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Abstract: Cloud Virtual Reality (VR) technology is expected to promote VR by providing a higher
Quality of Experience (QoE) and energy efficiency at lower prices for the consumer. In cloud VR,
the virtual environment is rendered on the remote server and transmitted to the headset as a video
stream. To guarantee real-time experience, networks need to transfer huge amounts of data with
much stricter delays than imposed by the state-of-the-art live video streaming applications. To reduce
the burden imposed on the networks, cloud VR applications shall adequately react to the changing
network conditions, including the wireless channel fluctuations and highly variable user activity. For
that, they need to adjust the quality of the video stream adaptively. This paper studies video quality
adaptation for cloud VR and improves the QoE for cloud VR users. It develops a distributed, i.e., with
no assistance from the network, bitrate adaptation algorithm for cloud VR, called the Enhanced VR
bitrate Estimator (EVeREst). The algorithm aims to optimize the average bitrate of cloud VR video
flows subject to video frame delay and loss constraints. For that, the algorithm estimates both the
current network load and the delay experienced by separate frames. It anticipates the changes in
the users’ activity and limits the bitrate accordingly, which helps prevent excess interruptions of the
playback. With simulations, the paper shows that the developed algorithm significantly improves the
QoE for the end-users compared to the state-of-the-art adaptation algorithms developed for MPEG
DASH live streaming, e.g., BOLA. Unlike these algorithms, the developed algorithm satisfies the
frame loss requirements of multiple VR sessions and increases the network goodput by up to 10 times.

Keywords: cloud VR; bitrate adaptation; quality of experience; real-time adaptive video; video traffic;
virtual reality

1. Introduction

Numerous Virtual Reality (VR) applications have emerged recently to improve
entertainment [1,2], medicine [3,4], engineering [5,6], and other spheres of everyday life.
To provide an immersive experience, such applications require minimal feedback delay
and high image quality. The real-time rendering of the high-quality virtual environment is
computationally expensive and requires special high-performance hardware. Cloud VR
was introduced to promote VR and reduce the cost of the headsets [7]. In cloud VR, the
headset, also called the Head-Mounted Display (HMD), only monitors the user’s actions
and sends the data to the remote server. The server renders the environment according
to the received data and sends it back to the HMD as a video stream. The HMD then
plays the video back to the user and, maybe, slightly adjusts the picture if the user’s
viewpoint changes.

There are still many issues related to the architecture of cloud VR systems, i.e., the
computational split between the cloud or edge server and HMD, the proactive generation
of the future virtual scenes, and bandwidth allocation [8–10].

Such issues become more challenging if the system tries to minimize the bandwidth
used for data delivery. In particular, recent studies showed that the video shall have
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up to 2K resolution, or even higher, with a frame rate of at least 60 Frames Per Second
(FPS), and a presentation delay below 50 ms with very high probability [11,12]. Naturally,
VR applications may generate a 360◦ video so that the user could observe the whole
environment. As a result, cloud VR streams have a very high bitrate and consume much
network resource. However, the user cannot simultaneously watch the whole 360◦ picture,
so to reduce the network resource consumption, tile-based streaming was proposed [13,14]
and standardized [15]. In tile-based streaming, only some parts of the spherical picture
(called tiles) are streamed at high quality, while other parts can have lower quality. An
efficient implementation of tile-based streaming requires special algorithms to optimize
the choice of the quality of the tiles [16,17] and an accurate prediction of the future actions
of the user [14,18,19].

To provide freedom of movement, HMDs use wireless technologies to transmit and
receive the data [20]. Hence, the dynamic changes in the wireless environment also need to
be taken into account. Any additional VR flow can significantly increase the load imposed
on a wireless network [21]. If the cloud VR applications produce a constant bitrate video
stream, the changes in the wireless channel state and the number of active clients in the
network can lead to under- or over-utilization of the network [22]. Consequently, the
Quality of Experience (QoE), i.e., the measure of user satisfaction with the service [23],
degrades [24]. Therefore, cloud VR applications shall adequately react to the changes in
the network conditions and try to prevent video playback interruptions while providing
the highest possible visual quality. Thus, cloud VR applications should adaptively adjust
the bitrate of the video stream [16].

Although the existing studies try to optimize the QoE for VR from various perspectives,
they simplify the structure of the resulting video stream. The papers that study VR from
the networking domain mostly do not consider video compression, and the papers from
the multimedia domain often assume that the required amount of network resource can be
reserved to satisfy the requirements. Therefore, the problem of the optimal choice of the
bitrate of the compressed video stream (which is possibly tiled) to guarantee its successful
real-time delivery remains unresolved.

