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Abstract: As machine learning becomes ubiquitous, the need to deploy models on real-time, em-
bedded systems will become increasingly critical. This is especially true for deep learning solu-
tions, whose large models pose interesting challenges for target architectures at the “edge” that
are resource-constrained. The realization of machine learning, and deep learning, is being driven
by the availability of specialized hardware, such as system-on-chip solutions, which provide some
alleviation of constraints. Equally important, however, are the operating systems that run on this
hardware, and specifically the ability to leverage commercial real-time operating systems which,
unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic
execution required for embedded, and potentially safety-critical, applications at the edge. Despite
this, studies considering the integration of real-time operating systems, specialized hardware, and
machine learning/deep learning algorithms remain limited. In particular, better mechanisms for
real-time scheduling in the context of machine learning applications will prove to be critical as these
technologies move to the edge. In order to address some of these challenges, we present a resource
management framework designed to provide a dynamic on-device approach to the allocation and
scheduling of limited resources in a real-time processing environment. These types of mechanisms
are necessary to support the deterministic behavior required by the control components contained in
the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability
analysis to a large set of randomly generated simulated task sets and then verified the most time
critical applications, such as the control tasks which maintained low-latency deterministic behavior
even during off-nominal conditions. The practicality of our scheduling framework was demonstrated
by integrating it into a commercial real-time operating system (VxWorks) then running a typical
deep learning image processing application to perform simple object detection. The results indicate
that our proposed resource management framework can be leveraged to facilitate integration of
machine learning algorithms with real-time operating systems and embedded platforms, including
widely-used, industry-standard real-time operating systems.

Keywords: system-on-chip; deep learning; heterogeneous multiprocessor scheduling; feedback
control; real-time operating systems; Internet-of-Things

1. Introduction

Deep learning is currently revolutionizing many machine learning applications such
as computer vision, natural language processing, and autonomous systems. Deep learning
is based upon architectures of artificial neural networks containing many hidden layers.
While training such architectures was once impractical, the availability of large volumes
of data, hardware acceleration, and improved algorithms have made deep artificial neu-
ral networks a viable alternative for many applications. As a result, deep learning has
demonstrated increasingly superior performance, even exceeding human accuracy in
some domains.

Overall, deep learning solutions are deployed via a two-stage process. During the
first stage, the DNN model is learned by presenting the network with a training data set
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and, in the case of supervised learning, adjusting the network weights based on observed
prediction error. For example, in the case of image processing, the network would be trained
by providing it thousands of different images. Obviously, this stage is computationally
intensive, often requiring multi-threaded GPUs or other high-performance computing
clusters. Typically performed offline or in the cloud, this stage could take hours or even
days, depending on the amount of data required to train the system adequately.

Inference is the next stage of the deployment pipeline, where the trained model is
installed on the target hardware and used to infer or predict the output values used directly
by the target processor. This target system (i.e., edge or end device) would then process its
raw sensor data, providing that data as input to the deployed deep learning model, and
using the model’s output to classify the inputs. For example, an image classifier application
could process raw camera data to recognize various categories of ordinary objects.

Depending on the application, the inference stage may have a much lower latency
requirement, usually in the range of milliseconds instead of hours or days compared to the
training phase. Examples of these types of systems would include autonomous vehicles,
robotic systems, or other safety-critical embedded systems. As a result of these latency
requirements, there has been a significant amount of effort focused on developing new
hardware and software techniques for faster inference solutions.

On the hardware side, there are numerous reports [1–3] that custom-designed chips
for machine learning will deliver an order of magnitude acceleration improvement over
current platforms. While the training phase will likely still reside in traditional data
centers, there is a much higher possibility that the inference phase will run on the edge
in some embedded computing device. There are many reasons for moving computing
closer to where sensors gather data, including reliability, limiting network bandwidth,
providing improved security, or more effective resource management of deep learning
applications. This challenge is gaining research traction, for example, in [4], authors
discuss the deep learning memory challenge caused by scarce availability of memory. They
propose a combination of techniques for deployment of next-generation of on-chip machine
learning including hardware-aware DNNs that could allow for this stage to be on-chip
as opposed to offline. In the work of [5], authors also acknowledge the importance of
online scalability of deep learning algorithms and propose an architecture that supports
an always-on inference and learning engine through on-chip learning. This algorithm
leverages a crossbar array structure to perform vector-matrix multiplications and enables
online training of multi-layer SNNs with memristive neuromorphic hardware. Their results
show minimal performance loss when compared with current state-of-the-art technology.
Further, authors of [6], developed an end-to-end framework, DNN+NeuroSim V2.0, to
benchmark compute-in-memory-based architectures for on-chip training.

With the shift to on-device inference, the question becomes what type of embedded
hardware and configuration will produce the fastest and most efficient deep learning
platforms. One particular platform that is gaining significant traction is system-on-a-chip
(SoC) architecture. SoCs include various peripherals and computing components on an
integrated circuit that can satisfy even some of the most stringent processing requirements
for an embedded application. For this reason, SoCs are often considered as an excellent
solution for implementing deep-learning applications on embedded systems. In fact, many
experts are predicting that most of the effort spent on accelerating inference performance
will go towards embedded hardware solutions such as SoCs or other custom processing
elements like field-programmable gate arrays (FPGAs).

However, many of those machine learning applications intended to execute on the
targeted hardware platforms require real-time performance and must operate under strict
timing constraints. For instance, consider the video stream from the camera on a self-
driving car. The data must be processed in real-time with predictable behavior so that
other critical subsystems (e.g., route planning) are able to respond in a timely manner
to a rapidly changing environment (e.g., to avoid collisions). Or, perhaps, consider the
cybersecurity domain, where fast and efficient intrusion detection is essential to protect the
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system itself [7]. In both cases, the runtime performance of the underlying models must be
deterministic.

