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Abstract: Nowadays, more and more researchers are interested in reversible data hiding in encrypted
images (RDHEI), which can be applied in privacy protection and cloud storage. In this paper, a new
RDHEI method on the basis of hierarchical quad-tree coding and multi-MSB (most significant bit)
prediction is proposed. The content owner performs pixel prediction to obtain a prediction error
image and explores the maximum embedding capacity of the prediction error image by hierarchical
quad-tree coding before image encryption. According to the marked bits of vacated room capacity,
the data hider can embed additional data into the room-vacated image without knowing the content
of original image. Through the data hiding key and the encryption key, the legal receiver is able to
conduct data extraction and image recovery separately. Experimental results show that the average
embedding rates of the proposed method can separately reach 3.504 bpp (bits per pixel), 3.394 bpp,
and 2.746 bpp on three well-known databases, BOSSBase, BOWS-2, and UCID, which are higher than
some state-of-the-art methods.

Keywords: reversible data hiding; quad-tree coding; image encryption; hiding capacity; privacy protection

1. Introduction

Recently, reversible data hiding (RDH) has gained increasing attention [1,2]. By apply-
ing this technique, additional data can be embedded into a multimedia cover [3], while data
extraction and original cover recovery can be both realized without loss. Nowadays, with
the development of computer technology, digital image becomes the main type of various
uploaded data in people’s daily life. Because of its high redundancy, researchers often
apply it as the data cover to propose the RDH methods. Most of them in spatial images
use three main technologies, i.e., lossless compression [4], difference expansion [5], and
histogram shifting [6,7]. These technologies make full use of the redundant information in
original images to reversibly embed additional data, but they can only be implemented
in the plaintext domain of the image. Once the image is encrypted, lots of redundancy
information will be lost. Therefore, the RDH methods based on the above technologies
cannot be directly applied to encrypted images.

However, with the increasing popularity of cloud computing and storage applications,
people often store or process their privacy data in cloud servers [8–10]. Various security
issues, such as tampering, forgery, and illegal copying, continuously emerge, which make
the privacy protection of digital images attract more and more attention. The RDH meth-
ods are suitable for some stringent fields such as medical, military, and legal systems.
Therefore, researchers consider combining cryptography with RDH to propose RDHEI
methods [11–13], which can significantly improve the security of data in the third-party
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platforms. The RDHEI method is designed for the case that the digital image is encrypted
before embedding secret data. The secret data can be embedded without restoring the orig-
inal image content by the data hider, while the receiver can decrypt the image and conduct
data extraction and image recovery without error. Currently, the RDHEI method has been
widely applied in the identity authentication, copyright protection, piracy tracking, image
management, and so on.

Up to now, many RDHEI methods have been proposed to vacate room for embedding
in encrypted image, which is called vacating room after encryption (VRAE) [14–17]. Zhang
presented a VRAE-based RDHEI method in [14]. In this method, a stream cipher is applied
to encrypt all the pixels within an uncompressed image. Then this encrypted image is
segmented into many blocks, and the pixels in each block are partitioned into two sets.
Next, the data hider embeds the additional data through flipping the three least significant
bits (LSBs) in one set. After the image decryption, the receiver can use the correlations
between adjacent pixels to restore the content of the original image. Based on this method,
many researchers presented their improved methods in [15–17]. In [15], Yu et al. introduced
the flip rate, which further decreased the extraction error-rate and improved the image
visual quality after decryption. In [16], Hong et al. adopted the side-match skill in order to
better evaluate the block smoothness. In [17], Zhang proposed a separable RDHEI method.
In this method, he classified the encrypted images into various groups, and then converted
several LSBs of each group into smaller vectors to vacate the embedding room. Finally, the
secret data could be extracted from the vacated room before decryption directly.

In the VRAE-based methods, the content owner first performs image encryption, and
then the data hider alters some bits of the encrypted image to embed additional data
according to certain rules. However, the redundancy of the image is lost after encryption,
which results in vacating enough room for embedding very difficult. In order to make
full use of image redundancy, some methods about reserving room before encryption
(RRBE) [18–22] have been proposed. In [18], Ma et al. proposed the first RRBE-based
method. They reserved embedding room in original image by using the histogram shifting
technology and encrypted the preprocessed image, then secret data was embedded into
certain LSBs in the encrypted region. In [19], Zhang et al. first estimated some pixels
through the other adjacent pixels and calculated the estimating errors. Then, the estimating
errors and the rest pixels were encrypted by different encryption algorithms, respectively.
Finally, they embedded additional data by shifting the estimating error histogram. In [20],
Yi and Zhou embedded additional data by applying a binary-block embedding (BBE)
scheme. They first divided the MSB planes of original image into lots of blocks, and then
vacated room for storing the LSBs by compressing the blocks. Therefore, the additional
data could be embedded into lower bit-planes after encryption. In [22], Yi and Zhou also
introduced parametric binary tree labeling to propose another RDHEI method, which can
exploit the spatial redundancy of encrypted images for data embedding.

