF101 dataset with 10 dimensions.

On the other hand, the Inflating 3D ConvNets (I3D) [25] is influenced by GoogleNet
inception v1 [26]. It exploits the GoogleNet architecture and conceptualizes the inception
modules on the 3D CNNs. It expands every layer of 2D CNN in the GoogleNet inception
v1 from two dimensions to three dimensions. The I3D also adopts the two-stream 3D
convolution architecture [20,27–29] that uses RGB video clips as well as optical flow as the
input. Both the inputs are estimated by 3D GoogleNet inception v1 and the end result is
obtained by averaging the prediction of two results.

To attain better behavior recognition performance, the I3D model also chooses a pre-
trained model on ImageNet [30], which offers impressive performance in recognition of
object from 2D images. The I3D boosts all the filters and the pooling kernels to shape
the conventional 2D filter converting into a 3D filter to force an additional temporal
dimension. By using the pre-trained model, the I3D yields better performance, devoid of
any supplemental costs.

Temporal 3D ConvNets (T3D) [31] is induced by DenseNet [32], which contributes
to better performance with shallower layers and lower number of parameters. With the
usage of dense blocks, T3D commands a better feature reprocess rate and feature delivery.
To displace the pooling layers amongst dense blocks of DenseNet, T3D fields a Temporal

Electronics 2021, 10, 692 5 of 21

Transition Layer (TTL). The TTL block is primarily compiled of two parts, namely 3D
convolution and 3D average pooling, such that it can gather short-, mid-, and long-term
dynamics that represents crucial information.

The T3D innovatively applies the 2D image recognition pre-trained model on the T3D
model and constructs an information transfer model that comprises of two individual mod-
els: DenseNet 2D convolution networks [33] pre-trained on the ImageNet [30], and the T3D.
Subsequent to the convolution networks, it furnishes fully-connected layers to conjugate
the outputs of the two networks. The output is a binary classifier determining whether the
inputs are matched or not. Therefore, the T3D parameters can be altered concerning the
teacher model, with the aim of evading the essentiality to train 3D CNN from scratch.

Currently, the development of image classification and object detection has advanced
a lot with a heap of state-of-the-art methods (a few are mentioned in previous paragraphs).
However, most of the above networks focus on single image classification and object
detection. With advancements in fields of image classification and object detection, there is
a demand for more challenging issues about detecting and recognizing behaviors.

The state-of-the-art behavior recognition and detection NNs are generally focused
only on certain specific daily mankind activities and not much towards detecting multiple
behaviors. This paper attempted to design, develop, and implement a behavior detection
model capable of detecting multiple behaviors of distinctive objects in real time, requir-
ing comparatively a far lesser number of parameters, making it suitable for real-time
ADAS applications.

The following section details the proposed methods and describes the steps involved
in the same, followed by the results, discussions, and comparison of the results with those
of state-of-the-art methods and then concludes the proposed C3D method.

3. Methods

Conventional dangerous behavior prediction is based on a combination of various
object detection deep learning models that can detect various objects employing rule-based
behavior recognition algorithms. However, the temporal information that the rule-based
behavior recognition algorithms can achieve is minimal. Therefore, the accuracy of these
traditional methods may not be sufficient to be applied in real-time applications. The C3D
CNN is faster than the aforementioned models with recurrent operations like RNN or
LSTM and it has extracted features for temporal information that can achieve higher
accuracy in behavior prediction, too. Therefore, this paper proposes a C3D to realize the
behavioral prediction. Figure 4 shows the overall architecture employed in this literature.
The detected results from the YOLO v3 object detection model is fused with those from
the C3D model to improvise the stability as well as accuracy of the behavioral heatmap.
The following sections detail the steps involved in the behavioral prediction method.

3.1. Architecture of the Proposed C3D Feature Extraction Model

The C3D CNNs are faster than the CNN models with recurrent operations. How-
ever, the 3D convolution imminently requires more computational time and require more
parameters.

The original C3D CNN architecture commonly comprises of eight 3D convolution
layers, five 3D pooling layers, and two fully-connected layers, as depicted in Figure 5a.
It is comparatively faster than those with recurrent positions. Despite the fact that the NN
is very shallow, it is still large and too slow to be implemented in embedded systems for
real-time applications.

Electronics 2021, 10, 692 6 of 21

Electronics 2021, 10, x FOR PEER REVIEW 6 of 22

higher accuracy in behavior prediction, too. Therefore, this paper proposes a C3D to real-
ize the behavioral prediction. Figure 4 shows the overall architecture employed in this
literature. The detected results from the YOLO v3 object detection model is fused with
those from the C3D model to improvise the stability as well as accuracy of the behavioral
heatmap. The following sections detail the steps involved in the behavioral prediction
method.

Figure 4. Overall architecture of the proposed C3D based behavioral prediction method.

3.1. Architecture of the Proposed C3D Feature Extraction Model
The C3D CNNs are faster than the CNN models with recurrent operations. However,

the 3D convolution imminently requires more computational time and require more pa-
rameters.

The original C3D CNN architecture commonly comprises of eight 3D convolution
layers, five 3D pooling layers, and two fully-connected layers, as depicted in Figure 5a. It
is comparatively faster than those with recurrent positions. Despite the fact that the NN
is very shallow, it is still large and too slow to be implemented in embedded systems for
real-time applications.

The conventional C3D NN designed for UCF101 contains 101 human behavior clas-
ses. While implying it for ADAS applications, it is not needed to perform meticulous
judgement. Therefore, this paper simplifies the conventional C3D architecture to only pos-
sess five 3D convolutional layers, five 3D pooling layers, and two fully connected layers,
as exhibited in Figure 5b. The output channel size of every 3D convolution layer and fully
connected layer are far lesser than the conventional C3D. With this simplification [24], the
model is faster and requires comparatively lesser parameters and lower computational
cost. Thus, the simplified C3D model proposed in this paper is represented as in Equation
(1), where H represents the output behavior heatmap, f is the C3D function, x is the image
sequence, and the subscript t−15:t implies that the input depth of C3D model is 16 frames.

Figure 4. Overall architecture of the proposed C3D based behavioral prediction method.Electronics 2021, 10, x FOR PEER REVIEW 7 of 22

(a)

(b)

Figure 5. (a) the architecture of the original C3D used in state-of-the-art methods; (b) the architecture of the simplified
C3D used in the proposed design.

H : (1)

Additionally, the proposed model is a combination of C3D and YOLO v3 object de-
tection model in which the detected objects are considered as behavior candidates and the
C3D model determines whether the considered behaviors are in the bounding boxes.
Thus, the proposed fusion architecture can be represented as in Equation (2). Fusion	model Detection	model	 ∩ C3D	model (2)

3.2. Pre-Trained Model of the C3D
The key objective of the pre-trained model [25] is to perform behavioral recognition.

The pre-trained deep learning models provide enhanced performance without any addi-
tional costs. The challenge of object classification and detection has not only a large
amount of pre-trained models but also diversified models, whereas the pre-trained mod-
els for behavioral prediction are negligible and limited to certain specific situations. Since
the behavioral definition targeted in this paper is dissimilar to the definition of common
behaviors, the improvements that standard publicly available action/behavior recognition
datasets contribute is scarcer. In order to gain an improved performance, the authors have
created a pre-trained model themselves. The data to train the pre-trained model is ob-
tained from the identical datasets used for behavior prediction, but with a different ap-
proach. In a video clip used as an input, the pre-trained model should be capable of de-
termining if the video clip has any pedestrian(s) crossing, vehicle(s) cutting-in, and vehi-
cles applying sudden brakes or slowing down ahead.

A dissimilar set of frames are categorized according to pedestrians and vehicles fol-
lowed by dividing each video into a large amount of video clips consisting of 16 frames,
termed as ‘input data’. Only those video clips that include pedestrians and pedestrian(s)
crossing the road is considered as ‘true’ input ground truth. Similarly, behaviors such as
vehicles cutting-in and vehicles applying emergency brakes are defined. According to this
definition of ‘behavior’, the pre-trained model used in the paper learns better and more
accurate features of the behaviors of pedestrians and vehicles.