The challenge is that traditional machine learning applications are developed for
server, desktop, or hand-held-based platforms that cannot process input data in a pre-
dictable amount of time. The reason for this is two-fold. One reason is that the machine
learning- based applications typically run on general purpose operating systems (GPOS),
such as Linux, which by default are not real-time. The other is that SoCs’ heterogeneous
processing is routinely under-utilized in general purpose computing environments be-
cause embedded devices require an in-depth knowledge of various hardware architectures
and interfaces.

To resolve some of the issues described in the previous paragraphs, we present an
online feedback-based real-time scheduling and resource management framework (FC-
RTS) for deep learning inference on embedded heterogeneous SoC-based architectures.
In this work, we leverage a real-time operating system (RTOS) to replace current GPOSs
for the purpose of providing more deterministic behavior and a higher granularity of
control over hardware components. To effectively manage unpredictable inference times,
we leverage feedback mechanisms to dynamically reallocate processing resource elements
based on an application’s criticality. This approach is to ensure that the most critical
real-time tasks (e.g., collision avoidance) will not be affected during sudden workload
spikes. To demonstrate our framework’s utility, we integrate it with a computer vision task
based on deep learning and convolutional neural networks. We choose this task for two
reasons. First of all, deep learning models are some of the largest and most computationally
intense models in the entirety of machine learning, and so the ability of our framework
to perform well on a deep learning task would indicate that it could generalize to other
machine learning approaches. Secondly, computer vision problems are a central part of
autonomous systems research, and therefore of broad interest to the real-time machine
learning community. The authors in [8] highlight the importance of timeliness for safety
in computing systems for autonomous driving. Autonomous vehicles take in a myriad of
real-time data which needs to be processed and assessed with deep learning algorithms.
The vehicles, however, need to respond to safety threats almost instantly and therefore need
an RTOS to satisfy the system’s desired response time. By considering the above issues,
this paper makes the following contributions: (1) The introduction of a real-time resource
management framework that can support deep learning at the edge; (2) The integration
of that framework with a major commercial real-time operating system (VxWorks) on a
commodity embedded platform.

To describe this new framework, we organize the remaining sections of this paper as
follows. The next section provides some background and overview to provide a reference
for the methodologies and approaches used by our adaptive framework. Section 3 will
present some related work involving deep learning inference as well as multiprocessor
scheduling for heterogeneous systems (e.g., systems that utilize multiple cores of different
types, such as a combination of CPUs and GPUs). Section 4 provides details on our
framework’s implementation, while Section 5 covers the performance analysis related
to a specific application. Section 6 covers the physical implementation as well as the
simulation environment and representative hardware implementation. Finally, Section 7
provides a summary of results discovered thus far as well as future work and recommended
enhancements to FC-RTS.

2. Preliminaries

This section is used to provide some technical background information on the tech-
niques used as well as the terminology needed to define our real-time management frame-
work for SoC-based platforms.
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2.1. Task Model

Each embedded machine learning application (e.g., image processing or collision
avoidance) consists of one or more real-time tasks. A real-time task is defined as any task
that must meet its timing constraints. The timing constraints are traditionally represented
as a 3-tuple (T, C, D) where T defines the task period (time interval where the task instance
needs complete execution), C denotes the worst case execution time (WCET) of the task,
and D defines the relative deadline of a task (relative to the start of the task as to when the
task needs to finish execution). Therefore, each application can then be represented as a
task set of one or more tasks consisting of Γs = {τ1, τ2, . . . τn}, where each task τi is defined
as (Ti, Ci, Di). It is assumed that each task τi is a constrained task, such that Ci ≤ Di ≤ Ti.

Other important characteristics of real-time tasks include task priority, release time,
absolute deadline and the utilization of a task. The priority of a task determines what task
is chosen to execute first. The release time defines when a task is ready to execute, not
necessarily when it is allowed to execute. The absolute deadline defines the relative time
when the task is started compared to when it must complete. Note that a task which cannot
miss a single deadline is classified as hard real-time, whereas a task that can tolerate some
missed deadlines is known as soft real-time. Utilization is defined as the ratio between the
period of the task and its WCET.

Additionally, there are three different categories of real-time tasks: periodic, sporadic,
and aperiodic. A periodic task is where an instance of the task is released at the start of
each period. A sporadic task does not have a period but has a minimum interval of time
between releasing another instance of the task. An aperiodic task has no period nor time
interval between tasks. Aperiodic tasks are especially challenging to plan for because they
can happen at any time, such as when a system is interrupted to handle some asynchronous
event. These characteristics are worth mentioning in that an embedded machine learning
application may contain any combination of task types listed above and therefore needs to
be accounted for when planning on doing any on-device inference.

2.2. Real-Time Scheduling

It is up to a scheduling algorithm to determine which tasks get to execute and for
how long. There are several important characteristics of real-time scheduling algorithms
that are worth mentioning. The first is whether a task is preemptive or non-preemptive.
A preemptive task is one that can be interrupted at any time, allowing other tasks to
run. In contrast, a non-preemptive task is allowed to continue uninterrupted. This is an
important concept related to how we manage the scheduling of tasks in a heterogeneous
processing architecture.

Another key characteristic of real-time scheduling is the notion of priority. In a priority-
based scheduling scheme, the task with the highest priority gets to run first, where priority
can be assigned either statically or dynamically. In a static or fixed priority scheme, each
task is assigned a priority that does not change during the task’s lifetime. An example of a
fixed priority scheme is the Rate Monotonic (RM) algorithm where the priority of a task is
determined by the inverse of its period. In a dynamic priority scheme, the priority of a task
can change during the lifetime of the task. The most common example of dynamic priority
scheduling is the Earliest Deadline First (EDF) algorithm, where the priority of a task can
change depending upon the task with the nearest deadline that is ready to run.

2.3. Multiprocessor Real-Time Scheduling

Up to this point, the scheduling schemes described in Section 2.2 apply to systems
with a single processor. However, SoC-type devices typically consist of multicore-based
architectures. A few main multiprocessor or multicore scheduling algorithms are designed
to manage multicore architectures: partitioned scheduling, global scheduling, and a third
hybrid type that combines elements of the other two approaches. In the partitioned
scheduling approach, tasks are assigned to a specific processor and not allowed to migrate
to other processors even if those processors are under-utilized. This leads to the challenge
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of efficiently assigning tasks to processors, which is analogous to the bin packing problem,
which is proven to be NP-Hard [9].