In addition, the RRBE-based RDHEI methods can also utilize the redundant infor-
mation existing in the multi-MSB planes [23–27]. Because it is easier to perform MSB
prediction than LSB prediction before image encryption, and there is no need to con-
sider the deterioration of the image quality after encryption, additional data is able to
be embedded into the MSB planes. Puteaux et al. gave the first MSB-based method, in
which the secret data were embedded by MSB substitution instead of LSB replacement [23].
Since the values of MSBs are modified after embedding, they should be restored without
error on the receiver side. Puteaux et al. presented two independent RDHEI methods
by separately considering the largest embedding capacity and the complete reversibility.
The first method, called high-capacity reversible data hiding approach with correction of
prediction errors (CPE-HCRDH), can embed the addition data on the whole MSB plane,
though it is not completely reversible. The second one, called high-capacity reversible data
hiding approach with embedded prediction errors (EPE-HCRDH), can restore the original
image completely without error, but need to mark the position of the prediction error.
Subsequently, many researchers proposed several improved RDHEI methods [24–27] based
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on [23]. In [24], Puyang et al. extended the EPE-HCRDH method to the MSB plane and
the second MSB plane. In [25], Puteaux et al. improved the second method by recursively
processing all the bit-planes (from MSB plane to LSB plane). In [26], Chen et al. designed
a block-based rearrangement mechanism and extended the run-length code to compress
the MSB planes of the original image, which made full use of the redundancy in plaintext
domain and effectively freed up the embedding room for secret data. In [27], Yin et al.
performed pixel prediction and compressed the differences between the original values
and the predicted ones by Huffman coding. They used the stream cipher to execute image
encryption, and embedded additional data into the room vacated by the Huffman coding
through multiple MSB substitution. Clearly, the amount of data embedded in these two
methods is related to the coding schemes closely. Therefore, the researchers try to propose
some other good coding schemes in the RDHEI method so as to achieve a high embedded
rate of the information.

In this paper, we present a new high-capacity RDHEI method by applying hierarchical
quad-tree coding and multi-MSB prediction. Specifically, content owner first performs the
pixel prediction to obtain the prediction error. Based on it, the content owner constructs
the multi-MSB planes containing concentrated (0)2 or (1)2 bit-blocks, where (0)2 and (1)2
denote the binary bits. Then, the multi-MSB planes are compressed by hierarchical quad-
tree coding so that the embedding room can be reserved before executing the encryption
procedure. Next, the content owner encrypts the processed image with the stream cipher.
According to the capacity information recorded by the content owner on the LSB plane,
additional data can be directly embedded into the encrypted image on the data hider
side. The receiver can execute data extraction and image recovery separately with data
hiding key and encryption key, respectively. The contributions of this paper include:
(1) A hierarchical quad-tree coding scheme with high compression ratio is proposed; (2)
data extraction and image recovery can be completed separately; and (3) our method
outperforms some of the state-of-the-art methods in embedding rate.

The rest of this paper is organized as follows. Our RDHEI method based on hierar-
chical quad-tree coding and multi-MSB prediction is described in Section 2. Experimental
results, the analysis, and the comparisons with some state-of-the-art methods are given in
Section 3. Section 4 gives the conclusions of this paper and the future work.

2. Proposed Method

In this section, we present a new RDHEI method that adopts hierarchical quad-
tree coding and multi-MSB prediction. First, the content owner predicts pixels’ value
according to their adjacent pixels, calculates the prediction error to construct bit-blocks
that have concentrated (0)2 or (1)2, and compresses the bit-blocks by using hierarchical
quad-tree coding to vacate embedding room. Second, the owner encrypts and scrambles
the room-vacated image by the encryption key and the scrambling key, respectively. At
the embedding stage, the data hider reversibly scrambles the encrypted image, then
directly embeds additional data encrypted by the data hiding key, and finally scrambles the
embedded image with the same scrambling key again. The receiver can separately extract
the additional data and recover the image by different keys. Our method can achieve high
embedding capacity, error-free data extraction, and image recovery. The overview of this
proposed method is illustrated in Figure 1, where Ke, Ks, and Kh are the encryption key,
the scrambling key, and the data hiding key, respectively.
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Figure 1. The overview of the proposed method.

2.1. Prediction Error Image Generation

For the original gray-level image Io sized by M× N, content owner first performs the
pixel prediction. By applying the median edge detector (MED) predictor [28], predicted
pixel values are obtained. As illustrated in Figure 2, the current pixel p(i, j) is predicted
through its three adjacent pixels in the previous row and the previous column according
to Equation (1). Among it, 1 < i ≤ M and 1 < j ≤ N. The predicted value of p(i, j) is
denoted as p(i, j).

p(i, j) =


max{p(i− 1, j), p(i, j− 1)}, if p(i− 1, j− 1) ≤ min{p(i− 1, j), p(i, j− 1)},
min{p(i− 1, j), p(i, j− 1)}, if p(i− 1, j− 1) ≥ max{p(i− 1, j), p(i, j− 1)},

p(i− 1, j) + p(i, j− 1)− p(i− 1, j− 1), otherwise.
(1)
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Then, the prediction error of p(i, j), denoted as pe(i, j), is determined by Equation (2).
Next, the decimal pe(i, j) is converted to binary. The MSBs, denoted as p0

e(i, j), are used
as the sign marker bits since the sign of the prediction error may be positive or negative.
Among them, the sign is negative when p0

e(i, j) = 1 and positive when p0
e(i, j) = 0. The

absolute values of the prediction errors are converted into 7-bit sequences according to
Equation (3), where pk

e(i, j) represents the corresponding binary bit. All the sign marker
bits p0

e(i, j) and p7
e(i, j) form the MSB plane and the LSB plane, respectively. If the absolute

value of a prediction error exceeds 127, the corresponding pixel will be recorded as an
overflow pixel, and its value will not be altered. Meanwhile, its location (i, j) will be added
to auxiliary information, as described in Section 2.3.