In order to enable the pre-trained model to assimilate information about pedestrians
crossing, vehicles cutting-in and vehicles applying emergency brakes, the snipped region
of the input video clips is adjusted to retain the motion information of the pre-trained
model. If the focus is set only on pedestrians and/or vehicles and allows the pedestrians
and vehicles to be located in the center region in every frame of the clip, it may cause loss
of motion information, resulting in reduced efficiency. The crop box bigger than the
bounding boxes of pedestrians is set, as represented in Figure 6, and cropping boxes are
allowed to move every 16 frames. That is, the input video clips comprise of the crossing
motion of the pedestrians, causing preferential improvement with the pre-trained model.
Furthermore, in order to increase behavioral prediction efficiency, this paper attempts dif-
ferent strides for the 16-frame sliding window to extract training clips from the videos, as

Figure 5. (a) the architecture of the original C3D used in state-of-the-art methods; (b) the architecture of the simplified C3D
used in the proposed design.

The conventional C3D NN designed for UCF101 contains 101 human behavior classes.
While implying it for ADAS applications, it is not needed to perform meticulous judgement.
Therefore, this paper simplifies the conventional C3D architecture to only possess five 3D
convolutional layers, five 3D pooling layers, and two fully connected layers, as exhibited
in Figure 5b. The output channel size of every 3D convolution layer and fully connected
layer are far lesser than the conventional C3D. With this simplification [24], the model is
faster and requires comparatively lesser parameters and lower computational cost. Thus,
the simplified C3D model proposed in this paper is represented as in Equation (1), where
H represents the output behavior heatmap, f is the C3D function, x is the image sequence,
and the subscript t−15:t implies that the input depth of C3D model is 16 frames.

H = f (xt−15:t) (1)

Additionally, the proposed model is a combination of C3D and YOLO v3 object
detection model in which the detected objects are considered as behavior candidates and

Electronics 2021, 10, 692 7 of 21

the C3D model determines whether the considered behaviors are in the bounding boxes.
Thus, the proposed fusion architecture can be represented as in Equation (2).

Fusion model = Detection model ∩ C3D model (2)

3.2. Pre-Trained Model of the C3D

The key objective of the pre-trained model [25] is to perform behavioral recognition.
The pre-trained deep learning models provide enhanced performance without any ad-
ditional costs. The challenge of object classification and detection has not only a large
amount of pre-trained models but also diversified models, whereas the pre-trained models
for behavioral prediction are negligible and limited to certain specific situations. Since
the behavioral definition targeted in this paper is dissimilar to the definition of common
behaviors, the improvements that standard publicly available action/behavior recognition
datasets contribute is scarcer. In order to gain an improved performance, the authors have
created a pre-trained model themselves. The data to train the pre-trained model is obtained
from the identical datasets used for behavior prediction, but with a different approach.
In a video clip used as an input, the pre-trained model should be capable of determining if
the video clip has any pedestrian(s) crossing, vehicle(s) cutting-in, and vehicles applying
sudden brakes or slowing down ahead.

A dissimilar set of frames are categorized according to pedestrians and vehicles
followed by dividing each video into a large amount of video clips consisting of 16 frames,
termed as ‘input data’. Only those video clips that include pedestrians and pedestrian(s)
crossing the road is considered as ‘true’ input ground truth. Similarly, behaviors such as
vehicles cutting-in and vehicles applying emergency brakes are defined. According to this
definition of ‘behavior’, the pre-trained model used in the paper learns better and more
accurate features of the behaviors of pedestrians and vehicles.

In order to enable the pre-trained model to assimilate information about pedestrians
crossing, vehicles cutting-in and vehicles applying emergency brakes, the snipped region
of the input video clips is adjusted to retain the motion information of the pre-trained
model. If the focus is set only on pedestrians and/or vehicles and allows the pedestrians
and vehicles to be located in the center region in every frame of the clip, it may cause
loss of motion information, resulting in reduced efficiency. The crop box bigger than the
bounding boxes of pedestrians is set, as represented in Figure 6, and cropping boxes are
allowed to move every 16 frames. That is, the input video clips comprise of the crossing
motion of the pedestrians, causing preferential improvement with the pre-trained model.
Furthermore, in order to increase behavioral prediction efficiency, this paper attempts
different strides for the 16-frame sliding window to extract training clips from the videos,
as represented in Figure 7. The yellow/black circles on the arrow are the frames in the
original videos. The videos are then pre-processed into many 16-frame clips for training,
so a parameter called a ‘stride’ is set to adjust the frame-overlapping rate of adjacent
training clips, as shown in Figure 7.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 22

represented in Figure 7. The yellow/black circles on the arrow are the frames in the origi-
nal videos. The videos are then pre-processed into many 16-frame clips for training, so a
parameter called a ‘stride’ is set to adjust the frame-overlapping rate of adjacent training
clips, as shown in Figure 7.

Figure 6. A few samples of the input video clips used for the pre-trained model.

Figure 7. Different strides of the 16-frame sliding window to extract training clips from the videos.

3.3. Depth-wise C3D Model
In order to process the C3D model on embedded systems, it is a necessary pre-requi-

site to reduce the number of parameters. Therefore, a depth-wise 3D convolution is ap-
plied. Since the depth-wise 3D convolution [34] has an impressively reduced number of
parameters, this paper uses it to perform parameter reduction. The comparison of the pa-
rameters of the simplified C3D model without a heatmap layer using the original 3D con-
volution with that of a depth-wise 3D convolution is as shown in Table 1.

Table 1. Comparison of the simplified C3D model without a heatmap layer using the original 3D
convolution and depth-wise 3D convolution.

Convolution Number of Parameters
Original 3D Convolution 3.1 M

Depth-wise 3D Convolution 0.13 M

3.4. 3D Convolution Neural Network with a Heatmap Layer
When predicting the behavior of pedestrians, vehicles cutting-in, and vehicles apply-

ing brakes for ADAS applications, as the objects are not always in the middle of the real-
time environment scenes while driving, the two challenges to be considered are: (i) to
ascertain the position of target objects and (ii) to categorize the behavior of the target ob-
ject. However, the two-stage behavior prediction also has certain hurdles, such as, (i) to
ensure the accuracy and stability of object detection; (ii) to support behavior recognition,
the object detection results must be stable. Otherwise, the behavior recognition that results
in unstable or even wrong input source from object detection is nearly impossible to out-
put correct behavior; and (iii) computation time cost—since we are required to complete

Figure 6. A few samples of the input video clips used for the pre-trained model.

Electronics 2021, 10, 692 8 of 21

Electronics 2021, 10, x FOR PEER REVIEW 8 of 22

represented in Figure 7. The yellow/black circles on the arrow are the frames in the origi-
nal videos. The videos are then pre-processed into many 16-frame clips for training, so a
parameter called a ‘stride’ is set to adjust the frame-overlapping rate of adjacent training
clips, as shown in Figure 7.

Figure 6. A few samples of the input video clips used for the pre-trained model.

Figure 7. Different strides of the 16-frame sliding window to extract training clips from the videos.

3.3. Depth-wise C3D Model
In order to process the C3D model on embedded systems, it is a necessary pre-requi-

site to reduce the number of parameters. Therefore, a depth-wise 3D convolution is ap-
plied. Since the depth-wise 3D convolution [34] has an impressively reduced number of
parameters, this paper uses it to perform parameter reduction. The comparison of the pa-
rameters of the simplified C3D model without a heatmap layer using the original 3D con-
volution with that of a depth-wise 3D convolution is as shown in Table 1.

Table 1. Comparison of the simplified C3D model without a heatmap layer using the original 3D
convolution and depth-wise 3D convolution.