In this paper, we consider the class of interactive VR applications, including but not
limited to single- and multi-player gaming, education and training, and engineering. Such
applications are inherently interactive. The user actions alter the virtual environment,
which is updated respectively in real-time. It makes proactive video buffering on the HMD
almost impossible. Along with tight video frame delivery deadlines, it limits the room to
maneuver for the adaptation algorithms and complicates finding the right balance between
video quality and feedback delay.

We aim to improve the QoE of the cloud VR users with a novel bitrate adaptation
algorithm. We consider a generic network architecture that is not specifically tailored to the
cloud VR service. Therefore, the adaptation is performed in a distributed manner based on
the measurements performed by the end-points.

We design an algorithm that estimates the current network load and keeps track of
the frame delivery delays. Based on this information, it chooses the maximal video bitrate
that both fits in the current network conditions and leaves some room for possible changes
in the network state.

The main contributions of this paper are as follows. First, we introduce the system
model that allows us to implement limited-delay real-time adaptive cloud VR applications.
Second, we analyze the state-of-the-art video quality adaptation algorithms and show
why most of the existing approaches are not fit for the video quality adaptation in cloud
VR. Finally, we design a video bitrate adaptation algorithm that we call the Enhanced VR
bitrate Estimator (EVeREst). Our algorithm aims to maximize the average bitrate of VR
video streams subject to a limited playback interruption probability. For that, the algorithm
estimates both the current network load and the delay experienced by separate frames.
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The rest of the paper is organized as follows. In Section 2, we describe the cloud
VR system and introduce the problem statement. Section 3 reviews and analyzes the
existing approaches to real-time video bitrate adaptation. Section 4 describes the algorithm
developed in this paper. In Section 5, we present and discuss the obtained numerical
results. Finally, Section 6 concludes the paper.

2. Cloud VR System Description and Problem Statement

A simplified cloud VR system is presented in Figure 1. Multiple VR HMDs via a Base
Station (BS) are connected to Mobile Edge Computing (MEC) servers. Each HMD tracks
the user’s actions and sends their descriptions to the MEC server. The server renders the
virtual environment, generates the corresponding video images, and immediately sends
them back to the HMD, which displays them to the user. We assume that the BS shares the
network resources among the flows belonging to different clients so that each one receives
its fair share [25,26]. The clients enter and leave the network and use cloud VR applications
in between. The channel state also changes because of the variable environment [27] and
the number of active clients.

Figure 1. Cloud VR system.

Because the HMD needs to continuously display the video frames, the server shall
generate the frames irrespective of the user actions. Therefore, each VR video flow can be
modeled as a sequence of video frames generated by the server in real time with a fixed
frequency ν and transmitted immediately. The video playback is organized as follows.
The HMD accumulates a few frames in a buffer (often referred to as jitter-buffer) and only
then starts the playback by fetching the frames one by one with the same frequency ν. The
jitter-buffer compensates for the small unpredictable variations in the frame delivery rate.
The initial depth of the buffer defines the maximal virtual scene refresh delay and the frame
delivery time constraint DQoS. If at some moment the buffer is empty, the video player
repeats the previous frame and discards the late one when it arrives to keep the playback
delay fixed. We call such a situation a frame loss. Note that although the buffer can have a
size of a few frames, the scene refresh delay may be smaller in the considered system if, for
example, the server predicts the user’s actions for a few frames ahead.

Modern video codecs (e.g., h265 [28], AV1 [29]) efficiently compress the video stream,
but make them much more bursty [30]. With these codecs, only a small part of the frames,
namely key frames (or I-frames), are self-contained and can be decoded independently.



Electronics 2021, 10, 678 4 of 17

Other frames are called Predicted frames (P-frames). They carry only the differences
between the current and the previous frame. Therefore, they are much smaller than the
key frames. Such video compression dramatically reduces the average bitrate of the video
at the cost of the increased burstiness of the flow: key frames are generated rarely but
produce high loads on the network.

In this paper, we assume that higher bitrates for the same video codec improve the
visual quality of the video. That is a valid assumption for any well-engineered video
service [31,32]. Unfortunately, it is impossible to choose a certain video bitrate level at the
beginning of the flow and keep it unchanged during the whole VR session because the
network state dynamically changes [27]. A higher bitrate requires more network resources
to transmit the video to the client and increases the probability of delays and losses if the
resources are insufficient. Therefore, generating video with the highest possible bitrate
can lead to QoE degradation [33]. In contrast, generating video with low bitrates reduces
network resource consumption and frame loss probability. However, it also worsens the
visual quality of the video and reduces the QoE.