Global scheduling solves the complexity problem of the partitioned approach because
a single global scheduler assigns tasks. Another key advantage of global scheduling is
that it typically requires fewer preemptions as the scheduler will only preempt a task if
there is no idle processor. Global scheduling is more suitable for open systems where new
tasks arrive dynamically, as a new task can be added easily to an existing schedule without
assigning it to a particular partition. A primary disadvantage is the significant overhead
incurred when a task is allowed to migrate to another processor or core.

Additional challenges are based upon the notion that SoCs are heterogeneous archi-
tectures with one or more general purpose processors (CPUs) with one or more synergistic
coprocessors (e.g., GPUs or DSPs) meant to deliver increased performance and power
efficiency. However, the multiprocessing scheduling mechanisms mentioned previously
present certain obstacles in heterogeneous multiprocessor systems due to the significant
overhead involved in the preemption of tasks running in the coprocessor. This overhead is
an architectural side-effect related to the number of registers, pipeline stages, and cache
flushes [10,11] associated with the coprocessor. Therefore, the traditional way of schedul-
ing the coprocessor, to reduce this incurred overhead, has been to designate that the CPU
schedules both the CPU-bound tasks and the coprocessor-bound non-preemptive tasks.

In practice, the GPU or DSP is considered a functional accelerator, much like a floating-
point coprocessor, that responds to processing requests from the CPU [12]. However,
the scheduling problems of heterogeneous multicore systems are complicated by the
precedence constraints imposed by the master-slave relationship of the processor and
coprocessor. The CPU invokes the coprocessor code in a similar manner as a remote
procedure call (RPC), which is initially executed on the processor and then dispatched to
execute specific instructions on the coprocessor. This means each task that utilizes a GPU
or DSP will initially execute on the processor, at time tn make a call to execute on the GPU
which will complete without preemption then return control back to the CPU.

For instance, consider the example illustrated in Figure 1. At t0 the processor executes
for Cpre

i at t3 makes a call to the GPU where it executes for Ccp
i then at t10 completes and

returns to the CPU where the task instance finishes at t12. Notice that the CPU code waits
for each GPU-related operation to complete. In effect, a gap is created within each task
instance because the GPU instructions are executed on the coprocessor.

Figure 1. CPU-GPU task schedule.

This example scenario highlights several of the challenges associated with scheduling
real-time GPU-based applications. One is the processing gap created in the processor when
the CPU task is waiting on the GPU task to finish. In this example, the processor task is
idle 50% of the time, resulting in a decrease in the system’s overall schedulability. Another
obstacle is the processors need to be allocated according to a predictable scheduling policy
to ensure that task timing constraints are met. This is difficult because there is underlying
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complex proprietary software that is used to execute the GPU’s instructions, and that
software is not designed for deterministic real-time processing.

To facilitate a real-time environment, one of the overall goals is to exploit those pro-
cessing gaps to schedule other CPU-based tasks in order to improve the schedulability
bound of the system. Another is to provide for more predictable behavior of the copro-
cessor by treating it as a special case of shared resource management in a multiprocessor
system [13,14]. The final goal is to create a dynamic run-time environment that can adapt
to changing processing requirements by re-allocating resources based upon the criticality
or importance of a particular application.

3. Related Work

Authors in [15] presented a case study that examined various optimizations, algo-
rithms, and platforms for machine learning in resource-scarce embedded systems. Their
paper presented guidelines and recommendations for techniques to be used when imple-
menting machine learning applications on resource-scarce devices. Authors emphasize that
by moving applications to the network’s edge devices, internet traffic is reduced, latency
issues can be mitigated, network security improved, and real-time performance provided
in the system. They acknowledge that in order for an end-device to meet strict real-time
deadlines, the devices have to run either a bare-metal application or an RTOS instead of a
GPOS. The reason is that an RTOS allows for the prioritization of tasks to meet deadlines
where a standard GPOS cannot ensure the task’s timing constraints are met.

Other work in [16] presented by researchers looked at making machine learning toolk-
its compatible with real-time systems, specifically general purpose embedded processors.
Their work focused on porting Support Vector Machines (SVM) onto embedded processors
across two communication networks. Their platforms consisted of an ARMv7 processor
running Linux and a PPC440 processor running the Green Hills Integrity RTOS. The main
effort of this work focused on optimizing runtime performance and the memory footprint
of SVM libraries. Various runtime optimizations included removing doubles, disabling
exceptions and in-lining functions. Other modifications included fixed-size vectors or
caching dot product calculations. Their work mainly focused on application-level changes,
with some minor changes made to the kernel by removing expensive function calls in the
kernel. One particularly interesting finding mentioned by the authors in the paper was
the discovery about how unpredictable the response times can be when presented with
differing code and data structures.

Applying machine learning to embedded sensor systems was another approach
investigated by researchers [17] looking into integrating machine learning techniques for
Internet-of-Things (IoT) based applications. The authors’ approach was to develop an
efficient real-time realization of a Gaussian mixture model (GMM) for execution on an
embedded sensor board. Their work presented real-time data analytics of sensor data
with continuous training of the machine-learning platform. However, while real-time
capabilities were advertised, there was no more mention of any specific timing constraints
or consequences of missed deadlines. The implication was that the sensor data was
processed as soon as it was received with minimal latency, which would not necessarily be
classified as a real-time system.

The balance between hardware and software implementations of machine learning
algorithms was examined by authors [18] to demonstrate the possibilities of moving
the critical sections of the machine learning algorithm into hardware in the form of an
embedded SVM. Their overall goal was to optimize the SVM by moving code back and
forth between the software and the hardware—notably an FPGA. The authors argued that
processor size could be traded against performance to fit into other deployment scenarios,
thus providing a type of static adaptability.