Convolution Number of Parameters
Original 3D Convolution 3.1 M

Depth-wise 3D Convolution 0.13 M

3.4. 3D Convolution Neural Network with a Heatmap Layer
When predicting the behavior of pedestrians, vehicles cutting-in, and vehicles apply-

ing brakes for ADAS applications, as the objects are not always in the middle of the real-
time environment scenes while driving, the two challenges to be considered are: (i) to
ascertain the position of target objects and (ii) to categorize the behavior of the target ob-
ject. However, the two-stage behavior prediction also has certain hurdles, such as, (i) to
ensure the accuracy and stability of object detection; (ii) to support behavior recognition,
the object detection results must be stable. Otherwise, the behavior recognition that results
in unstable or even wrong input source from object detection is nearly impossible to out-
put correct behavior; and (iii) computation time cost—since we are required to complete

Figure 7. Different strides of the 16-frame sliding window to extract training clips from the videos.

3.3. Depth-Wise C3D Model

In order to process the C3D model on embedded systems, it is a necessary pre-
requisite to reduce the number of parameters. Therefore, a depth-wise 3D convolution is
applied. Since the depth-wise 3D convolution [34] has an impressively reduced number
of parameters, this paper uses it to perform parameter reduction. The comparison of the
parameters of the simplified C3D model without a heatmap layer using the original 3D
convolution with that of a depth-wise 3D convolution is as shown in Table 1.

Table 1. Comparison of the simplified C3D model without a heatmap layer using the original 3D
convolution and depth-wise 3D convolution.

Convolution Number of Parameters

Original 3D Convolution 3.1 M
Depth-wise 3D Convolution 0.13 M

3.4. 3D Convolution Neural Network with a Heatmap Layer

When predicting the behavior of pedestrians, vehicles cutting-in, and vehicles ap-
plying brakes for ADAS applications, as the objects are not always in the middle of the
real-time environment scenes while driving, the two challenges to be considered are: (i) to
ascertain the position of target objects and (ii) to categorize the behavior of the target
object. However, the two-stage behavior prediction also has certain hurdles, such as, (i) to
ensure the accuracy and stability of object detection; (ii) to support behavior recognition,
the object detection results must be stable. Otherwise, the behavior recognition that results
in unstable or even wrong input source from object detection is nearly impossible to output
correct behavior; and (iii) computation time cost—since we are required to complete the
two models, object detection and behavior prediction, topologically, it unpreventably costs
more time.

In order to tackle the previously mentioned challenges, the concept of harnessing a
heatmap layer is attainable and considered ideal as the heatmap layer, besides containing
spatial features, also contains temporal features. The heatmap layer is included after the
C3D feature extraction. During training, a 16 × 16 feature map is created by the model
proposed in this paper. The original image, which is the last frame of the input video clip,
is disjoined into 16 × 16 grid maps to correspond to 16 × 16 output feature maps. The grid
that has the targeted behavior is represented by a higher value, whereas the other grids are
set to lower values as in Figure 8.

During the testing process, each grid in the 16 × 16 grid maps is designated a value
from the proposed algorithm. If the target behavior appears at the location of one of the
grids, the value of that is considered to be nearer to the higher value; otherwise the value is
weighed closer to a lower value. After obtaining a 16 × 16 grid map, it is enlarged into a
gray scale intensity map equivalent to the size of an image, followed by modification of an
intensity map into a HSV picture termed as heatmap. In the heatmap, the region with a
higher value is depicted in red, while the region with lower value is in blue, as in Figure 9.
In the end, the heatmap is overlaid onto the original source picture so that the locations of
the target behavior are clearly present as it occurred.

Electronics 2021, 10, 692 9 of 21

Electronics 2021, 10, x FOR PEER REVIEW 9 of 22

the two models, object detection and behavior prediction, topologically, it unpreventably
costs more time.

In order to tackle the previously mentioned challenges, the concept of harnessing a
heatmap layer is attainable and considered ideal as the heatmap layer, besides containing
spatial features, also contains temporal features. The heatmap layer is included after the
C3D feature extraction. During training, a 16 × 16 feature map is created by the model
proposed in this paper. The original image, which is the last frame of the input video clip,
is disjoined into 16 × 16-grid maps to correspond to 16 × 16 output feature maps. The grid
that has the targeted behavior is represented by a higher value, whereas the other grids
are set to lower values as in Figure 8.

Figure 8. Architecture of the training process of the proposed 3D convolution with heatmap layer.

During the testing process, each grid in the 16 × 16 grid maps is designated a value
from the proposed algorithm. If the target behavior appears at the location of one of the
grids, the value of that is considered to be nearer to the higher value; otherwise the value
is weighed closer to a lower value. After obtaining a 16 × 16 grid map, it is enlarged into
a gray scale intensity map equivalent to the size of an image, followed by modification of
an intensity map into a HSV picture termed as heatmap. In the heatmap, the region with
a higher value is depicted in red, while the region with lower value is in blue, as in Figure
9. In the end, the heatmap is overlaid onto the original source picture so that the locations
of the target behavior are clearly present as it occurred.

Figure 8. Architecture of the training process of the proposed 3D convolution with heatmap layer.Electronics 2021, 10, x FOR PEER REVIEW 10 of 22

Figure 9. Architecture of the testing process in the proposed 3D convolution network with a heatmap layer.

Two different ways can be adapted as a means to obtain the final heatmap results
following C3D feature extraction namely: (i) to use a fully-connected layer; and (ii) to use
un-pooling layer and 3D convolution. Both these ways have similar accuracy and speed,
where there are notable differences in the required number of parameters as discussed in
Section 3.4.1

3.4.1. Heatmap Layer Using Fully-Connected Layer
The total architecture of behavioral prediction with a heatmap layer using fully-con-

nected layer is as shown as Figure 10a. The architecture uses three fully-connected layers
to produce a 1 × 256 flattened intensity vector. Similar to traditional C3D networks, the
numerous fully-connected layers following the feature extraction of 3D convolution are
used to compress the information of the features so that the final classification can be car-
ried out.

The previous two fully-connected layers are also utilized for information compres-
sion. In the final fully-connected layer, it is necessary to adjust the length of output inten-
sity vector of size 1 × 256 so that the intensity vector length is the square of that of the
heatmap size, as in Figure 10b. In this paper, the intensity vector transform is reshaped
into an intensity heatmap.

Figure 9. Architecture of the testing process in the proposed 3D convolution network with a heatmap layer.

Two different ways can be adapted as a means to obtain the final heatmap results
following C3D feature extraction namely: (i) to use a fully-connected layer; and (ii) to use
un-pooling layer and 3D convolution. Both these ways have similar accuracy and speed,
where there are notable differences in the required number of parameters as discussed in
Section 3.4.1.

3.4.1. Heatmap Layer Using Fully-Connected Layer

The total architecture of behavioral prediction with a heatmap layer using fully-
connected layer is as shown as Figure 10a. The architecture uses three fully-connected
layers to produce a 1 × 256 flattened intensity vector. Similar to traditional C3D networks,

Electronics 2021, 10, 692 10 of 21

the numerous fully-connected layers following the feature extraction of 3D convolution
are used to compress the information of the features so that the final classification can be
carried out.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 22

(a) (b)

Figure 10. (a) Architecture of the proposed C3D model with a heatmap layer using fully-connected layers, (b) Heatmap
transformation from the last fully-connected layer.

3.4.2. Heatmap Layer Using an Unpooling Layer
In order to obtain the end results of heatmap following C3D feature extraction, we

adopted an unpooling layer and 3D convolution. The concept of employing an unpooling
layer is influenced by the SegNet [34]. After numerous 3D convolutions and 3D pooling
layers, the unpooling and 3D convolution is used to inflate the feature map to a desired
output shape.