pe(i, j) = p(i, j)− p(i, j). (2)
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pk
e(i, j) =

⌊
pe(i, j) mod 28−k

27−k

⌋
, k = 1, 2, . . . , 7. (3)

For example, the current pixel is p(10, 10), and its original value equals 125, seen in
Figure 3. According to Equation (1), the predicted value of p(10, 10) is calculated by the
values of p(9, 9), p(9, 10), and p(10, 9), i.e., p(10, 10) = 130 + 126− 128 = 128. Then the
prediction error pe(10, 10) is−3. Obviously, the prediction error is negative, and the binary
of its absolute value is 0000011. So we set p0

e(10, 10) = 1, p6
e(10, 10) = 1, p7

e(10, 10) = 1,
and the rest bit values are all 0 s, i.e., the binary sequence of pe(10, 10) is 10000011.
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Figure 3. An example of calculating a prediction error. (a) The original values of the current
pixel p(10, 10) and its three adjacent pixels p(9, 9), p(9, 10), and p(10, 9) are 125, 128, 130,
and 126, respectively; (b) the predicted value of p(10, 10) is calculated with MED predictor,
i.e., p(10, 10) = 130 + 126− 128 = 128; (c) The prediction error of p(10, 10) is calculated as
pe(10, 10) = p(10, 10)− p(10, 10) = 125− 128 = −3.

Finally, all the pixels of the original image are scanned by applying the prediction
mechanism mentioned above to obtain the prediction error image Ip and the possible
invariant pixels. Note that the pixel prediction starts from p(2, 2) row by row and column
by column, and the pixels in the first row and the first column serve as the reference pixels.

2.2. Hierarchical Quad-Tree Coding

Quad-tree coding is one of the most efficient techniques for compressing highly
redundant digital images. Its basic idea is to recursively decompose a 2n × 2n (n is a
positive integer) pixel array into square regions containing the same pixel value, with
the smallest region being a pixel. Owing to the spatial correlation in the prediction error
image Ip, the multiple MSB planes of Ip contain a number of bit-blocks that are all 0s or 1s.
Thus, we design a hierarchical quad-tree coding to compress the multiple MSB planes of
Ip, thereby vacating room for embedding secret data. In our hierarchical quad-tree coding
scheme, there are two main steps as follows.

(1) Quad-tree Segmentation
Since Io has a size of M× N, the size of the eight uncompressed bit-planes of Ip is also

M× N. The quad-tree segmentation is implemented sequentially from the MSB plane to
the LSB plane of Ip. If M = N = 2n, and the bits within the current bit-plane are all the
same (all 0s or 1s) before segmentation, and the segmentation will not be implemented,
but turned to the next bit-plane until LSB plane. Otherwise, we execute the segmentation
process for the current bit-plane as follows. Note that the preprocessed image is denoted as
Ig, and the size of Ig denoted by G requires to satisfy Equation (4).

G =

{
2n × 2n, if M = N = 2n,

2dlog2 δe × 2dlog2 δe, if M = N 6= 2n or M 6= N, δ = max{M, N}. (4)

If M = N = 2n, we segment the current bit-plane into four non-overlapping square
quadrant blocks. Obviously, the size of each block is 2n−1 × 2n−1. Then we recursively
process each block starting from the top left block, and the recursive order is (I) top left,
(II) top right, (III) bottom left, (IV) bottom right, as shown in Figure 4. For each of the four
blocks, we first determine whether the bits within the same block are all the same. If so,
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the segmentation for the current block stops and turns to the next block. Otherwise, the
current block is processed recursively. In other words, the current block is segmented into
four non-overlapping blocks with the same size of 2n−2× 2n−2 if the bits within the current
block are not all the same.
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mented. In addition, the branch node, which is one level lower than a leaf node, is the 
parent node of the leaf node. 
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Figure 4. Quad-tree segmentation for bit-block with size of 2n × 2n.

If M = N 6= 2n or M 6= N, we denote max (M, N) as δ. Then the size of the current
bit-plane is expanded to 2dlog2 δe × 2dlog2 δe. The expanded part is added to the right or
the bottom of the current bit-plane and filled with 0s. After finishing the expansion, the
segmentation is the same as the case of M = N = 2n.

After completing the segmentation, we construct a quad-tree corresponding to the
current bit-plane. Take the bit-plane of size 16× 16 as an example, seen in Figure 5. The
corresponding quad-tree is described in Figure 6. The whole bit-plane is taken as the root of
the quad-tree and represents level 0. Clearly, when certain parts of the bit-plane require to
be further segmented into smaller blocks, the number of levels increases by 1. As shown in
Figures 4 and 6, the four nodes from the same tree branch represent the four blocks I, II, III,
and IV from left to right. Each of the four nodes is either a leaf node or a branch node. The
leaf node represents that the bits within the corresponding block all have the same value (0 or
1), and the branch node indicates that it can be further segmented. In addition, the branch
node, which is one level lower than a leaf node, is the parent node of the leaf node.
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Figure 5. An example of quad-tree segmentation for one bit-plane of prediction error image (n = 4).
The bits are not all the same on the original bit-plane, so the original bit-plane is segmented into four
non-overlapping square blocks. In the first, second, and fourth blocks, the bits are not all the same,
and segmentation is performed recursively until the bits in a block are all the same. The third block
need not to be further segmented because the bits within it are all the same.