An empirical study was conducted by Ogden and Guo [19] that analyzed the per-
formance tradeoffs between on-device inference versus cloud-based inference for mobile
applications. Their study concluded that on-device inference was suitable for certain tasks



Electronics 2021, 10, 689 7 of 21

on newer mobile devices with specific architecture optimized hardware. They also demon-
strated that unpredictable or varying network conditions could lead to poor cloud-based
inference throughput or response times.

A real-time GPU scheduling framework, called GPUSync [20,21], was introduced to
address GPU-based real-time scheduling issues, such as assigning tasks to a specific GPU,
managing memory transactions, and scheduling the computations. As GPU allocation
can be viewed as a scheduling problem for mutually exclusive resources, their approach
was to implement a synchronization-based methodology. Due to the high overhead costs
associated with preemption in the GPU and since multiple tasks may be sharing the GPU(s),
it is reasonable to treat the coprocessor execution as a critical section of code in the CPU. In
this way, existing real-time locking protocols [21] can be applied to the GPU allocations,
providing more determinism and predictability required by a real-time environment.

Authors in [22] used machine learning to manage complex tasks in integrated circuit
technologies. The tasks are managed by an operating system whose main role is defining
resource allocation and temporal scheduling. The authors proposed a neural network-
based model for the design of a scheduler for a heterogeneous multiprocessor. However,
this approach requires a static approach where all tasks have to be defined apriori. Any
change to the task set requires a new scheduler to be modeled and developed. Practically
speaking, modifying a new scheduler in an operating system kernel every time the task set
changes is non-trivial. For monolithic operating systems like Linux, it is nearly intractable.

For some of these reasons, our motivation was to create an approach that did not
require systemic changes to the kernel but instead to run on top of a commercially available
real-time operating system. We believe from our research that our approach was the
first to implement a scheduling architecture for a heterogeneous multiprocessor with
real-time guarantees.

4. Real-Time Scheduling Framework

This section provides a description of the architecture (see Figure 2) used to provide
for effective resource management in a constrained resource-scarce embedded environment.
This framework leverages feedback control, limited preemption and a real-time operating
system to satisfy the transient and steady performance requirements of a real-time system.

Figure 2. Periodic server.

4.1. Feedback Control

The purpose of using feedback control is to provide for an adaptive method of resource
allocation by dynamically shifting resources (i.e., processor, coprocessor) when needed
based upon the criticality of a task. Adaptive scheduling algorithms have been proven to
be an effective method for achieving performance guarantees in unpredictable computing
environments [23]. Our feedback control mechanism is based upon the feedback control
real-time scheduling algorithm (FCS) presented by authors in [24] then expanded to support
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multiprocessor systems similar to the algorithm presented by authors in [25]. We then
further expanded and refined this architecture to support heterogeneous (SoC) architectures.

4.1.1. Task Model

Initially described in Section 2.1, the task model is expanded to support the scheduling
architecture of the feedback control structure. Tasks are characterized by the following
4-tuple: {Di, Cei, Cai, Li}, where Di defines the relative deadline, Cei the estimated execu-
tion time, Cai the actual execution time and Li represents the criticality level of the task.
Specifically, periodic tasks are defined as {Pi, Uei, Uai}, Pi denotes the invocation period,
estimated CPU utilization is defined as Uei = Cei/Pi and actual CPU utilization is defined
as Uai = Cai/Pi.

Aperiodic tasks are unique in that they can reoccur at random times and are typically
soft real-time tasks. Examples could include keyboard input or mouse movements. A
motion detection sensor could be considered an aperiodic task. The problem is due to
their inherent unpredictability, aperiodic tasks present scheduling problems in a real-time
system. Hence, the goal is to complete each aperiodic task as soon as possible, without
causing periodic tasks to miss their deadlines. One common solution used to create a
predictable schedule for aperiodic tasks is to make them behave like a periodic task. The
idea is to create a periodic task that is created to execute aperiodic tasks. That periodic
task is known as a periodic server. A periodic server is defined as Si = (Pi, Qi, Li), where
Pi, defines the task period, Qi the task’s budget (which defines how many units of time
the server is to execute) and Li which defines the criticality of the task. The periodic
server (see Figure 2) never executes more than Qi units of time during any time interval
Pi. When a server is scheduled, it executes any aperiodic task waiting, consuming its
budget until the task is completed or exhausted. During the next scheduling period, the
full budget is replenished. In the example provided in Figure 2, task 3 is an aperiodic task
and controlled by a periodic server. As the task executes, it consumes the server’s budget
Qi = 5 until either the full budget has been consumed or the task ends and then the budget
gets replenished every period, Pi = 10.

4.1.2. Feedback Control Parameters

In order to provide feedback control, variables used to measure the performance of
the controller need to be defined. Similar to the parameters defined by authors in [24],
we include deadline miss ration and CPU utilization extended to a multiprocessor plat-
form. The miss ratio is defined as M(k) at the kth sampling instant where the num-
ber of missed deadlines is equal to deadline misses divided by the number of com-
pleted or rejected tasks over a sampling window. The sampling window is defined as
((k− 1)W, kW)((k− 1)W, kW), where W is the sampling period and k is called the sam-
pling instant. Variable U(k) determines the CPU utilization at the kth sampling instant and
is used to regulate deadline misses while managing overall system utilization.

Using those control parameters, we can now represent the desired performance of
the real-time system, where deadline misses are defined by Ms and CPU utilization is
defined as US. As an example, consider a system where very few or no deadline misses
can be tolerated but lower CPU utilization is acceptable. In this case, we may set the
control variables Ms = 0 and US. = 0.50. In control theory, the difference between the
control variables and their actual values is known as the error. Miss ratio error is defined as
EM = MS−M(k) and the utilization error is defined as EU = US−U(k). The performance
goal is to maintain an overall error ratio of zero.