The output features possess width (W), height (H), depth (D), and channel (C) size of
16 × 16 × 16 × 1, respectively, after the final 3D convolution layer. The channel size is 1,
considering it is merely an intensity map. Because the dimensional length of input depth
is 16, the output can be viewed as a combination of heatmap respective to every frame of
the input video clip. Therefore, the dimension of 16 × 16 × 16 × 1 is split along the depth
dimension to achieve an output with dimension 16 × 16 × 1 × 1 intensity heatmap, as in
Figure 11a.

In order to determine the behaviors of multiple object, the architecture of the
heatmap layer is experimentally adjusted. By utilizing different heatmap layers to corre-
spond to different behaviors, a model competent to detect the behaviors of various objects
simultaneously is trained, as in Figure 11b. The model size and computation cost is ex-
pected to rise with more behaviors for recognition, which is practically acceptable in case
of real-time applications.

By performing unpooling, the output maintains the shape of 3D features so that both
spatial and temporal domain information are maintained well. Further, a large number of
input and output channels result in a huge number of parameters of fully-connected lay-
ers. On the other hand, there are barely any parameters for unpooling layers. Thus, only
the 3D convolution layers need to calculate the number of parameters and it is lesser than
using fully-connected layers, as in Table 2.

Figure 10. (a) Architecture of the proposed C3D model with a heatmap layer using fully-connected layers, (b) Heatmap
transformation from the last fully-connected layer.

The previous two fully-connected layers are also utilized for information compression.
In the final fully-connected layer, it is necessary to adjust the length of output intensity
vector of size 1 × 256 so that the intensity vector length is the square of that of the heatmap
size, as in Figure 10b. In this paper, the intensity vector transform is reshaped into an
intensity heatmap.

3.4.2. Heatmap Layer Using an Unpooling Layer

In order to obtain the end results of heatmap following C3D feature extraction,
we adopted an unpooling layer and 3D convolution. The concept of employing an un-
pooling layer is influenced by the SegNet [34]. After numerous 3D convolutions and 3D
pooling layers, the unpooling and 3D convolution is used to inflate the feature map to a
desired output shape.

The output features possess width (W), height (H), depth (D), and channel (C) size of
16 × 16 × 16 × 1, respectively, after the final 3D convolution layer. The channel size is 1,
considering it is merely an intensity map. Because the dimensional length of input depth
is 16, the output can be viewed as a combination of heatmap respective to every frame of
the input video clip. Therefore, the dimension of 16 × 16 × 16 × 1 is split along the depth
dimension to achieve an output with dimension 16 × 16 × 1 × 1 intensity heatmap, as in
Figure 11a.

In order to determine the behaviors of multiple object, the architecture of the heatmap
layer is experimentally adjusted. By utilizing different heatmap layers to correspond to
different behaviors, a model competent to detect the behaviors of various objects simul-
taneously is trained, as in Figure 11b. The model size and computation cost is expected
to rise with more behaviors for recognition, which is practically acceptable in case of
real-time applications.

Electronics 2021, 10, 692 11 of 21
Electronics 2021, 10, x FOR PEER REVIEW 12 of 22

(a) (b)

Figure 11. (a) Heatmap transformation by the split-layer, (b) Architecture of the proposed C3D model with a heatmap
layer using an unpooling layer.

Table 2. The experimental results of using a fully-connected layer and an unpooling layer for the
heatmap layer.

Methods Accuracy Number of Parameters
(Only Heatmap Layer)

Fully-connected layer 88.58% 2.6 M
Unpooling layer 91.04% 0.1 M

3.5. Dataset for Multi-Object Multi-Behavior Prediction
 For prediction of real-time behaviors, the crucial step is to carefully describe the be-

haviors. The prediction of behaviors in real time is completely different from commonly
followed off-line behavior recognition. A majority of publicly available standard behavior
datasets customarily focuses on common human activities, such as walking, running, and
standing, among others. Therefore, the behavior analysis for drivers of motor vehicles is
not supported by these datasets and public behavior datasets that are used for video
recognition usually take the whole videos and then recognizes the behavior. However, it
is mandatory to analyze the behavior instantaneously and alert or at least inform the
driver in real time. Therefore, the behavior should be defined carefully and clearly so that
it can be determined in every single video clip used during testing.

The human activities and vehicular recognition datasets assume that the target is in
the middle of a scene while the targets in real environments may appear in different cor-
ners and sometimes just in a small part of the scene. In order to overcome these draw-
backs, this paper collected pedestrian crossing dataset from a fixed indoor camera, as well
as from a car camcorder, as shown in Figure 12a,b, respectively. Similarly, vehicles cut-
ting-in and vehicles applying brakes dataset are built using videos from car camcorders.

Figure 11. (a) Heatmap transformation by the split-layer, (b) Architecture of the proposed C3D model with a heatmap layer
using an unpooling layer.

By performing unpooling, the output maintains the shape of 3D features so that both
spatial and temporal domain information are maintained well. Further, a large number of
input and output channels result in a huge number of parameters of fully-connected layers.
On the other hand, there are barely any parameters for unpooling layers. Thus, only the 3D
convolution layers need to calculate the number of parameters and it is lesser than using
fully-connected layers, as in Table 2.

Table 2. The experimental results of using a fully-connected layer and an unpooling layer for the
heatmap layer.

Methods Accuracy Number of Parameters
(Only Heatmap Layer)

Fully-connected layer 88.58% 2.6 M
Unpooling layer 91.04% 0.1 M

3.5. Dataset for Multi-Object Multi-Behavior Prediction

For prediction of real-time behaviors, the crucial step is to carefully describe the
behaviors. The prediction of behaviors in real time is completely different from commonly
followed off-line behavior recognition. A majority of publicly available standard behavior
datasets customarily focuses on common human activities, such as walking, running,
and standing, among others. Therefore, the behavior analysis for drivers of motor vehicles
is not supported by these datasets and public behavior datasets that are used for video
recognition usually take the whole videos and then recognizes the behavior. However, it is
mandatory to analyze the behavior instantaneously and alert or at least inform the driver
in real time. Therefore, the behavior should be defined carefully and clearly so that it can
be determined in every single video clip used during testing.

The human activities and vehicular recognition datasets assume that the target is in
the middle of a scene while the targets in real environments may appear in different corners
and sometimes just in a small part of the scene. In order to overcome these drawbacks, this
paper collected pedestrian crossing dataset from a fixed indoor camera, as well as from a
car camcorder, as shown in Figure 12a,b, respectively. Similarly, vehicles cutting-in and
vehicles applying brakes dataset are built using videos from car camcorders.

Electronics 2021, 10, 692 12 of 21
Electronics 2021, 10, x FOR PEER REVIEW 13 of 22

(a)

(b)

Figure 12. (a) Indoor pedestrian crossing image; (b) Outdoor pedestrian crossing image.

The datasets thus built are further labelled with targeted objects in bounding boxes
and corresponding behaviors of the respective objects in motion through individual col-
ored heatmap such as Yellow: pedestrian crossing, Blue: vehicle cut-in, Purple: emergency
brake (Figure 13).

(a) (b) (c) (d)

Figure 13. Moving objects with a colored heatmap. (a) Original image without any heatmap, (b) yellow colored heatmap:
pedestrian crossing, (c) blue colored heatmap: vehicle cutting-in, (d) purple colored heatmap: emergency brake.

Figure 12. (a) Indoor pedestrian crossing image; (b) Outdoor pedestrian crossing image.

The datasets thus built are further labelled with targeted objects in bounding boxes
and corresponding behaviors of the respective objects in motion through individual colored
heatmap such as Yellow: pedestrian crossing, Blue: vehicle cut-in, Purple: emergency brake
(Figure 13).

Electronics 2021, 10, x FOR PEER REVIEW 13 of 22

(a)

(b)

Figure 12. (a) Indoor pedestrian crossing image; (b) Outdoor pedestrian crossing image.

The datasets thus built are further labelled with targeted objects in bounding boxes
and corresponding behaviors of the respective objects in motion through individual col-
ored heatmap such as Yellow: pedestrian crossing, Blue: vehicle cut-in, Purple: emergency
brake (Figure 13).