Electronics 2021, 10, 664 7 of 22

Electronics 2021, 10, x FOR PEER REVIEW 7 of 24 

 

 

 
Figure 5. An example of quad-tree segmentation for one bit-plane of prediction error image (n = 4). The bits are not all the 
same on the original bit-plane, so the original bit-plane is segmented into four non-overlapping square blocks. In the first, 
second, and fourth blocks, the bits are not all the same, and segmentation is performed recursively until the bits in a block 
are all the same. The third block need not to be further segmented because the bits within it are all the same. 

0

0 0 1 0 0 0 0 0 0

1 0 0

0010 00110001 0101 0111

000011

1100 1101 1111

110100

11010100

110110 110111

10

0 0 0
000000

0 1 1 0

000001 011011
1 0 0

011000 011001

11010101 11010110 1101011101101000
0 0 1 0

01101001 01101010 0110101100001000
0 1 0 1

00001001 00001010 00001011

0100

Level 0

Level 1

Level 3

Level 2

Level 4

1

0

Branch

Leaf_0

Leaf_1

 
Figure 6. The quad-tree and the separate path coding of the leaf nodes corresponding to Figure 5. 

(2) Hierarchical Quad-tree Coding  
Since the quad-tree leaf nodes represent the bit-blocks of a single value, the leaf nodes 

can be classified into two categories according to the value (0 or 1), denoted by Leaf_0 and 
Leaf_1, respectively. We first calculate the number of these two categories of leaf nodes in 
each level of the quad-tree, separately denoted by LQ0  and LQ1 , where L represents the 
level of the leaf nodes in the quad-tree. Then, the leaf nodes are encoded hierarchically 
starting from the root of the quad-tree.  

Figure 6. The quad-tree and the separate path coding of the leaf nodes corresponding to Figure 5.

(2) Hierarchical Quad-tree Coding
Since the quad-tree leaf nodes represent the bit-blocks of a single value, the leaf nodes

can be classified into two categories according to the value (0 or 1), denoted by Leaf_0 and
Leaf _1, respectively. We first calculate the number of these two categories of leaf nodes in
each level of the quad-tree, separately denoted by QL

0 and QL
1 , where L represents the level

of the leaf nodes in the quad-tree. Then, the leaf nodes are encoded hierarchically starting
from the root of the quad-tree.

The hierarchical quad-tree coding contains four parts, i.e., the depth coding, the value
coding, the number coding, and the path coding of the corresponding leaf nodes, seen in
Algorithm 1.

(a) Depth coding: Here, the depth of leaf nodes is their level denoted by L in quad-tree,
which is calculated by Equation (5), where Ib is one bit-plane of Ig, and Ic is the
bit-block in Ib corresponding to the specified leaf nodes. L needs to be converted
to binary by Equation (3) as the depth code. For the bit-plane of size 2n × 2n, the
depth coding is a fixed-length coding. Let the depth of the root node be 0. Then the
maximum depth of the corresponding quad-tree equals n. So at least dlog2(n + 1)e
bits are required to record the maximum depth. In other words, the length of depth
coding is dlog2(n + 1)e.

(b) Value coding: The value of leaf nodes should be recorded so that the receiver could
correctly recover the corresponding leaf nodes. Because there are only two values (0
and 1), it is sufficient for one bit to record the values of leaf nodes.

(c) Number coding: Since there are at most 4L nodes in level L, the number of the two
categories of leaf nodes in level L, i.e., QL

0 and QL
1 , is recorded by log2(4

L) = 2L bits.
(d) Path coding: According to the above quad-tree segmentation process, seen in Figure

4, four quadrant blocks I, II, III, and IV in each round of segmentation correspond
to the quadrant codes 00, 01, 10, and 11, respectively. The main idea of path coding
is that the corresponding quadrant code is added to the path code each time the
segmentation is performed. Obviously, each leaf node requires 2L bits to record its
path if the path is encoded separately. In Figure 6, we give an example to show the
separate path code of each leaf node, which is composed of their parent nodes’ path
codes and their own quadrant codes. However, some leaf nodes usually come from
the same parent node and the front (2L− 2) bits (i.e., the parent node’s path code)
of the path code for these leaf nodes are the same. If these leaf nodes’ path is coded
separately, there is a lot of redundancy information. Therefore, we propose a skill to
compress the path code in the following. For the leaf nodes in level L, we first encode
the path of their parent node, which requires (2L− 2) bits. As we know, there are at
most three leaf nodes with the same value from a parent node. Thereby, we use 2 bits
to record the number of the leaf nodes from the same parent node and these 2 bits are
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spliced into the end of the parent node’s path code. Finally, we record the quadrant
code (00 or 01 or 10 or 11) of each leaf node in order.

L = log2
length(Ib)

length(Ic)
(5)

Note that if the root node is a leaf node, i.e., the bits within the corresponding bit-plane
are all the same, the bit-plane does not need to be segmented. The number coding and the
path coding for the root node will not be performed. We only need to record the depth
code and the value code. As for the leaf nodes in level 1, their parent node is the root
node, and the path coding is not performed for the root node, so the path coding of the leaf
nodes in level 1 does not require the compression and just code separately. In other words,
the compression of path coding is performed from level 2 to the last level. Because leaf
nodes may come from different levels, the number coding and the path coding are both
variable-length. The code structure of the leaf nodes in level L is shown in Figure 7.