To achieve an error ratio of zero, certain parameters can be changed dynamically by the
system to affect the values of the controlled parameters. We can choose the total requested
CPU utilization of all tasks in the system as the parameter to be changed dynamically,
known as the manipulated variable in control theory. The idea is that by controlling the
CPU utilization, we can effectively minimize the miss ratio of all tasks.
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4.2. Feedback Control-Based Scheduler

The scheduler in our framework is based upon the FC-GEDF and FC-EDF sched-
uler presented by authors in [25,26], then extended to support co-operating tasks in a
multiprocessor heterogeneous platform. FC-EDF was initially designed to support inde-
pendent tasks in a uniprocessor platform and FC-GEDF was designed for homogenous
multiprocessor platforms only.

The scheduler is dynamic where any task can be admitted to the system depending
onto the loading conditions there is the potential for starvation of lower priority tasks.
Periodic tasks are inserted directly into the task queue, while aperiodic tasks are assigned
to a periodic server which in effect creates a periodic task. The schedule analyzer is used to
create a schedulable task set that is provided to the scheduler for actual allocation onto the
processor for execution.

The scheduler framework (see Figure 3) is comprised of a number of components
which include a System Monitor, a PID controller, a Bandwidth Actuator and a Schedule
Analyzer. The following subsections provide further details on each component.

Figure 3. Feedback control real-time scheduler (FC-RTS).

4.2.1. Utilization Monitor

The Utilization Monitor samples the controlled parameters, miss ratio M(k) and
utilization ratio U(k) and feeds that information back into the PID controller.

4.2.2. PID Controller

The PID controller is used to adjust the utilization U(k) in order to drive the miss
ratio M(k) needs to be at or near zero. The goal is to maximize utilization but minimize or
eliminate task deadline misses, especially in tasks with a high criticality value. According
to authors in [27]. the controller is based upon the following formula:

DB(k) = Cperror(k) + CI ∑IW error(k) + CDerror(k)− error(k− DW)/DW (1)

where DB(k) refers to the change in bandwidth utilization (i.e., CPU utilization), error(k) = MS
−M(k), the Cp, CI , CD variables refer to the proportional, derivative and integral parame-
ters. The parameter IW defines the time window over which the integral errors are summed
while DW defines the time window over which the derivative errors occur. The value
DB(k) defines the output of the PID controller, where DB(k) > 0 indicates that bandwidth
utilization should be increased while DB(k) < 0 indicates that the overall CPU bandwidth
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should be decreased. It is important to note that the PID controller does not actually
increase the bandwidth, just that it is merely suggesting on what it should be according to
the controller. It is the job of the Schedule Analyzer to actually determine if the increased
bandwidth is schedulable with no missed deadlines.

4.2.3. Schedule Analyzer

The Schedule Analyzer determines if the task set is actually schedulable based upon
the increased bandwidth allocation requested by the controller. If the task set is determined
to be un-schedulable by the analyzer, then the bandwidth from lower criticality tasks
is borrowed until sufficient bandwidth is acquired. Note that this approach can lead to
starvation of lower criticality tasks, but it is assumed that increased bandwidth allocation
resulting in an overload condition US > 1 (i.e., not enough bandwidth in the system to
handle all requests) is transitory. If the overload condition is long-term or permanent, then
the recommendation is to offload some of the workload to other resources or utilize a more
resource-available computing platform.

While there has been a significant amount of work in real-time schedulability anal-
ysis for symmetric multiprocessing [28–31], there are unique challenges presented when
scheduling for asymmetric architectures composed by a general purpose processor and
various other coprocessors, such as a DSP or GPU. The issue is how to verify that a copro-
cessor can provide some degree of real-time performance. This is because general purpose
scheduling is preemptive, but execution in a coprocessor is usually non-preemptive, which
might introduce longer or unpredictable blocking times potentially violating the real-time
constraints of the system. One approach to this problem was proposed in [32], where the
idea of co-scheduling was introduced. The basic idea of co-scheduling is to divide each
task into separate code blocks, associating suitable deadlines to each block in order to
meet the task deadline. The disadvantage of this method is that programmer or compiler
intervention is required to create the code blocks. Another method proposed by authors
in [33] was to re-arrange the scheduling in order to account for tasks that use the copro-
cessor. This is done by modeling the coprocessor activity as a blocking factor. So, when
a task requests a coprocessor activity, it blocks for a time Bi waiting for the activity to
complete. In this way, a task using the coprocessor blocks all the other tasks, requiring the
coprocessor to free the regular tasks to execute on the master processor in the gaps created
by the coprocessor activities.

In our framework, we implement a similar approach except we utilize a blocking
primitive (i.e., semaphores) to suspend the task waiting on the coprocessor activity to finish
allowing other tasks to execute while the cooperating task blocks. The advantage of this
approach is that blocking primitives are already implemented in any standard RTOS, so
there is no requirement to modify the scheduler to compute the blocking factor for the
cooperating task. Therefore, in order to determine if a task set is schedulable, we must
consider the blocking factors and how those factors affect the whole system. A couple things
to consider are that cooperating tasks could be delayed by other cooperating tasks which
may already hold the coprocessor or other higher priority regular tasks that may interfere
with the cooperating task before it is scheduled. Therefore, as demonstrated in [33], the
blocking factor B_i of a cooperating task could be computed using the following formula:

Bi = Ccp
i + Blp

i + Bhp
i (2)

where Ccp
i defines the execution time for the coprocessor, Blp

i defines the lower priority

blocking time and Bhp
i defines the blocking time associated with any higher priority tasks.

The lower and higher priority task blocking times can be defined as follows:

Blp
i = max

Pj<Pi

{
Ccp

j

}
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Bhp
i = ∑

Pj<Pi

⌈
Ti
Tj

⌉
Ccp

j

where Pj is defined as a lower priority task than Pi in the task set Tn. Based upon the
Equation (2), we can calculate an upper bound Bi on both cooperating and independent
tasks using the following equation:

Bi =


Ccp

i + max
Pj<Pi

{
Ccp

j

}
+

∑
Pj<Pi

⌈
Ti
Tj

⌉
Ccp

j , cooperating

0, independent

(3)

The value derived from Equation (3) is then used in Equation (4) by the Scheduler
Analyzer to determine if the task is schedulable.