(a) (b) (c) (d)

Figure 13. Moving objects with a colored heatmap. (a) Original image without any heatmap, (b) yellow colored heatmap:
pedestrian crossing, (c) blue colored heatmap: vehicle cutting-in, (d) purple colored heatmap: emergency brake.
Figure 13. Moving objects with a colored heatmap. (a) Original image without any heatmap, (b) yellow colored heatmap:
pedestrian crossing, (c) blue colored heatmap: vehicle cutting-in, (d) purple colored heatmap: emergency brake.

Electronics 2021, 10, 692 13 of 21

The distribution of training clips with different strides, as mentioned in Section 3.2,
along with basic data augmentation methods such blur, noise, and flip, are as given in
Table 3. For each behavior, we collected about 100 short videos in different environments
varying from peak hours to non-peak hours and from daytime to nighttime. Of these
100 videos, approximately 95 videos are used for training and the remaining 5 are used
for testing. The length of each video is about 3~5 s. For training, we employed 3 different
clip strides to divide the 95 short videos into training clips, as listed in Table 3 and Table 8.
Then, the remaining five videos of each behavior are used during testing. Table 4 shows
the distribution of the testing clips.

Table 3. The distribution of training clips with different strides.

Targets Stride = 4 Stride = 8 Stride = 16

Pedestrian crossing 20,709 10,446 5316
Vehicle cutting-in 16,665 8388 4269

Emergency braking 20,460 10,293 5223

Table 4. The distribution of the testing clips.

Targets Number of Testing Clips

Pedestrian crossing 980
Vehicle cutting-in 888

Emergency braking 1515

3.6. Loss Function and Accuracy of Heatmap Layers

Since the heatmap is different from action recognition, only loss function and accuracy
calculation cannot be used. Therefore, the authors in this paper designed a loss function
and have their own definition of accuracy.

The loss function of the traditional C3D uses the softmax cross entropy, which is
widely used for image and action recognition applications. However, the softmax cross
entropy can be used only when the output is a “class” of a data. For heatmap, an intensity
map acts as the output. In every grid, an amount value is available, instead of a class.
Since the heatmap’s intensity map has spatial relation, the heatmap is finally overlaid on
an original image followed by the application of the loss function called ‘Euclidean loss’.
The Euclidean loss is a loss that adopts the concept of Euclidean distance. It calculates
distance in Euclidean space, which is to calculate the similarity of two lines. Like some
models for image processing, the Euclidean loss is utilized to calculate the difference
between the output and the ground truth. Thus, when calculating loss, the output and
ground truth are first flattened and then the Euclidean distance of these two as loss is
calculated and used to train the model.

The accuracy of a heatmap is calculated in three steps. (i) First, the accuracy of
a single frame heatmap is calculated. For a single frame, there will be one heatmap
with 16 × 16 grid. The predicted result value and ground truth-value are then subtracted,
as shown in Figure 14. (ii) After the subtraction, only the grid with an absolute value less
than that of the experimentally set threshold value is considered as correct. There are three
threshold values individually corresponding to ∆, ∆2, and ∆3 accuracies, as tabulated in Ta-
ble 5. The default setting of the threshold value in this paper is 1.5, which is experimentally
chosen. Then, the number of correct grids are counted and divided by total grid numbers
to get frame accuracy. For accuracy of a video, all of the frame accuracies, excluding the
first 15 frames, are calculated and the average of all the frame accuracies is considered as
the whole video accuracy. (iii) Finally, the average of all the test video accuracies is taken
as the overall total accuracy.

Electronics 2021, 10, 692 14 of 21Electronics 2021, 10, x FOR PEER REVIEW 15 of 22

Figure 14. Illustration of the accuracy of a heatmap per frame.

Table 5. The threshold values for accuracy calculation.

Methods Accuracy ∆ Accuracy ∆ Accuracy ∆
Threshold value < 1.5 < 3.225 < 5.20875

3.7. Object Detection Using YOLO v3
Along with the proposed C3D model detecting the behavior of pedestrians, vehicle

cutting-in, and vehicles applying emergency brakes, YOLO (You Only Look Once) v3 is
employed to detect the objects. YOLO v3 uses the pre-trained model of C3D discussed in
Section 2, along with the bounding boxes, to perform object detection in unseen scenes of
real-time environments for ADAS applications and to output a model. The output model
is then fused with the results of the C3D model. The method of fusing the results of the
YOLO v3 object detection model with that of the results from the proposed C3D model is
discussed in Section 4.

4. Experimental Results
This section presents the implementation details and results of the proposed multi-

behavior detection method.
The proposed C3D heatmap algorithm is exploited on a server with NVIDIA

GTX1080Ti. Both the training and testing are done on this server. In order to explore the
compatibility of the proposed method for our targeted real-time applications of ADAS,
NVIDIA Jetson AGX Xavier is used as the embedded platform. The NVIDIA Jetson AGX
Xavier adopts a Linux environment and supports many common APIs. It is also supported
by NVIDIA’s complete development tool chain and has a variety of standard hardware
interfaces that make the platform highly flexible and extensible. Due to these reasons, the
NVIDIA Jetson AGX Xavier is considered ideal for the proposed application requiring
high computational performance with low power requirements.

With the result of heatmap, it is possible to predict the tentative location of the tar-
geted behavior of moving objects. Then, with the YOLO v3 object detection result, the
precise position of the object is detected. After combining these two results, a noise-free
heatmap is obtained.

For emergency brake detection, a ROI is set to make the system focus on front vehi-
cles. A vehicle is taken as an emergency brake candidate if the middle-bottom point of its
bounding box is in the ROI. The corresponding color of bounding boxes for respective
behavior are as listed in Table 6 and the heatmap color if the detected candidate has such
behavior is as in Table 7. The results from the proposed method of heatmap pedestrians
crossing, vehicle cutting-in and vehicle applying emergency brakes are as shown in Figure

Figure 14. Illustration of the accuracy of a heatmap per frame.

Table 5. The threshold values for accuracy calculation.

Methods Accuracy ∆ Accuracy ∆2 Accuracy ∆3

Threshold value <1.5 <3.225 <5.20875

3.7. Object Detection Using YOLO v3

Along with the proposed C3D model detecting the behavior of pedestrians, vehicle
cutting-in, and vehicles applying emergency brakes, YOLO (You Only Look Once) v3 is
employed to detect the objects. YOLO v3 uses the pre-trained model of C3D discussed in
Section 2, along with the bounding boxes, to perform object detection in unseen scenes of
real-time environments for ADAS applications and to output a model. The output model
is then fused with the results of the C3D model. The method of fusing the results of the
YOLO v3 object detection model with that of the results from the proposed C3D model is
discussed in Section 4.

4. Experimental Results

This section presents the implementation details and results of the proposed multi-
behavior detection method.

The proposed C3D heatmap algorithm is exploited on a server with NVIDIA GTX1080Ti.
Both the training and testing are done on this server. In order to explore the compatibility
of the proposed method for our targeted real-time applications of ADAS, NVIDIA Jetson
AGX Xavier is used as the embedded platform. The NVIDIA Jetson AGX Xavier adopts a
Linux environment and supports many common APIs. It is also supported by NVIDIA’s
complete development tool chain and has a variety of standard hardware interfaces that
make the platform highly flexible and extensible. Due to these reasons, the NVIDIA Jetson
AGX Xavier is considered ideal for the proposed application requiring high computational
performance with low power requirements.

With the result of heatmap, it is possible to predict the tentative location of the targeted
behavior of moving objects. Then, with the YOLO v3 object detection result, the precise
position of the object is detected. After combining these two results, a noise-free heatmap
is obtained.