Therefore, the applications shall adaptively choose the bitrate of the video. This
paper assumes that to provide the efficient coexistence of different cloud VR operators in a
generic network architecture that is not tailored to cloud VR service, the bitrate adaptation
is performed in a distributed manner. Furthermore, we do not consider the problem of
tile-based adaptation because, thanks to MPEG OMAF technology [15], this adaptation can
be performed independently from the bitrate adaptation. The bitrate adaptation algorithm
estimates the maximal amount of data that can be delivered to the client in time, and the
tile-based adaptation decides on the size (e.g., in pixels) of each tile to fit in the constraint
imposed by the bitrate adaptation.

Similar to the architecture considered by the MPEG DASH protocol [34], each client
independently measures the state of the network and requests the corresponding video
bitrate from a discrete set B based on some bitrate adaptation algorithm, while the server
encodes and sends the video as requested. Similar to MPEG DASH, we assume that the
video is encoded in chunks, and the server can change the bitrate only at the beginning
of a chunk. The reason for such a limitation is in the video structure: the video stream
with a new bitrate shall start from the keyframe. Therefore, to reduce the network resource
consumption, we should switch the bitrate only when the next keyframe is generated.
Note that this does not restrict the server from sending the frames as soon as they are
generated. Despite many similarities with MPEG DASH, cloud VR applications require
much lower delays, so feedback from the application and bitrate change requests shall be
sent asynchronously, e.g., the application sends the bitrate change request when it decides
to change the bitrate, but the server takes the request into account only when it generates
the next keyframe.

For the considered bitrate adaptation scheme, the QoE of the cloud VR user can be
reduced to the QoE for real-time video streaming because all the VR specifics (e.g., view
adaptation) are not affected by the adaptation. Therefore, the aim of the bitrate adaptation
algorithm is to optimize the real-time video streaming QoE. Unfortunately, such a QoE is a
complex subjective metric, and no standardized and well-established method to estimate it
exists [35–37]. However, in the considered scenario, based on recent studies [38,39], we can
indicate the main factors that affect it. The first is the visual image quality. In the considered
system, it corresponds to the average bitrate of the VR video flow. The second is the virtual
scene refresh delay. However, in the considered system, the playback delay depends only
on the initial jitter-buffer depth. Therefore, in the paper, we do not optimize this variable
and consider it as a pre-defined system parameter. The third factor is the frame losses. To
estimate its influence on the QoE, we introduce the concept of a VR session satisfied with
the frame loss ratio, i.e., the session that has lost less than θ% of the frames. According
to [12], a typical value of θ is approximately 0.5–2%. The final factor that is often addressed
in the literature is the frequency of the video quality switches. Although we agree that this
factor is important to provide an immersive experience, we do not focus on this metric



Electronics 2021, 10, 678 5 of 17

specifically because the importance of this factor is controversial, and some studies [40]
show that users prefer eventual switches to higher quality over constantly low quality.

To aggregate these factors and simplify the interpretation of the results, we introduce
the compound QoE metric, which we call goodput. It measures the total throughput of the
cloud VR sessions satisfied with the frame loss ratio. When multiple cloud VR clients share
the network resources, such a metric allows considering both the visual quality of their
video streams and the accuracy of the network congestion estimation algorithm, which
avoids overloading the network and achieves a limited frame loss ratio.

Our goal is to design a bitrate adaptation algorithm that will improve the QoE for the
cloud VR users in the described system. We estimate the QoE as the goodput of the system.

3. Background in Video Adaptation

Many papers address the problem of video bitrate adaptation design. The majority of
such papers propose the algorithms for MPEG DASH-based video-on-demand streaming.
Such adaptation algorithms can be classified into buffer level-based [41–43], throughput
estimation-based [44,45], reinforcement learning-based [46,47], and mixed techniques [48–50].

Apart from that, some papers, e.g., [51–53], study frameworks that assume centralized
network-assisted bitrate adaptation. Such an approach simplifies the problem because
intermediate network nodes have more information about the network state. Although
the approach is very efficient, it requires the network to support the framework, which
complicates its deployment [54].