Algorithm 1 Hierarchical quad-tree coding (HQC) Algorithm

Input: one bit-plane Ib of Ig
1: /* t = dlog2(n + 1)e */
2: /* binary(a, b) is the function that converts a into a b-bit binary sequence */
3: /* B is the path code of nodes */
4: node← Ib
5: function HQC(node)
6: if the bits in node are not all the same then
7: [Top_left, Top_right, Bottom_left, Bottom_right]← SEGMENT(node)
8: if the bits in Top_left are all the same then result← CODING(Top_left)
9: else HQC(Top_left)
10: end if
11: if the bits in Top_right are all the same then result← CODING(Top_right)
12: else HQC(Top_right)
13: end if
14: if the bits in Bottom_left are all the same then result← CODING(Bottom_left)
15: else HQC(Bottom_left)
16: end if
17: if the bits in Bottom_right are all the same then result←CODING(Bottom_right)
18: else HQC(Bottom_right)
19: end if
20: else
21: return result← CODING(node)
22: end if
23: end function
24:
25: function SEGMENT(node)
26: node is segmented into four non-overlapping square quadrant blocks Top_left, Top_right, Bottom_left and
Bottom_right
27: result← [Top_left, Top_right, Bottom_left, Bottom_left]
28: return result
29: end function
30:
31: function CODING(node)
32: result← binary(L, t)
33: if L = 0 then
34: if value of the node is 0 then result← result + ‘0’
35: else result← result + ‘1’
36: end if
37: else
38: if value of the node is 0 then result← result + ‘0’ + QL

0 + B
39: else result← result + ‘1’ + QL

1 + B
40: end if
41: end if
42: return result
43: end function
Output: the code of the leaf nodes in level L
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After the hierarchical quad-tree coding, we can calculate the code’s length of Leaf _0(s)
in level L by Equation (6), denoted by WL

0 , where UL
0 indicates the number of the parent

nodes of Leaf _0(s) in level L. Then, the embedding capacity denoted by CL
0 and the payload

denoted by DL
0 of Leaf _0(s) in level L can be calculated by Equation (7) and (8), respectively.

Next, we classify the Leaf_0(s) into available and unavailable categories according to the
sign of DL

0 . In other words, the Leaf _0s in level L are available if DL
0 > 0, otherwise they

are unavailable. Similarly, we can obtain the available Leaf _1(s) and unavailable Leaf_1(s)
through the same classification as Leaf_0(s). For all the available leaf nodes, their codes
need to be recorded, but the unavailable leaf nodes do not need to be encoded, and the bits
within the corresponding bit-blocks remain unchanged. Thereby, the bit-planes can also
be divided into two categories, i.e., the available bit-plane(s) containing the available leaf
nodes and the unavailable one(s) without available leaf nodes. Note that the MSB plane is
the sign marker plane, and the 0s and the 1s within the MSB plane are relatively evenly
distributed. Therefore, the total payload of the MSB plane is usually less than the second
MSB plane.

WL
0 =


dlog2(n + 1)e+ 1, if L = 0,

dlog2(n + 1)e+ 2L + 2×QL
0 + 1, if L = 1,

dlog2(n + 1)e+ 2L + 2L×UL
0 + 2×QL

0 + 1, if L ≥ 2.
(6)

CL
0 = (2n−L)

2 ×QL
0 (7)

DL
0 = CL

0 −WL
0 (8)

Continue to analyze the example in Figure 6, where the leaf nodes are distributed in
levels 1 to 4. First, the length of depth code is calculated, that is dlog2(4 + 1)e = 3. For level
1, the depth code is 001. Because there is only one Leaf _0 in level 1 and its path code is 10,
Leaf _1 need not be encoded, and the number code of Leaf _0 is 01. In other words, the code
of the leaf node in level 1 is (001 0 01 10). For level 2, the depth code is 010. There are eight
Leaf _0s and one Leaf _1, i.e., Q2

0 = 8 = (1000)2 and Q2
1 = 1 = (0001)2. The Leaf _0s are encoded

first. For the first two Leaf _0s from left to right in level 2, their parent node’s path code
is 00 and their quadrant codes are 01 and 10, respectively. So the compressed path code
of these two Leaf _0s is (00100110) and the compressed path codes of the rest leaf nodes
can be obtained in the same way. Finally, the codes of the Leaf _0s and the Leaf _1 in level
2 are (010 0 1000 00100110 0111000111 1111000111) and (010 1 0001 000111), respectively.
Similarly, the codes in level 3 and level 4 can be obtained according to the coding rule
mentioned above.

For the example in Figure 6, we can obtain W1
0 = 3 + 2× 1 + 2× 1 + 1 = 8, C1

0 = (24 − 1)2

× 1 = 64 and D1
0 = 64 − 8 = 56 > 0. So the Leaf _0 in level 1 is available. Similarly, we can

also obtain W2
0 = 36, C2

0 = 128, D2
0 = 92 > 0, and W2

1 = 14, C2
1 = 16, D2

1 = 2 > 0. Therefore, the
Leaf _0s and the Leaf _1 in level 2 are also the available ones. Obviously, the embedding
capacities of each leaf node in the last two levels are only 4 and 1, respectively, which is not
enough to carry the corresponding codes. The corresponding payloads are negative, so the
leaf nodes in the last two levels are unavailable.
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2.3. Vacating Room for Data Embedding

In this subsection, the room for embedding additional data is vacated based on the
hierarchical quad-tree coding, seen in Algorithm 2. The quad-tree segmentation and coding
are performed on the prediction error image. After executing the hierarchical quad-tree
coding for each available bit-plane recursively, there are three parts of information to
generate the compressed image containing vacated room:

(1) Coding information: For the available bit-planes, we first concatenate all codes of
the available leaf nodes in the increasing order of the bit-plane. The code structure
is shown in Figure 8. The head of the code structure is the number of available
bit-planes, denoted as Qp, and 3 bits are required to record it. For each available
bit-plane, we use 3 bits to record the bit-plane serial number before performing the
hierarchical quad-tree coding. Note that the serial number of MSB plane and LSB
plane are recorded as 000 and 111, respectively. In addition, dlog2(n + 1)e bits of 0s
are required to mark the end of the coding for the current bit-plane.