For emergency brake detection, a ROI is set to make the system focus on front vehicles.
A vehicle is taken as an emergency brake candidate if the middle-bottom point of its bound-
ing box is in the ROI. The corresponding color of bounding boxes for respective behavior
are as listed in Table 6 and the heatmap color if the detected candidate has such behavior
is as in Table 7. The results from the proposed method of heatmap pedestrians crossing,

Electronics 2021, 10, 692 15 of 21

vehicle cutting-in and vehicle applying emergency brakes are as shown in Figure 15. Fur-
ther, the results with respective color-coding for different object behaviors are as shown in
Figure 16. Here, yellow represents pedestrians crossing, blue represents vehicles cutting-in,
and purple represents vehicles applying emergency brakes.

Table 6. The corresponding color of bounding boxes for respective behaviors.

Behavior to Consider Bounding Box Colors

Pedestrians crossing Green
Vehicle cutting-in Blue

Emergency braking Red

Table 7. The heatmap color filled when the candidates show such behavior.

Behavior Heatmap Colors

Pedestrians crossing Yellow
Vehicle cutting-in Blue

Emergency braking Purple

Electronics 2021, 10, x FOR PEER REVIEW 16 of 22

15. Further, the results with respective color-coding for different object behaviors are as
shown in Figure 16. Here, yellow represents pedestrians crossing, blue represents vehicles
cutting-in, and purple represents vehicles applying emergency brakes.

Table 6. The corresponding color of bounding boxes for respective behaviors.

Behavior to Consider Bounding Box Colors
Pedestrians crossing Green

Vehicle cutting-in Blue
Emergency braking Red

Table 7. The heatmap color filled when the candidates show such behavior.

Behavior Heatmap Colors
Pedestrians crossing Yellow

Vehicle cutting-in Blue
Emergency braking Purple

Figure 15. The result of heatmap in pedestrian crossing behavior prediction, vehicle cutting-in,
and vehicles applying emergency brakes.

(a) (b) (c)

Figure 16. Results with respective color heatmap representations: (a) Yellow heatmap: pedestrians crossing; (b) blue
heatmap: vehicles cutting-in; (c) purple heatmap: vehicles applying emergency brakes.

Table 8 shows the experimental results depicting the impact of different strides set-
ting for training clips on testing accuracies on the NVIDIA GTX 1080Ti. Finally, the ver-
sion trained with training clip stride 4 is chosen in the proposed method. The number of
parameters required for the C3D model to predict these three behaviors are 5.97 M and
the overall speed of this system on GTX 1080Ti is 40 ms processing at the rate of 25 fps.

Figure 15. The result of heatmap in pedestrian crossing behavior prediction, vehicle cutting-in,
and vehicles applying emergency brakes.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 22

15. Further, the results with respective color-coding for different object behaviors are as
shown in Figure 16. Here, yellow represents pedestrians crossing, blue represents vehicles
cutting-in, and purple represents vehicles applying emergency brakes.

Table 6. The corresponding color of bounding boxes for respective behaviors.

Behavior to Consider Bounding Box Colors
Pedestrians crossing Green

Vehicle cutting-in Blue
Emergency braking Red

Table 7. The heatmap color filled when the candidates show such behavior.

Behavior Heatmap Colors
Pedestrians crossing Yellow

Vehicle cutting-in Blue
Emergency braking Purple

Figure 15. The result of heatmap in pedestrian crossing behavior prediction, vehicle cutting-in,
and vehicles applying emergency brakes.

(a) (b) (c)

Figure 16. Results with respective color heatmap representations: (a) Yellow heatmap: pedestrians crossing; (b) blue
heatmap: vehicles cutting-in; (c) purple heatmap: vehicles applying emergency brakes.

Table 8 shows the experimental results depicting the impact of different strides set-
ting for training clips on testing accuracies on the NVIDIA GTX 1080Ti. Finally, the ver-
sion trained with training clip stride 4 is chosen in the proposed method. The number of
parameters required for the C3D model to predict these three behaviors are 5.97 M and
the overall speed of this system on GTX 1080Ti is 40 ms processing at the rate of 25 fps.

Figure 16. Results with respective color heatmap representations: (a) Yellow heatmap: pedestrians crossing; (b) blue
heatmap: vehicles cutting-in; (c) purple heatmap: vehicles applying emergency brakes.

Table 8 shows the experimental results depicting the impact of different strides setting
for training clips on testing accuracies on the NVIDIA GTX 1080Ti. Finally, the version

Electronics 2021, 10, 692 16 of 21

trained with training clip stride 4 is chosen in the proposed method. The number of
parameters required for the C3D model to predict these three behaviors are 5.97 M and the
overall speed of this system on GTX 1080Ti is 40 ms processing at the rate of 25 fps.

Table 8. The experimental results showing the impact of different stride settings for training clips on
NVIDIA GTX 1080Ti.

Targets Stride = 4 Stride = 8 Stride = 16

Pedestrians crossing 96.51% 96.49% 96.29%
Vehicles cutting-in 95.06% 95.20% 95.13%
Emergency braking 98.04% 97.89% 97.78%

5. Discussion

The state-of-the-art of methods such as [12,20–30] and others are evaluated with a
single resolution of input videos and for the detection of single behavior at a time, whereas
the proposed method is tested for different resolutions of input videos and multiple behav-
ior detections, as we know that videos with better resolution provide more information.
However, since the input scales up from images to video clips, it becomes more difficult to
deal with the input. With the increasing size of input video clips, the computational cost,
number of parameters required, and FPS (frames per second) have significant impacts on
the performance of the NNs. The comparison of input video clips of sizes 112 × 112 × 16
and 224 × 224 × 16 using the original C3D with a fully-connected layer as heatmap layer
are listed in Table 9.

Table 9. Comparison of the impact of input video clips of different resolutions.

Model Input Size Numbers of
Parameters FPS Accuracy ∆ Accuracy ∆2 Accuracy ∆3

Original C3D 112 × 112 8.2 M 30 90.23% 92.27% 92.70%
Original C3D 224 × 224 12.6 M 12 89.28% 93.01% 95.89%

As seen in Table 10, the input video of size 224 × 224 requires more number of
parameters and results in slower computational speed. On the other hand, there is
no significant improvement in accuracy when the size of the input clip size changes
from 112 × 112 to 224 × 224. Since a pedestrian is a small object compared to the original
1920 × 1080 input size, two times the input size may not have a greater impact in enhancing
the accuracy of the behavior analysis.

Table 10. The results of four models with different convolution parameters and global average
pooling (GTX 1080 Ti).

Method C3D_v1 C3D_v2 C3D_v3 C3D_v4 C3D_v5 C3D_v6

Conv1 3 × 3 (64) 3 × 3 (32) 3 × 3 (16) 3 × 3 (16) 3 × 3 (16) 3 × 3 (8)
Conv2 3 × 3 (128) 3 × 3 (64) 3 × 3 (128) 3 × 3 (32) 3 × 3 (32) 3 × 3 (16)
Conv3 3 × 3 (256) 3 × 3 (128) 3 × 3 (128) 3 × 3 (128) 3 × 3 (64) 3 × 3 (32)
Conv4 3 × 3 (256) 3 × 3 (128) 3 × 3 (256) 3 × 3 (128) 3 × 3 (64) 3 × 3 (32)
Conv5 3 × 3 (256) 3 × 3 (128) 3 × 3 (256) 3 × 3 (256) 3 × 3 (64) 3 × 3 (32)

Parameters 7.14 M 2.61 M 5.65 M 3.95 M 1.21 M 0.73 M
Accuracy 89.36% 89.13% 89.96% 88.92% 88.66% 88.33%

FPS 33 100 100 133 150 200

Additionally, most previous papers lack an attempt to decrease model size, reduce
the number of required parameters or both, leading to the design of a model compatible
with embedded system implementations suitable for practical ADAS applications. Unlike
previous papers, this paper covered an evaluation of the impact on accuracy with decreased

Electronics 2021, 10, 692 17 of 21

model size and number of parameters, as tabulated in Table 10. The conventional model
C3D model, C3D_v1, and the lightweight model, C3D_v2 to C3D_v6 with different channel
sizes proposed in this paper, are compared as tabulated in Table 10. The original model pos-
sesses the model channel size employed in the C3D and the lightweight model contains the
channel size, as discussed in Section 3.3. As estimated, the decrease in model size resulted
in the reduction of accuracies. However, compared to the reduction of accuracies, it has
resulted in the betterment of FPS and also reduced the required numbers of parameters,
as listed in Table 11.