Live streaming scenarios introduce additional constraints by limiting the maximal
buffer size that is related to the playback delay. Therefore, the adaptation algorithms shall
be re-designed properly. For example, the paper [55] extended the algorithm from [41] to
the real-time streaming scenarios by extending the initially buffer-based algorithm with a
throughput estimation-based module. In [56], the authors developed an algorithm based
on buffer occupancy monitoring. They dynamically adjusted the buffer level threshold
to choose the appropriate bitrate and aimed to transmit the video smoothly (i.e., with a
low frequency of bitrate changes). In [57,58], the authors proposed reducing the delay by
using HTTP/2-enabled server push methods. Finally, in [59], the authors developed an
algorithm jointly utilizing playback rate control, latency-constrained bitrate control, and
adaptive frame dropping.

Unfortunately, because of the chunk-based download structure, MPEG DASH is not
fit for interactive video streaming, and even its low latency modification implies delays
around a couple of seconds [60]. This structure allows the client to pre-buffer rather big
amounts of video and smoothen the network capacity fluctuations. However, the bitrate
adaptation for interactive video streaming is a more challenging task because the algorithms
have a much lower space for the maneuver. Therefore, many papers develop various
algorithms based on neural networks that predict the future channel state accurately and
choose bitrates appropriately. The paper [61] designed a neural network that dynamically
adjusts the bitrate and the playback rate of the downloaded video to reduce the probability
of video stalling. With simulations, the authors showed that the proposed algorithm
provides higher QoE than state-of-the-art ones in low latency streaming scenarios. Another
neural network-based algorithm was proposed in [62]. The algorithm was designed for
the remote control of unmanned aerial vehicles. It takes into account the fluctuations
of the air-to-ground channel and predicts the channel capacity to stream the video with
appropriate quality. Finally, the paper [63] considered a completely different approach and
introduced a frame splitting technique. The video frame is divided into several sub-frames
that are encoded sequentially at the cloud server. As long as the sub-frame is encoded, it
can be sent to the HMD, and the server can proceed to encode the next sub-frame. This
technique decreases the end-to-end latency because it smoothens the load imposed on
the networks by the video flow, and the HMD starts decoding the video frame while the
server is busy encoding the other parts of the same frame. On the downside, this solution
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requires introducing large modifications to the video codecs to compose the frames from
independently decoded sub-frames.

4. Algorithm Description

In this section, we describe the proposed VR bitrate adaptation algorithm. The
algorithm consists of two building blocks: bitrate estimation and congestion estimation.
The first block, bitrate estimation, decides whether the capacity of the connection between
the server and the HMD is enough for timely delivery of the video stream with a higher
bitrate, or instead, the bitrate shall be reduced to avoid VR frame losses; see Section 4.1.
The second block, congestion estimation, intends to estimate whether the appearance of
new traffic in the network will damage the VR flow; see Section 4.2. Finally, the interaction
of these building blocks is described in Section 4.3.

4.1. Bitrate Estimation

The HMD keeps track of frame delivery times to determine whether it shall switch
to another bitrate or continue receiving the video in the current bitrate. For that, the
algorithm maintains two exponential averages Dshort and Dlong of the frame delivery
delays calculated in the time windows tshort

win and tlong
win that correspond to short-term and

long-term smoothing to track both local extremes and global trends. These averages are
calculated as follows.

D{short,long}(t) =
∆t f rame

t{short,long}
win

x(t) +

(
1−

∆t f rame

t{short,long}
win

)
D{short,long}(t− δt), (1)

where ∆t f rame is time passed between the measurements and x(t) is the measurement
performed at time moment t.

The HMD calculates the frame delivery times as the delay between the reception
of the first and the last packets belonging to the same frame and updates the values of
Dshort and Dlong. Given Dshort and Dlong, the algorithm decides whether the frames arrive
fast enough, and the bitrate of the video can be increased without an increase in losses,
or the frames arrive too slow, and the bitrate should be decreased to avoid frame losses.
Otherwise, if the frames arrive as expected, i.e., with the delay around frame periodicity
Dperiod = 1/ν, the bitrate shall remain unchanged.

In the developed algorithm, the decisions to increase or decrease the bitrate are based
on different frame delivery duration averages. Because the algorithm needs to be sensitive
enough and rapidly decrease the bitrate if the channel conditions degrade, it decreases the
bitrate if Dshort becomes lower than a pre-defined threshold Dlower. Similarly, the algorithm
decides to increase the bitrate only if Dlong > Dupper. To improve the stability of the
algorithm, we implement a hysteresis-like reset of the averages. The average that indicated
the bitrate change shall be reset to a pre-defined value: Dlong resets to a higher value th and
Dshort to a lower value tl . The pseudocode of the algorithm is presented in Algorithm 1.
The algorithm runs each time the video frame is received, and its complexity is O(1).