(2) Overflow pixels information: We use 2n bits to record the number of overflow pixels
which is denoted by Qx. If Qx is not equal to 0, the location (i, j) of the overflow pixels
also requires to be recorded. Specifically, there are three n-bit parts which need to be
recorded, i.e., the row number i, the number of the overflow pixels on i-th row, and
the corresponding column number j of each overflow pixel on i-th row. For example,
let n be 4 and there are four overflow pixels on the same row. Suppose that their
locations are (6,5), (6,7), (6,9), (6,10), respectively. Then the location sequence of these
four overflow pixels is (0110 0100 0101 0111 1001 1010).

(3) Uncompressed bits: The uncompressed bits in each bit-plane are concatenated in the
increasing order of the bit-plane serial number and embedded after the information
of overflow pixels.

Algorithm 2 Room vacating Algorithm

Input: prediction error image Ip size by M × N, δ = max{M, N}, overflow pixels information
1: if M = N 6= 2n or M 6= N then
2: Expanding the size to 2dlog2 δe × 2dlog2 δe and the expanded part filled with 0s is added to the right or/and the bottom of the current bit-plane;
3: end if
4: Qp ← 0;
5: code← [ ];
6: uncompressed bits← [ ];
7: for each plane from MSB plane to LSB plane do
8: Quad-tree segmentation;
9: Construct a quad-tree corresponds to the current bit-plane;
10: for each level L from the root to the last level do
11: Calculate DL

0 , DL
1 ;

12: if DL
0 > 0 or DL

1 > 0 then
13: Available leaf nodes← the corresponding leaf nodes;
14: end if
15: end for
16: if the current bit-plane contains available leaf nodes then
17: Qp ← Qp + 1;
18: code← code + (bit-plane serial number + code of the available leaf nodes + end of coding);
19: end if
20: uncompressed bits← uncompressed bits + all bits except the bits in the bit-blocks corresponding to the available leaf nodes;
21: end for
22: Record (Qp + code + overflow pixels information + the uncompressed bits) in the multi-MSB planes.
23: Place the available embedding capacity on the LSB plane.
Output: room-vacated image Iv size by M × N
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As shown in Figure 9, all of the three parts above are concatenated and recorded
in multi-MSB planes. It can be seen that the embeddable bits are located in multi-LSB
planes and the net embedding capacity denoted by D is recorded in the last 2n bits of the
LSB plane. D can be obtained by Equation (9), where DP, L

0 and DP, L
1 separately indicate

the payload of the available Leaf _0(s) and Leaf _1(s) in level L for the bit-plane P, and Do
indicates the length of the overflow pixels information. Finally, the room-vacated image Iv
sized by M × N is generated by Equation (10), where pv(i, j) is the pixel of Iv and pk

v(i, j) is
the bits of pv(i, j).

D =
7

∑
P=0

n

∑
L=0

(DP, L
0 + DP, L

1 )− Do − 2n (9)

pv(i, j) =
7

∑
k=0

pk
v(i, j)× 27−k (10)
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2.4. Image Encryption

In the phase of image encryption, each bit of the room-vacated image except the
embedding capacity bits is encrypted by encryption key Ke, which is first used to generate a
pseudo-random matrix q with the size of M × N. Then, the pixel pv(i, j) and corresponding
q(i, j) are converted into binary sequence in accordance with Equation (3), separately
denoted by pk

v(i, j) and qk(i, j) for k = 0, 1, . . . , 7. Next, the encryption operation is executed
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according to Equation (11), where pk
e(i, j) represents encrypted bits, Φ represents the set of

embedding capacity bits, and⊕ represents the exclusive-or (XOR) operation. The encrypted
value pe(i, j) is obtained by Equation (12) and the encrypted image Ie can be generated.

pk
e(i, j) =

{
pk

v(i, j), pk
v(i, j) ∈ Φ,

pk
v(i, j)⊕ qk(i, j), otherwise.

(11)

pe(i, j) =
7

∑
k=0

pk
e(i, j)× 27−k. (12)

It should be noted that the embedding capacity bits are not encrypted, so the encrypted
image needs to be scrambled for protecting the capacity bits. By adopting the scrambling
key Ks, all the pixels in Ie are scrambled. Finally, the scrambled encrypted image Is

e
is obtained.

2.5. Data Embedding

Since multi-LSB planes include the vacated embedding room, data hiding is executed
in the vacated multi-LSB planes. The secret data are encrypted by data hider with the data
hiding key Kd before embedding, and the location of the vacated room needs to be known
first for embedding the data. By adopting the scrambling key Ks, the data hider reversely
scrambles the scrambled encrypted image Is

e to the encrypted image Ie. Then, the vacated
room capacity information placed on the LSB plane of Ie can be extracted, and all of the
embeddable bits within the multi-LSB planes are obtained. Next, the encrypted secret data
is embedded by LSB substitution. After data embedding, the encrypted image containing
secret data Id

e is scrambled again by Ks to obtain the scrambled embedded encrypted image
Is, d
e , which is finally sent to the receiver.