Table 11. Comparison of the conventional model and the light model (GTX 1080 Ti).

Model Input Size Number of
Parameters

Speed
(in FPS)

Accuracy
(%)

Original model 112 × 112 7.1 M 30 90.23%
Original model 224 × 224 12.6 M 12 90.09%

Light model 112 × 112 5.6 M 100 89.26%
Light model 224 × 224 9.9 M 28 89.28%

To decrease the parameters and computational time of the proposed model, the chan-
nel size of each layer is adjusted. The comparison of different C3D models with distinct
channel sizes in each layer are listed in Table 10. To make the proposed model faster enough
to suit real-time applications, the C3D_v1 model is excluded from real-time applications be-
cause of its low speed. Among the other models with acceptable speed, the C3D_v3 model
is more appropriate for real-time applications as its accuracy is the highest of all models.

To make the proposed model predict more accurately, a pre-trained model, as men-
tioned in Section 3.2, is employed. Although many state-of-the-art methods [12,20–24]
have employed the pre-trained model for their respective implementations, these papers
have failed to evaluate how it alters the accuracy of the model. This paper compares the
proposed model with and without a pre-trained model (Table 12) and thus analyses the
influence of the pre-trained models. All the basic models of behavior prediction are the
lightweight C3D model.

Table 12. Comparison of accuracy of the proposed model with and without a pre-trained model.

Model Input Size Number of Parameters Speed (in FPS) Accuracy (%)

Without pre-training 112 × 112 5.6 M 100 89.26
Without pre-training 224 × 224 9.9 M 28 90.09

With pre-training 112 × 112 5.6 M 100 90.52
With pre-training 224 × 224 9.9 M 28 90.28

As shown in Table 12, the pre-trained model has resulted in a small improvement in
accuracy with the input clips of both sizes. The improvement can even make the lightweight
model better than the original model without increasing of number of parameters and
decreases FPS.

The crucial part of the proposed method is the heatmap layer, which is not employed
in previous papers. This paper evaluates two different types of heatmaps, as discussed in
Section 3.4. Of the two types of heatmap layers, as mentioned in Sections 3.4.1 and 3.4.2,
respectively, the unpooling heatmap layer is better than the fully connected heatmap layer,
as represented in Table 13—it shows a comparison of these two kinds of heatmap layers,
showing experimental results. Both the models are tested using the lightweight model.

Electronics 2021, 10, 692 18 of 21

Table 13. Comparison of fully-connected heatmap and unpooling heatmap layer.

Model Input Size Numbers of
Parameters FPS Accuracy

(%)

Fully connected heatmap 112 × 112 5.6 M 100 90.48
Unpooling heatmap 112 × 112 3.6 M 100 89.06

From Table 13, it can be noted that the heatmap with unpooling layer achieves an
impressive improvement in accuracy and at the same time, has no drop in FPS. The un-
pooling heatmap also has good performance in reducing the numbers of parameters, as
compared to the fully connected heatmap.

The final comparison is the depth-wise 3D convolution, as shown in Table 14. A depth-
wise network can be obtained by replacing all the traditional convolution layers with
a depth-wise 3D convolution layers. Table 14 shows the comparison of the proposed
depth-wise C3D model with those of the original 3D convolution models.

Table 14. Comparisons of depth-wise 3D convolution.

Model Heatmap Type Input
Size

Numbers of
Parameters FPS Accuracy ∆ Accuracy ∆2 Accuracy ∆3

Traditional Fully-connected 112 × 112 5.6 M 100 90.48% 92.75% 95.15%
Traditional Unpooling 112 × 112 3.6 M 100 89.05% 91.97% 95.20%
Depth-wise Fully-connected 112 × 112 2.6 M 33 85.89% 92.20% 95.57%
Depth-wise Unpooling 112 × 112 0.15 M 33 89.94% 93.31% 95.92%

As seen from Table 14, the depth-wise 3D convolution incredibly decreases the num-
ber of parameters. The unpooling heatmap layer model has more reduction than the
fully-connected model with increased accuracy. However, the proposed depth-wise 3D
convolution does not have any parallel processing or accelerating methods. Therefore,
a decrease in the speed of depth-wise 3D convolution can be noted, compared to the
original 3D convolution. Additionally, although the depth-wise C3D convolution has far
lesser parameters, NVIDIA Jetson Xavier cannot achieve its efficient implementation and
even TensorFlow (TF) [35] does not support it. Thus, the depth-wise C3D is not considered
in the final implementation in this paper.

Table 15 shows a comparison of the efficiency of the single and mixed behavior models.
These use lightweight models and are without the pre-train models. It can be noted that
the multi-behavior models achieve similar accuracies for detecting multiple behaviors with
a slightly increased computation cost.

Table 15. Comparison of single and mixed behavior models (GTX 1080 Ti).

Model Accuracy
(%)

False Alarm
(%) Parameters FPS

Single behavior model
(Pedestrians crossing) 92.29 0.49 5.51 M 100

Single behavior model
(Cutting-in) 95.07 0.98 5.51 M 100

Mixed behavior model
(Pedestrians crossing) 92.89 1.96 5.74 M 100

Mixed behavior model
(Cutting-in) 94.31 0.71 5.74 M 100

6. Conclusions

This paper proposes a lightweight 3D convolution model with heatmap layers us-
ing fully-connected layers and unpooling layers to detect pedestrians crossing, vehicles
cutting-in, and vehicles applying emergency brakes. The heatmap layers for identifying

Electronics 2021, 10, 692 19 of 21

objects in real traffic environments based on their behaviors is evaluated and it appears
to be fruitful in yielding enhanced accuracies for detection of multiple behaviors simul-
taneously. The proposed design is optimized for computational low complexity and to
possess a smaller model size, as low as 5.7 MB, to be convenient enough to realize in
embedded systems like NVIDIA Jetson Xavier, which most state-of-the-art methods lack
in respect to multiple object detection in real-time for ADAS applications. The proposed
method achieved 10 frames per second when deployed on NVIDIA Jetson AGX Xavier
and yielded over 92.8% accuracy for pedestrians crossing, 94.3% accuracy for vehicles
cutting-in behavior detection, and over 95% accuracy in recognizing vehicles applying
emergency brakes or abruptly slowing down ahead. Based on factual consideration that
for vehicles traveling on freeways/highways, there will not be any pedestrians whereas in
urban areas vehicular speed is under 50–60 kmph, the processing speed of 10 fps is consid-
ered adequate. Compared to most deep learning object detection models, the proposed
design further supports multiple behavior recognition for targeted moving objects, like
pedestrians crossing, vehicles cutting-in, and vehicles applying emergency brakes, which is
beneficial to ensure safety in ADAS systems, thus aiding in the prevention of potential acci-
dental dangers. Furthermore, the pre-trained models affected the efficiency of the proposed
method in a positive manner, resulting in enhanced accuracy compared to those without
pre-training. Although many of the previous object detection methods have employed
pre-trained models, they were all for single object detection and single behavior detection,
unlike in this paper. We are skeptical that the pre-trained model will have any repercus-
sions, although the chances cannot be completely denied. We will attempt to explore the
potential repercussions in future extensions of the proposed algorithm. In other words,
there are some false predictions in outdoor testing data and there are certain behaviors such
as bikes, scooters, mini trucks, trucks, and buses cutting-in and applying emergency brakes,
along with wheelchair pedestrians, children, and stray animals, which are not included
in the present literature. This proposed algorithm is being extended to support broader
aforementioned behavior analysis applications in the future and make it a crucial part of the
ADAS system effective in enhancing the safety of passengers, pedestrians, and properties.