The aforementioned thresholds Dlower and Dupper depend on the exact set of bitrates B
available for the client to choose. For example, typically, the bitrates double up the quality
ladder [64]. In such a case, the threshold to increase the bitrate shall be Dlower = 0.5DPeriod:
the frames twice as big as the current ones can be downloaded on time. Similarly, the
threshold to decrease the bitrate shall be Dupper = 1.5Dperiod. However, if the bitrate ladder
grows with smaller steps, the thresholds may be closer to one.
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Algorithm 1 EVeREst bitrate allocation.

1: . Frames come too slow

2: if Dshort ≥ Dupper then

3: Dshort = tl

4: return SLOW_DOWN

5: end if

6: . Frames come very fast

7: if Dlong < Dlower then

8: Dlong = th

9: return SPEED_UP

10: end if

11: . Doing well

12: return CONTINUE

4.2. Link Congestion Estimation

Apart from bitrate estimation, the algorithm estimates whether the available channel
resources will be enough when the load increases because of a new heavy flow. For that,
it estimates the full network capacity over the route between the server and the client
and the share of the network allocated for the HMD. We employ the classical idea of
the so-called fluid network model [65] and adapt it to modern wireless networks. The
algorithm estimates the network capacity as the highest download rate of a small amount of
data. Conversely, it estimates the average achievable network throughput as the download
rate of a large amount of data. The implementation details of both of these stages are
presented in the following sections.

4.2.1. Network Capacity Estimation

We use the P-frames as a small probing portion of data. For that, we split them into
Ngr equal groups of packets of equal size, except for the last one, which can be smaller.
The size of each group shall exceed the maximal portion of data that can be delivered
simultaneously in the network. Let each group consist of Np packets of size LMTU that is the
Maximal Transfer Unit (MTU) along the path between the server and the client. The server
simultaneously sends all packets belonging to the same group and spreads the groups
uniformly over the inter-frame interval. When the client receives all packets belonging to a
group k, it calculates the download rate of this group in the following manner.

Cest
k =

LMTU(Np − 1)
recvTimek[Np]− recvTimek[1]

, (2)

where recvTimek[i] is the time instant when the client received the packet i of packet group k.
When all the packet groups are received, the HMD calculates the network capacity as

the maximum among the obtained values:

Cest = max
k

Cest
k . (3)

The network capacity estimation is performed each time a P-frame is received. Its

complexity is O
( BDperiod

Np LMTU

)
, where B is the bitrate of the video.
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4.2.2. Network Throughput Estimation

The key frames serve as large chunks of data that we use to estimate the network
throughput. They are generated relatively seldom. The HMD determines the whole frame’s
delivery time ∆tdelivery as the delay between the reception of the first and the last packets
of the frame and calculates the network throughput Test as:

Test = L f rame/∆tdelivery, (4)

where L f rame is the length of the frame in bytes.
The obtained value is typically smaller than the network capacity because the network

resources are shared with the other traffic in the network. The network throughput
estimation is performed each time a key frame is received, and its complexity is O(1).

4.2.3. User Number Estimation

We estimate the link congestion as the effective number of user-generated flows active
in the network. Note that the real number of flows may differ, as well as their rate may
differ from the rate of the considered VR flow. However, these flows generate congestion
as the estimated effective number of flows. We calculate the same as in Equation (1)
exponentially weighted moving averages of capacity C̄est and throughput T̄est with an
averaging window length t(user)

win to flatten the fluctuations.
We assume that every user gets an equal share of the network resource, which is the

typical mode of operation of the networks [25,26]. Therefore, we can estimate the number
of users in the network as follows:

Nusers =

⌈
C̄est

T̄est

⌉
, (5)

where dxe is the round-up operator. We round the number up because this way, we
overestimate the network load. Therefore, we make the algorithm more conservative and
prioritize the frame losses over video bitrate. We do this because the frame losses cause
video stalling, which is considered to be one of the main factors that cause cybersickness [24].

The number of users is estimated each time a frame is received. Its complexity is O(1).