2.6. Data Extraction and Image Recovery

After receiving the scrambled embedded encrypted image Is, d
e , the legal receiver

should reversibly scramble Is, d
e with the scrambling key Ks first so that he can extract the

secret data from the embedded encrypted image Id
e with the data hiding key Kd without

image decryption. The original image can be restored without loss when the receiver
also owns the encryption key Ke. In other words, data extraction and image recovery
are separable.

(1) Data Extraction
The embedded data can be extracted from Is, d

e directly by the receiver who has keys
Kd and Ks. When the legal receiver gets Is, d

e , he reversely scrambles Is, d
e to obtain the

embedded encrypted image Id
e with Ks. Then, the bitstream of embedded secret data is

extracted from the multi-LSB planes of Id
e directly, and the original content of secret data is

recovered by using Kd.
(2) Image Recovery
The original image can be recovered without loss by the receiver who has keys Ke

and Ks. First, the receiver reversely scrambles Is, d
e into the embedded encrypted image Id

e ,
which can be decrypted into the embedded room-vacated image by using Ke. Because the
capacity of the embedding data can be obtained on the LSB plane directly, the secret data is
removed from multi-LSB planes and the rest on the multi-MSB planes is the three parts of
information corresponding to Section 2.3. The image can be recovered gradually according
to the three parts of information.

(a) Hierarchical Quad-tree Code Recovery

For the coding information in the first part, the number of the available bit-planes Qp
is obtained by converting the front three bits to decimal. Then the available leaf nodes of
each available bit-plane can be restored according to the subsequent bits. For the bitstream
of each available bit-plane, it starts with the bit-plane serial number recorded by 3 bits,
followed by the available leaf nodes code and ends with dlog2(n + 1)e 0s. The bit-blocks
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corresponding to the available leaf nodes can be restored according to Figure 7, i.e., the
recovery of the depth, the value, the number, and the path of the available leaf nodes.

For the code of the available leaf nodes, the front dlog2(n + 1)e binary bits are con-
verted to decimal to obtain the depth, which is the level serial number L of the leaf nodes.
Then we scan the subsequent one bit to obtain the values (0 or 1) of the leaf nodes, denoted
as β. If L = 0, there is no number code and path code for the current leaf node, otherwise
the 2L bits following the value bit are converted to decimals, and the number of the corre-
sponding leaf nodes in level L (QL

0 or QL
1 ) is obtained. Finally, the path codes of the QL

0 or
QL

1 leaf nodes can be extracted.
For the path code bitstream, if L = 1, the path code of each leaf node is separate and

recorded by 2 bits; otherwise, we convert the compressed path code to the separate path
code first. If L ≥ 2, the front (2L − 2) bits of the path code are extracted as the path code
of the current leaf nodes’ parent node, and the number of the leaf nodes from the same
parent node is obtained by the subsequent two bits. The parent node’s path code is then
connected with the subsequent 2-bit corresponding quadrant codes as the separate path
codes of the leaf nodes from the parent node. After obtaining the separate path codes, the
bit-blocks on the bit-plane can be restored without loss. Let the separate path code of each
leaf node be A = α1α2α3, . . . , α2L. The location of the bit on the upper left of the leaf node’s
corresponding bit-block is first determined by Equations (13) and (14), denoted as (I, J).
Then the length of the bit-block is calculated by Equation (15).

I = 1 +
L

∑
t=1

2n × 2−t × α2t−1 (13)

J = 1 +
L

∑
t=1

2n × 2−t × α2t (14)

λL = 2n−L (15)

b(i, j) = β, I ≤ i < I + λL, J ≤ j < J + λL (16)

Finally, all the bits in the corresponding bit-block are filled with the value of β, shown
in Equation (16). Among it, b(i, j) is the bit within the corresponding bit-block. Note that, if
the size of the received image M × N does not satisfy M = N = 2n (that is M = N 6= 2n or
M 6= N), the corresponding bit-blocks may not be square, but still satisfies Equation (16).
Since the hierarchical quad-tree coding is a lossless compression coding, the compressed
blocks can be restored without any loss.

(b) Overflow Pixels Recovery

For the bitstream of the overflow pixels information in the second part, the front 2n
bits are converted to decimals to obtain the number of the overflow pixels Qx. If Qx = 0, we
turn to the third part of the information. Otherwise, we recover the location of the overflow
pixels row by row. For each row containing overflow pixels, the row number i, the number
of the overflow pixels on the i-th row, and the column number j of each overflow pixel
on the i-th row are all recorded by n bits, respectively. We just extract the n-bits groups
in order and convert the combination of the row number and the column number (i, j) to
decimals, and then the location of the overflow pixels on the i-th row can be obtained.

(c) Uncompressed Bits Recovery

For the uncompressed bits in the last part, all of them are filled into the blank bits
in order.

After the above steps, we obtain the prediction error image Ip of which the MSB
plane is the sign marker plane. Except the reference pixels and overflow pixels (if exist),
the pixels in the image are scanned from left to right and top to bottom to restore the
predicted pixel values, because the reference pixels and the overflow pixels are preserved
after prediction. The predicted value p(i, j) of current prediction error pe(i, j) is obtained
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by MED predictor, and then the original value p(i, j) can be recovered through pe(i, j) and
p(i, j) by Equation (17), where p0

e (i, j) is the MSB of pe(i, j). Finally, the original image
without error is obtained.

p(i, j) =
{

p(i, j) + pe(i, j), if p0
e (i, j) = 0,

p(i, j)− pe(i, j) + 128, if p0
e (i, j) = 1.