∀i = 1, . . . , n ∑
Pj≥Pi

Cj

Tj
+

Bi
Ti
≤ Ulub(i) (4)

where Ulub(i) = i
(

2
1
i − 1

)
. This value is then used by the Bandwidth Actuator to assign

CPU utilization to each task. If it is determined that the current task set is schedulable, then
the tasks are allocated their assigned WCET. If the task set is deemed not executable, then
the bandwidth from lower criticality tasks can be temporarily eliminated. In this case, the
lower criticality task would be blocked causing the task to miss deadlines. The task would
have to wait until additional bandwidth became available through the feedback process in
order to have an opportunity to run again.

4.2.4. Fixed Priority Scheduler

At run-time, the fixed priority scheduler chooses the highest priority task that is ready
to run. The priority is based upon the task period Pi so the shorter the period, the higher
the task priority. Therefore, if the priority of Ti > Tj then Ti would be scheduled first with
its full bandwidth Cei then Tj would be scheduled next with its full estimated bandwidth
and continue on until all ready tasks have be scheduled or an un-schedulable task set
is detected.

In the event the task set is not schedulable, instead of the highest priority task receiv-
ing their estimated bandwidth Cei, the task with the highest criticality level will receive
their full bandwidth. Therefore, the scheduler redistributes CPU bandwidth based upon
the criticality level which means lower criticality tasks yield their bandwidth to higher
criticality tasks. This greedy approach can lead to starvation, even for some high priority
tasks, but this is acceptable in that during overload conditions, the highest criticality tasks
are considered superior to lower criticality tasks.

4.2.5. Bandwidth Actuator

After the requested CPU bandwidth has been allocated to the highest criticality task,
the lower criticality tasks need to be reallocated. The next lower criticality tasks are then
assigned CPU bandwidth based upon the remaining utilization. The algorithm and de-
scription for bandwidth allocation is provided as shown in Algorithm 1.



Electronics 2021, 10, 689 12 of 21

Algorithm 1 Bandwidth Actuator

Input: A task set Tj with criticality levels less than the task set of Ti
Output: A new bandwidth value for each task that will maintain a schedulable system
1: for each tj ∈ Tj do

// Assign Cj full bandwidth and perform
// schedulability test

2: Cj = AllocateBandwidth()

3: S = ScheduleAnalyzer
(

Ti, Tj

)
4: while S not schedulable do

// Cj could be reduced or 0

5: Cj = AllocateNewBandwidth
(

Tj, Cj

)
6: end while
7: end for

The bandwidth actuator algorithm (Algorithm 1) works by iterating through all the
tasks Tj which are of lower criticality than tasks Ti. In line 2, the new bandwidth is
calculated based upon the remaining system utilization. The schedule analyzer (line 3) is
invoked to analyze the calculated utilization. If the modified bandwidth renders the system
un-schedulable, then a new utilization value is attempted based upon the previous failed
value. The algorithm continues to reduce the bandwidth of lower criticality subsystems
until a schedulable system is found.

5. Simulation Analysis Results

The performance analysis of the feedback-based real-time scheduling framework
has been evaluated using a simulated set of tasks, similar to the same approach adopted
by authors in [33] who evaluated the performance of multiprocessor DSP scheduling.
Comparison performance was based upon the static priority tasks used by traditional
schedulers, where the priority of the task does not change versus dynamic priority tasks
that can change during the lifetime of the task based upon environmental conditions. Other
heterogeneous multicore schedulers presented by other researchers are not necessarily
applicable because they are either static-based scheduler, where the task set must be
identified apriori, or not specific to real-time scheduling.

Both periodic and aperiodic task sets were generated using random values with a
uniform distribution. The number of periodic tasks were varied from 2 to 20. Cooperating
tasks were generated to be 50% of the total number of periodic tasks. Aperiodic tasks
were not modeled to use the coprocessor. The number of aperiodic tasks were varied
from 1 to 5. Periodic task periods were generated from 5 to 100 while periodic server
periods were varied from 10 to 100. Independent periodic task worst case execution times
C′i = Ci and cooperating worst case execution times C′i = Ci + Ccp

i were selected to
create an overall utilization that varied from 0.35 to 0.90. The worst case execution time
Ccp

i of cooperating tasks were generated to vary between 10% to 80% of the total task
execution time C′i . For our initial performance analysis, we modeled one processor and one
coprocessor, with future work to include models consisting of multiple general purpose
processors and special purpose coprocessors. The first experiment compared our adaptive
feedback-based approach against the standard fixed priority scheduling algorithm in terms
of overall utilization factor and task deadline misses.

The first experiment analyzed the standard fixed priority scheduling algorithm RM,
the criticality of the task is listed to provide reference but was not considered for schedula-
bility analysis. Figure 4 depicts the results of a typical simulation run. System utilization
represents the overall utilization recorded in the system. The Miss Rate (Low-Criticality)
represents the overall average miss rate for tasks that are considered to be less critical. The
Miss Rate (High-Criticality) represents the overall average miss rate for tasks considered
to be highly critical. Notice from the figure that both task types are meeting all deadlines
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until utilization reaches around 70% which is the theoretical limit for RM scheduling. Then,
as requested utilization begins to increase overall utilization begins to saturate at 100%
and both task types start to increasingly miss deadlines. Note that both highly critical
and lower criticality tasks are similar in miss rates. The reason is that fixed priority RM
scheduling only considers the period of the task to assign priorities. The shorter the task
period, the higher the priority. However, the importance of a task may not be proportional
to how often that task runs, and some tasks may have a longer period but actually be more
critical than a shorter period task.

Figure 4. Static fixed priority scheduling.