4.3. Bitrate Adaptation

Once the algorithm decides whether to change the bitrate or not, it ensures that the
new bitrate does not exceed the threshold Cmargin calculated as:

Cmargin =
C̄est

Nusers + 1
(6)

If the new bitrate is higher than Cmargin, the algorithm chooses the best one that satisfies
the condition Bitrate ≤ Cmargin. We introduce this threshold because the client changes
the bitrate asynchronously, and the server cannot immediately proceed with the change
request. Therefore, we should always expect that another client will enter the network, and
the throughput will decrease to Cmargin. In this way, the HMD always reserves the network
resources for a sudden new client. When a new HMD starts consuming its share of the
network capacity, the old ones have room to take appropriate measures. We do not have to
reserve resources for more than just one client because we assume that the time granularity
of the adaptation is small enough to render the probability of more clients entering the
network during this interval negligible.

The bitrate clipping is performed each time a frame is received. Its computational
complexity is O(Nbitrates), where Nbitrates is the number of bitrates the client can choose.

To summarize, the total complexity of the bitrate adaptation is O
(

1 +
BDperiod
Np LMTU

+ Nbitrates

)
.

The bitrate adaptation is performed each time a video frame is received, i.e., approximately
once in Dperiod. Therefore, the computational complexity of the algorithm is significantly
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lower than the complexity of the other processes running at the HMD and can be easily
run in real HMDs.

5. Numerical Evaluation

In this section, we use the network simulator NS-3 [66] to evaluate the performance
of the developed algorithm and compare it against the bitrate adaptation algorithms for
live video streaming known from the literature. In Section 5.1, we describe the considered
scenario, the parameters of the algorithm, the metrics we use to evaluate the QoE, and
the set of evaluated algorithms. In Section 5.2, we present and analyze the results of
the simulation.

5.1. Scenario

We consider a 5G indoor hotspot network [67] where a few (N) clients (VR HMDs)
are dropped inside a 50 m circle around a 5G small base station (gNB). The gNB has a
wired connection to an MEC server that processes the commands from the HMDs and
generates VR video streams. Users start their VR sessions at random moments, and the
session duration is a random value that has a uniform distribution from 90 to 110 s. After
the session ends, the user waits for some time and starts a new session. The duration of
inter-session pause is a random value that has a truncated exponential distribution with an
average of 30 s and upper and lower bounds equal to 10 and 60 s, respectively. The duration
of the simulation run is 1000 s, and we run 100 simulation runs for each of the considered
adaptation algorithms and the number of VR HMDs. The considered scenario, for example,
corresponds to an engineering office with multiple users performing modeling in VR or an
indoor multiplayer game. In such a scenario, the capacity of a cell may be relatively low,
and the changes in the user activity will noticeably influence the network throughput of the
other users. Although, in reality, the duration of the sessions and inter-session pauses can
be much longer, we assume that scaling up the session parameters by some constant will
not change the effects. At the same time, it will slow down the simulations and complicate
obtaining statistically significant results.

The videos are generated in one of the following resolutions: 720p, 1080p, 1440p,
2160p. The optimal choice of the bitrate ladder clearly depends on the considered cloud
VR deployment scenario and the network profile. However, we aim to develop and
evaluate the bitrate adaptation algorithm, so we choose a single bitrate ladder based on
the example from the industry. In particular, from [64], we obtain the following bitrate
ladder recommended for the considered resolutions: {7.5, 12, 24, 60} Mbps. However, the
services, like YouTube, typically compress the content [68–70], so the analysis of the videos
stored on YouTube reveals that, in practice, much lower average bitrates are used [71].
Therefore, based on this analysis, we consider the following bitrate ladder: {3.2, 6.1, 12.3,
24.8} Mbps. We use FFmpeg [72] to encode the video using the x265 video encoder with
real-time encoding parameters [73], and the server uses RTP over UDP [74] to stream the
video to the clients. The frame delay limit (jitter-buffer depth) is 50ms or three frames,
which is the maximal tolerable feedback delay in VR scenarios [12]. Table 1 lists other
parameters of the scenario.

We evaluate the QoE of the end-users with the following metrics.

1. Number of satisfied sessions: The average number of cloud VR sessions that lost less
than θ = 2% of the frames (because of channel errors and frame delay violations).

2. Goodput: The total amount of data downloaded in the experiment by cloud VR clients
during the satisfied sessions divided by the duration of the experiment.

3. Average bitrate: The average bitrate of the VR sessions.
4. Frame loss ratio: The average portion of frames lost during the VR session.
5. RB usage: The average share of the wireless channel resource blocks utilized during

the experiment.
6. Bitrate switching frequency: The average number of bitrate changes during the session

divided by the session duration.
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We compare the following bitrate allocation algorithms:

1. CBR, 720p: The video with constant resolution 720p is downloaded independently
from the channel state.

2. CBR, 1080p: The video with constant resolution 1080p is downloaded independently
from the channel state.

3. CBR, 1440p: The video with constant resolution 1440p is downloaded independently
from the channel state.

4. CBR, 2160p: The video with constant resolution 2160p is downloaded independently
from the channel state.

5. BOLA: The algorithm described in ([55]).
6. Xie et al.: The algorithm described in ([56]).
7. EVeREst: The algorithm developed in this paper.