Author Contributions: Conceptualization, W.-C.T., J.-S.L., K.-C.C., and J.-I.G.; methodology, W.-C.T.,
J.-S.L., K.-C.C., and J.-I.G.; software, W.-C.T. and J.-S.L.; validation, W.-C.T., J.-S.L., and J.-I.G.; formal
analysis, W.-C.T. and J.-S.L.; investigation, W.-C.T. and J.-S.L.; resources, J.-I.G.; data curation, W.-C.T.,
J.-S.L., and K.-C.C.; writing—original draft preparation, V.M.S.; writing—review and editing, V.M.S.;
visualization, W.-C.T., J.-S.L., K.-C.C., V.M.S., and J.-I.G.; supervision, J.-I.G.; project administration,
J.-I.G.; funding acquisition, J.-I.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded from the “Center for mmWave Smart Radar Systems
and Technologies” under the ‘Featured Areas Research Center Program’ within the framework of the
Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan, and partially funded
under MOST projects with grants MOST 108-3017-F-009-001 and MOST 109-2634-F-009-017 through
Pervasive Artificial Intelligence Research Labs (PAIR Labs) in Taiwan, as well as the partially funded
from Qualcomm research collaboration agreement with number 408929.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the IP right policy.

Acknowledgments: The authors were supported by the “Center for mmWave Smart Radar Systems
and Technologies” under the ‘Featured Areas Research Center Program’ within the framework of
the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan; MOST projects
with grants MOST 108-3017-F-009-001 and MOST 110-2634-F-009-020 through Pervasive Artificial
Intelligence Research Labs (PAIR Labs) in Taiwan; Qualcomm research collaboration agreement
number 408929; and Wistron-NCTU Embedded Artificial Intelligence Research Center.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 692 20 of 21

References
1. Lijarcio, I.; Useche, S.A.; Llamazares, J.; Montoro, L. Availability, Demand, Perceived Constraints and Disuse of ADAS Technolo-

gies in Spain: Findings from a National Study. IEEE Access 2019, 7, 129862–129873. [CrossRef]
2. The Highway Code. Available online: https://www.nidirect.gov.uk/articles/highway-code-rules-159-203 (accessed on 14 March

2020).
3. McKenna, C. A Traffic Break on the M40 Motorway in England Implemented by a Highways England Traffic Officer. Available

online: https://commons.wikimedia.org/wiki/File:Rolling_roadblock_on_M40_2018-07-15_03.jpg (accessed on 21 April 2020).
4. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
5. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. Computer Vision. In Computer Science—ECCV

2014. ECCV 2014; Lecture Notes in Computer Science; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham,
Switzerland, 2014; Volume 8689. [CrossRef]

6. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
7. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer

Vision—ECCV 2016. Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland,
2016; Volume 9905. [CrossRef]

8. Redmon, J.; Divvala, S.; Girshick, R. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

9. Synak, P. Temporal Feature Extraction from Temporal Information Systems. Foundations of Intelligent Systems. ISMIS 2003.
In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2871.

10. Yao, L.; Torabi, A.; Cho, K.; Ballas, N.; Pal, C.J.; LaRochelle, H.; Courville, A.C. Describing Videos by Exploiting Temporal
Structure. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–15 December
2015; pp. 4507–4515.

11. Girdhar, R.; Ramanan, D.; Gupta, A.; Sivic, J.; Russell, B. ActionVLAD: Learning Spatio-Temporal Aggregation for Action
Classification. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017.

12. Lin, J.; Gan, C.; Han, S. TSM: Temporal Shift Module for Efficient Video Understanding. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.

13. Kalogeiton, V.; Weinzaepfel, P.; Ferrari, V.; Schmid, C. Action Tubelet Detector for Spatio-Temporal Action Localization. In Pro-
ceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

14. Qiu, Z.; Yao, T.; Mei, T. Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

15. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A Dataset of 101 Human Action Classes from Videos in The Wild. arXiv 2012,
arXiv:1212.0402.

16. Feichtenhofer, C.; Pinz, A.; Wildes, R.P. Spatiotemporal Multiplier Networks for Video Action Recognition. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

17. Zhang, B.; Wang, L.; Wang, Z.; Qiao, Y.; Wang, H. Real-Time Action Recognition with Enhanced Motion Vector CNNs. In Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016.

18. Hou, R.; Chen, C.; Shah, M. Tube Convolutional Neural Network (T-CNN) for Action Detection in Videos. In Proceedings of the
2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

19. Saha, S.; Singh, G.; Sapienza, M.; Torr, P.; Cuzzolin, F. Deep Learning for Detecting Multiple Space-Time Action Tubes in Videos.
In Proceedings of the British Machine Vision Conference, York, UK, 19–22 September 2016.

20. Simonyan, K.; Zisserman, A. Two-Stream Convolutional Networks for Action Recognition in Videos; MIT Press: Cambridge, MA, USA,
2014; Volume 1, pp. 568–576.

21. Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Darrell, T.; Saenko, K. Long-Term Recurrent
Convolutional Networks for Visual Recognition and Description. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
23. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Gool, L.V. Temporal Segment Networks: Towards Good Practices for

Deep Action Recognition. In Computer Vision—ECCV 2016. Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling,
M., Eds.; Springer: Cham, Switzerland, 2016; pp. 20–36.

24. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks.
arXiv 2014, arXiv:1412.0767.

25. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4724–4733.

26. Suresh, R.; Keshava, N. A Survey of Popular Image and Text analysis Techniques. In Proceedings of the 2019 4th International
Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 20–21
December 2019; pp. 1–8. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2939302
https://www.nidirect.gov.uk/articles/highway-code-rules-159-203
https://commons.wikimedia.org/wiki/File:Rolling_roadblock_on_M40_2018-07-15_03.jpg
http://doi.org/10.1145/3065386
http://doi.org/10.1007/978-3-319-10590-1_53
http://doi.org/10.1007/978-3-319-46448-0_2
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/CSITSS47250.2019.9031023

Electronics 2021, 10, 692 21 of 21

27. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. In Pro-
ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016.

28. Peng, X.; Schmid, C. Multi-Region Two-Stream R-CNN for Action Detection. Comput. Vis. In Computer Vision—ECCV 2016.
Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 744–759.

29. Zhu, Y.; Lan, Z.; Newsam, S.; Hauptmann, A. Hidden Two-Stream Convolutional Networks for Action Recognition. arXiv 2017,
arXiv:1704.00389.

30. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]

31. Diba, A.; Fayyaz, M.; Sharma, V.; Karami, A.H.; Arzani, M.M.; Yousefzadeh, R.; Gool, L. Temporal 3D ConvNets: New
Architecture and Transfer Learning for Video Classification. arXiv 2017, arXiv:1711.08200.

32. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

33. Ye, R.; Liu, F.; Zhang, L. 3D Depthwise Convolution: Reducing Model Parameters in 3D Vision Tasks. arXiv 2018, arXiv:1808.01556.
34. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Seg-

mentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]
35. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:

A system for large-scale machine learning. arXiv 2016, arXiv:1605.08695.

http://doi.org/10.1109/CVPR.2009.5206848
http://doi.org/10.1109/CVPR.2017.243
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704

	Introduction
	Background
	Methods
	Architecture of the Proposed C3D Feature Extraction Model
	Pre-Trained Model of the C3D
	Depth-Wise C3D Model
	3D Convolution Neural Network with a Heatmap Layer
	Heatmap Layer Using Fully-Connected Layer
	Heatmap Layer Using an Unpooling Layer

	Dataset for Multi-Object Multi-Behavior Prediction
	Loss Function and Accuracy of Heatmap Layers
	Object Detection Using YOLO v3

	Experimental Results
	Discussion
	Conclusions
	References