Figure 5 illustrates the performance of our feedback-based scheduling framework
as compared to the traditional fixed priority approach used in most embedded real-time
applications. Notice in Figure 5 that around 70% of utilization tasks start to miss deadlines
similar to what happens with the example presented in Figure 4. However, highly critical
tasks do not start missing deadlines until around 95% total utilization while lower crit-
icality tasks start missing deadlines at a higher rate than with fixed priority scheduling.
This is due to the higher criticality tasks taking the bandwidth from the lower criticality
tasks. Using our scheduling framework, we were able to effectively eliminate or limit
the deadline miss rates for highly critical tasks. The next experiment analyzed how our
feedback-based approach adapted to transient workload conditions. This is a case where
the system is overloaded temporarily but eventually returns to a state where all tasks
can be scheduled during nominal conditions. These types of transient events can occur
because of hardware faults, unpredictable execution times or even software bugs. For
this experiment, we modeled a sample representative task set, as described in Table 1.
Tasks T1, T2, T3 and T4 are considered higher criticality since those tasks simulate reading
sensors or controller actuators which are tasks that typically require low latency and a high
degree of determinism. Task T5 is the simulated image processing task and considered to
be a lower criticality task. Task T6 represents an aperiodic task which is used to represent
asynchronous activity, such as processing a network packet or handling keyboard input.
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Figure 5. Adaptive feedback-based scheduling.

Table 1. Sample real-time task set.

Task Period Worst Case Execution Time (WCET) Criticality Level

T1 30 3 3
T2 45 3 4
T3 60 5 1
T4 90 5 2
T5 300 30 6
T6 100 10 5

Similar to Figures 4 and 5, tasks can meet all their deadlines as long as overall utiliza-
tion does not exceed 70%. At hyper-period 15 (a hyper-period is defined as the amount of
time required for all tasks in the set to execute at least once), we model a transient overload
of a requested utilization around 80% which results in tasks starting to miss their deadlines.
It is at this point where the feedback scheduler utilizes the bandwidth actuator to reallocate
bandwidth to higher criticality tasks. This is represented in Figure 6 where lower criticality
task(s) are blocked from running in order to loan their bandwidth to the more critical tasks.
Around hyper-period 21, utilization returns to a more nominal state where the bandwidth
is restored to the lower criticality tasks. At hyper-period 42, another overload condition
is modeled with a higher level of utilization. In this case, bandwidth approaches close to
95% which results in additional deadline miss rates because lower criticality task(s) are
blocked in order to temporarily loan their bandwidth. However, it is important to note that
after the feedback controller reaches a stable state, higher criticality tasks no longer miss
their deadlines.
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Figure 6. Feedback scheduler with transient overload.

6. Implementation

For our experimental setup, we implemented FC-RTS on an embedded SoC platform.
We chose the Raspberry Pi 3 Model B+ for its Broadcom BCM28370B0, Cortex-A53 64-bit
SoC processor, which is a common platform for Internet-of-Things (IoT) applications such
as sensor monitoring and actuation control. The primary motivation for selecting the
Raspberry Pi was to demonstrate that a commercial off the shelf (COTS) processor, not
intended to provide deterministic behavior, could be used in a real-time DL environment
without having to make any hardware changes. Since our work is primarily focused on the
operating system scheduler, rather than the precise hardware specification, the Raspberry
Pi 3 is computationally sufficient for the work described here.

As the Raspberry Pi is based upon Raspian which is a Linux-based operating system,
a more deterministic real-time operating system is required. WindRiver’s VxWorks 7.0
was selected because it is the de-facto industry standard operating system for real-time
processing and WindRiver already provides a board support package (BSP) [34] for the
platform. The BSP is the software support infrastructure required to run a RTOS on the
Raspberry Pi. A picture of the targeted development platform is provided in Figure 7.

Figure 7. Target platform.

The native VxWorks scheduler can schedule tasks using either a preemptive priority-
based or a round-robin scheduling policy. In VxWorks 6.x and greater, WindRiver intro-
duced the concept of real-time processes (RTP) which more closely resemble processes in
general purpose operating systems like Linux. Tasks in kernel mode or processes in RTP
mode are scheduled in the same way. Processes are created with memory protection so
kernel memory space, ISRs and direct hardware access are prohibited. Tasks that operate in
kernel mode have full access to kernel resources and are not subject to the same limitations
as processes in RTP mode.
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We choose to implement our feedback-based scheduler in kernel mode because the
overhead in RTPs is prohibitive and the scheduler needs access to the kernel resources
for task management. Our scheduler was implemented on top of the native VxWorks
scheduler as a type of extension or middleware that sits between the scheduler and the
VxWorks native scheduler. The VxWorks RTOS provides functions to extend the capability
so various kernel mechanisms can be customized to support feedback-based scheduling.
For example, the scheduler can be extended with either a customized ready queue structure
or to attach an interrupt handler that is executed at every clock tick.

The native VxWorks scheduler dispatches the highest priority task in the ready queue.
Our approach utilizes the system called tickAnnounceHookAdd( ) that is invoked at every tick
interrupt and called before the native scheduler accesses the ready queue to dispatch the
highest priority task. The ready queue is then manipulated by resuming a task taskResume( ),
suspending a task taskSuspend( ) or setting/changing priorities taskPrioritySet( ). The
kernel’s tick counter is also utilized to read tickGet( ) and set tickSet( ) as a means to manage
the notion of time when the tick interrupt ISR is invoked.

The primary function of FC-RTS is to arrange either the periodic tasks or aperiodic
tasks (that are serviced by a periodic server) in the ready queue at every period start. They
are arranged according to their priority or criticality level depending upon whether overall
task utilization exceeds available bandwidth. In order to support aperiodic tasks, the
notion of a periodic server needs to be implemented. The periodic server itself is a task in
VxWorks with its own task control block (TCB) and task event queue. Figure 8 illustrates
the implementation of the required data structures needed to support a periodic server
in VxWorks.

Figure 8. Implementation for periodic server.

The TCBs needed to support periodic serving in VxWorks are described as:
period_event_queue—is a reference to the server’s event queue which contains the

task period.
period—is the period of the server.
deadline_event_queue—is a reference to the server’s task queue which holds the task deadline.
budget—is the server defined budget.
remaining_budget—is the current remaining budget of the server.
priority—is the server’s priority.
criticality level—is the server’s indication of criticality during overload conditions.
Task_TCB—is a list to the VxWorks TCB task list. It references those task TCBs that are

associated with the server
In order to assess the applicability of our feedback-based real-time scheduling frame-

work, we modeled a representative workload based upon common components found
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in an edge IoT device. A task set was simulated to model the devices for the proposed
development platform provided in Figure 9.