Table 1. Scenario parameters.

Parameter Value

Carrier frequency 2 GHz
Bandwidth 20 MHz
Channel model 3GPP Indoor-Office [67]
gNB/UE TX Power 23 dBm
gNB antenna pattern omnidirectional
gNB height 6 m
UE height 1 m
TTI duration 1 ms
LMTU 1500 bytes
Experiment duration 1000 s
Number of experiment runs 100
Video codec h265
Frame rate, ν 60 fps
GoP duration 60 frames

We implement the algorithms and set the parameters according to the original papers
and the DASH.JS implementation [75]. To adapt them to the cloud VR system, we treat
separate video frames as MPEG chunks so that the algorithms stay sensitive enough
to the changes in the network state. Note that extremely low buffer levels of cloud
VR streaming reduce the BOLA algorithm to its part called DYNAMIC in the original
paper. This algorithm estimates the network throughput as the average chunk download
rate in a small time window and chooses the maximal video bitrate that is less than the
estimated throughput. To take the fluctuations of the frame sizes into account, instead of
the average bitrates for each of the video resolutions, we use the effective bandwidth of
each resolution, i.e., the minimal network throughput that is enough to satisfy the frame
loss ratio requirement. To find it, we conduct the following simple experiment. We transmit
the flow over a constant rate point-to-point link and find the minimum data rate of the link
that is enough to satisfy the frame loss ratio requirement. The resulting “effective bitrate”
ladder is {4.3, 7.9, 16.0, 32.0} Mbps.

The parameters of the EVeREst algorithm are presented in Table 2. We chose them
based on the preliminary study. However, their values could be justified in the following
way. The short frame delay average shall be sensitive enough to react to the changes
at the scale of a single bitrate adaptation interval. In the considered system, the server
can change the bitrate only once in a GoP. Therefore, tshort

win approximately equals the GoP
duration (set to 1 s in our experiments). A long frame delay average instead shall track the
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channel state, including wireless channel fluctuations and user activity. We find that, in the
considered scenario, 5 s on average provides a good tradeoff between these two factors
that influence the frame delivery delays perceived by the client. The same is true for the
user dynamics averaging window because the channel fluctuations can also influence this
estimation. Finally, the reset values after bitrate increase/decrease shall have the same
order as a typical frame delay and introduce a small hysteresis to avoid multiple up/down
switches in a row.

Table 2. Enhanced VR bitrate Estimator (EVeREst) algorithm parameters.

Parameter Value

Short frame delay window, tshort
win 1 s

Long frame delay window, tlong
win 5 s

User dynamics window, tuser
win 5 s

Reset value for bitrate decrease, tl 5 ms
Reset value for bitrate increase, th 20 ms

5.2. Simulation Results

Figure 2 presents the main QoE metrics for the considered algorithms obtained with
simulations. Let us first analyze the performance of the CBR algorithms. Figure 2c–d
illustrates the fundamental tradeoff between the reliability and the bitrate. The increase in
the resource consumption leads to a higher frame loss probability and vice versa. Figure 2a
shows that when the number of clients is small, the number of satisfied sessions grows
linearly, which means that all the VR sessions are satisfied. However, the further increase in
the number of UEs saturates the network (see Figure 2e). Its capacity becomes insufficient
to transmit all the data in time; frame losses increase (see Figure 2d), and the QoE degrades
fast. No VR sessions can be satisfied after the network capacity is reached, e.g., 5–6 UEs for
CBR, 1440p. As for CBR, 720p, from Figure 2e, we can see that, in the considered scenario,
it underloads the network. All sessions have low frame loss probability (see Figure 2a,d),
but the average bitrate and the corresponding visual quality of the video are unsatisfactory
(see Figure 2c). The results of CBR algorithms help us find how much cloud VR flows at a
particular bitrate would utilize the network without violating the frame loss requirements
and show why we need the bitrate adaptation algorithms.

(a) (b)

Figure 2. Cont.
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(c) (d)

(e) (f)

Figure 2. Comparison of the QoE provided by the algorithms. (a) The number of satisfied VR sessions. (b) The goodput of
the system. (c) The average bitrate of cloud VR sessions. (d) The average frame loss ratio. (e) The average share of utilized
resource blocks. (f) The average bitrate switching frequency.

Next, let us analyze the performance of state-of-the-art bitrate adaptation algorithms
designed for live MPEG DASH video streaming. Figure 2a–d indicates that BOLA overestim-
ates the throughput available to the video flow and cannot provide a satisfactory frame loss
ratio when more than two UEs are present in the network. We identify two main reasons
for it. The first one is the structure of the VR video flows. Because of the video compression,
the frame sizes are highly variable, and the load imposed on the network by multiple VR
flows fluctuates significantly. The average throughput perceived by the flows is higher
than the throughput when a few large frames of different flows have to be downloaded
simultaneously. Therefore, the average network throughput gives little insight into the
correct choice of bitrate. The second reason is in the network state dynamics. Changes
in user activity cause large throughput variations. When a new user starts a VR session,
the lack of insurance from such events results in additional frame losses. The algorithm
developed in [56] provides similar results, although it pays more attention to the buffer
level than to the measured throughput. Furthermore, the fluctuations of the network state
cause rather frequent bitrate switches (see Figure 2f); this also contributes to the low QoE.
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Unlike other adaptive algorithms, EVeREst satisfies VR clients regardless of the
network load (see Figure 2a). Figure 2c,e shows that it provides higher or equal average
bitrate and network utilization if compared to CBR algorithms until the network capacity
for the corresponding constant bitrate. Although at the edge of the network capacity, the
adaptive algorithm typically provides higher frame loss probability and a lower number
of satisfied sessions, it achieves an average frame loss ratio lower than the requirement
(θ%) up to eight UEs in the network (see Figure 2d). We must highlight that thanks to the
hysteresis in bitrate switching decisions, EVeREst provides a much lower bitrate switching
frequency than other considered bitrate adaptation algorithms (see Figure 2f). Compared
to the other considered adaptation algorithms, the developed algorithm provides up to
10 times higher goodput and much more consistent QoE when the network conditions
change. Finally, because EVeREst performs only the bitrate adaptation, it can be easily
modified for the other scenario or application that requires such a conservative adaptation.
However, if we relax the delay requirements, the conservatism of the developed algorithm
will definitely lead to some bitrate underestimation.

6. Conclusions

To facilitate the further development of VR applications, cloud VR technology is
introduced. Unlike standalone VR, the cloud VR HMDs only have to track the user’s
actions and report them to the remote server. Based on the received data, the server renders
the virtual environment, encodes its image into the video stream, and sends it back to the
HMD. The HMDs use wireless technologies to transmit and receive the data to enable user
mobility without restricting their movements.

To provide high QoE for the end-users, cloud VR applications shall avoid image
freezes and low visual image quality and minimize the feedback and environment refresh
delay. Most VR applications are highly interactive, so the VR video stream cannot be
rendered and downloaded to the HMD in advance. Unstable network conditions and hard
timing constraints further complicate the problem.

In the paper, we addressed the problem of improving QoE for interactive cloud VR
applications through the bitrate adaptation. In contrast to other papers, we assumed
no network assistance and designed the application-level client-side bitrate adaptation
algorithm. The algorithm considers the bursty nature of the cloud VR traffic and the
variations of the network state caused by the wireless channel fluctuations and the changing
activity of the users.

We compared the developed algorithm with the bitrate adaptation algorithms designed
for live MPEG-DASH-based video streaming that do not assume assistance from the
network. The results of the simulations show that in the scenario with multiple cloud VR
flows sharing a single wireless network, the developed algorithm provides much higher
QoE to cloud VR users in terms of frame delay violation probability and system goodput.
In particular, it can achieve up to 10 times higher goodput than the other considered
algorithms and achieves much more stable performance in a wide range of network loads.

We see the following directions for future research. Although the algorithm designed
in the paper provides rather high QoE to cloud VR users, to further reduce the delays, we
have to either reserve some network resources or perform admission control. However,
the bursty nature of cloud VR traffic requires finding the tradeoff between the resource
overprovisioning and satisfactory QoE.
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Abbreviations

The following abbreviations are used in this manuscript:
QoS Quality of Service

QoE Quality of Experience

HMD Head-Mounted Display

MPEG DASH Moving Pictures Experts Group Dynamic Adaptive Streaming over HTTP

VR Virtual Reality

BS Base Station

MEC Mobile Edge Computing

UE User Equipment

gNB Next Generation NodeB

GoP Group of Frames

P-frame Predicted frame

MTU Maximum Transmission Unit
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