Figure 9. Simulated development platform.

Similar to the example task set provided in Table 1, we created two periodic tasks
to command a simulated L298N motor driver for independently controlling two motors.
Another group of tasks were created to simulate the monitoring of a series of sensor nodes.
An image processing task was used to exercise the GPU coprocessor by processing sample
images using OpenCV which had been ported to run on VxWorks by WindRiver Labs [35].
A couple other aperiodic tasks were created to simulate asynchronous events, such as
network packet processing and keyboard processing. The purpose was to exercise the
periodic server which manages the scheduling of the asynchronous tasks.

The actuator and sensor tasks were modeled with a simple spin loop that executed
for the length of their respective WCET then blocked until the next invocation. The image
processing task was created to perform simple object detection in two scenarios. One
scenario was where the object could be detected without image enhancement (Figure 10a,b)
and the other scenario was to simulate a faulty sensor that generated a noisy image
requiring filtering (Figure 11a,b). The purpose was to model an average case processing
scenario and a worst case processing scenario. For the aperiodic task, we created a periodic
server to manage the simulation of the standard VxWorks console task to support the
asynchronous events such as keyboard input or console output.

Figure 10. (a) Original image; (b) Detected image.
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Figure 11. (a) Noisy image; (b) Detected image.

For the nominal and worst case scenarios we created the task set described in Table 2.
For the nominal case, we modeled the simulated tasks to randomly vary their execution
times between BCET and ACET, which are the best case execution time and average case
execution times respectively. The image task was not modeled but instead performed
the actual image processing using OpenCV. The BCET and ACET of the image task were
averaged based upon numerous timing runs recorded when the image was processed
without noise (Figure 10a). To determine m is critical in real-time systems, we analyzed the
response times of the image process during 250 hyper-periods of the task set which is ap-
proximately 9 s. During the nominal case, system utilization ranged from 1.13 ≤ U ≤ 1.49
which produces a correct schedule based upon the formula [36]:

U ≤ m2/(3m− 2) (5)

where U = 1.6 f or m = 4. Refer to Figure 12 and notice that even while the system is
clearly not overloaded, Raspbian Linux experiences significant jitter in the response times
on the image processing task, even exceeding the response time thresholds on multiple
occasions which is one indication that deadlines are being missed. Now compare that with
our framework FC-RTS running in VxWorks, where the response time jitter has much less
variation and no thresholds are exceeded indicating that no deadlines were missed.

Table 2. Simulated task set.

Task Period BCET ACET WCET Criticality Level

Sensor1 125 15 20 25 3
Sensor2 125 15 20 25 4

Actuator1 250 20 25 30 1
Actuator2 250 20 25 30 2
Aperiodic 125 5 10 15 6

Image 360 250 295 358 5

For the worst case scenario case, we modeled the simulated tasks to randomly vary
their execution times between ACET and WCET. The WCET of the image task was averaged
over numerous timing runs recorded when the image was processed with noise and
therefore requiring the more computational expensive filtering operation (Figure 11a). In
this case, the utilization ranged from 1.49 ≤ U ≤ 1.75 which indicates an overloaded
system. Notice in Figure 13 that Raspbian Linux’s increasing jitter results in a significant
number of deadlines being missed while VxWorks FC-RTS does a much better job of
minimizing the jitter. While FC-RTS does indicate that some deadlines are being missed,
that is to be expected since the image task is considered to be less critical, making it
susceptible to having to forfeit its bandwidth during overload events.
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Figure 12. Response time nominal.

Figure 13. Response time worst case.

7. Conclusions and Future Work

In this paper, we explored some of the initial challenges in moving deep learning
applications to edge devices. We explicitly looked at three areas: the real-time deterministic
requirements of proposed edge devices and the limitations of resource-constrained embed-
ded devices, the inherent unpredictability of deep learning applications and platforms as
well as the problem of scheduling a set of tasks in a heterogeneous multiprocessor platform
while still maintaining some level of real-time guarantees.

To provide real-time processing, we incorporated the industry standard RTOS Vx-
Works and enhanced it to incorporate the notion of a periodic server for managing asyn-
chronous events, a leading cause of unpredictable behavior in a real-time system. To
account for limited resources and unpredictability, we utilized a feedback control-based
architecture to monitor the system and dynamically adjust resources to only the most
critical tasks. For the problem of multiprocessor heterogeneous scheduling, we adopted
synchronization protocols to provide an upper bound on the blocking times for cooperating
tasks that use the coprocessor, resulting in predictable schedules. Using task set simula-
tions, we were able to demonstrate through schedulability analysis that FC-RTS effectively
manages critical resources and can still provide a high level of service, even when the
system is severely overloaded. We were also able to demonstrate the practicability of this
approach by incorporating it into a commercial RTOS on a Raspberry Pi processor. We
further illustrated the usefulness of FC-RTS by running an actual image processing task
using OpenCV, a common deep-learning application.
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For future work, we plan on incorporating multiple coprocessor architectures in our
schedulability analysis instead of just a single coprocessor. This work will incorporate an
FPGA-based approach using the Zynq UltraScale+ RFSoC ZCU216 evaluation boards to
evaluate versus a COTS-based processor approach such as the Raspberry Pi. We will also
explore the integration of chips designed specifically for machine learning, such as the
Google Coral and Intel Myriad processing units. Given the successful deployment of our
framework on the Raspberry Pi, we anticipate the results will generalize to these more
computationally-powerful target architectures, as well as to different machine learning
applications outside of computer vision. We also plan on implementing and analyzing
other scheduling protocols, such as EDF, to compare how it performs against RM. Finally,
we plan on evaluating FC-RTS with the fully populated hard platform depicted in Figure 9
with actual hardware sensors and actuators instead of software-simulated ones.
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