(17)

It can be seen that secret data can be extracted reversibly by the receiver who only
has the data hiding key Kd and scrambling key Ks, and the lossless original image can be
restored only by the encryption key Ke and scrambling key Ks. Thus, this proposed method
is separable, reversible, and error-free.

3. Experimental Results and Analysis

In this section, we analyze the security and performance of our method and conduct
some experiments to compare our results with some state-of-the-art works based on four
usual testing images, Lena, Jetplane, Man, and Baboon, shown in Figure 10. Without loss
of generality, we also test in three well-known image databases: BOSSBase [29], BOWS-
2 [30], and UCID [31]. There are 10,000 images with sizes of 512 × 512 in BOSSBase [29]
and BOWS-2 [30], and 1388 images with sizes of 512 × 384 or 384 × 512 in UCID [31].
These three databases contain a large number of images which are sufficient to verify
the performance. Meanwhile, the related researches tend to choose images from these
three databases.
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3.1. Security Analysis

We first perform pixel prediction and compress the prediction error image based on
the hierarchical quad-tree coding to vacate embedding room, and then the room-vacated
image is encrypted through a stream cipher. In the following, we will prove our scheme
securely from two points of statistical character and probability.

First, the Lena image will be taken as an example, and experimental results of each
phase and corresponding histograms obtained by the proposed method are shown in
Figures 11 and 12, respectively. Each processing phase of the Lena image with a size of
512 × 512 is shown in Figure 11. Specifically, Figure 11a is the original image, Figure
11b shows the prediction error image based on the MED predictor, Figure 11c is the
scrambled encrypted image generated by encryption and scrambling keys Ke and Ks,
Figure 11d shows the scrambled embedded encrypted image and its embedding rate (ER)
reaches 2.869 bpp, Figure 11e is the image recovered by the scrambling key Ks and the
encryption key Ke. From Figures 11c and 11d, it is clear that the scrambled encrypted
image and the scrambled embedded encrypted image are highly confused. The correlation
among the pixels is already destroyed, and a highly secure ciphertext is generated. In
Figure 12, histogram Figure 12a includes meaningful feature information of the original
image, histogram Figure 12b indicates that the prediction error image includes many
significant edge feature information of the original image, histogram Figure 12c shows the
situation of the scrambled encrypted image after stream cipher encryption and scrambling,
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and histogram Figure 12d shows the situation of the scrambled encrypted image after
embedding the secret data. Obviously, it is impossible to obtain any useful statistical
feature information from Figure 12c because the pixels are uniformly distributed. Moreover,
statistical features of the encrypted image after data embedding and scrambling are still
significantly different from the original one, and the distribution of all pixels before and
after embedding the secret data is almost similar. Therefore, it is difficult to obtain the
content of the original image, which proves that our method is secure enough.
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Second, we further discuss the security of our method from the perspective of the proba-
bility of restoring the original image without scrambling and encryption keys. With regard to
an M× N room-vacated binary image, we encrypt all bits except the embedding capacity bits
by a pseudo-random bitstream with the length of (M× N× 8− 2× dlog2 max{M, N}e ), so
the number of this pseudo-random sequence is 2(M×N×8−2×dlog2 max{M,N}e ). In addition, the
length of the scrambling key is M × N. So the number of the pseudo-random sequence of the
scrambling key is 2M × N. These two numbers are too large. Without knowing the encryption
and scrambling keys, the right encryption sequence and scrambling sequence cannot be
obtained from so many possibilities. Thus, our method guarantees the confidentiality of
original image.

3.2. Performance Analysis

In the prediction phase, we use the MED predictor [28] to obtain predicted pixel values.
This predictor can obtain accurate predicted values in most cases, and make the bits with
the value of 0 more concentrated on the prediction error planes. A more concentrated plane
means shorter codes and less auxiliary information, thereby increasing the ER presented
by bpp. The number of the available leaf nodes and their parent nodes can be used to
calculate the total capacity of an image. Similarly, the hierarchical quad-tree coding rule and
information of the overflow pixels can also be used to calculate the length of the auxiliary
information. After obtaining the total capacity and the size of the auxiliary information, the
size of the total embedding capacity (EC) and the net payload of an image can be deduced.
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For the 512 × 512 Lena image, PSNR of the restored image shown in Figure 11 tends
to +∞, and SSIM (structural similarity) equals 1. This means that it is possible to recover
the original image without any loss as long as the scrambling and encryption keys are
known. Besides, the receiver can restore original data based on the data hiding key because
the encrypted secret data can be directly extracted from multi-LSB planes according to the
embedding capacity placed on the LSB plane. Figure 13 visually shows the eight quad-tree
map planes of the Lena prediction error image. Since the signs of the prediction errors
vary greatly on the edge data, the sign marker MSB plane shown in Figure 13a contains a
lot of edge information. Clearly, the smooth regions in the multi-MSB planes except the
MSB plane correspond to the larger blocks, which means that the predicted multi-MSBs
are usually more accurate. While in the rough regions, especially the ones with more
edge features, the corresponding blocks are smaller. Since the bits in the multi-LSB planes
are uniformly distributed, the smooth regions are few and the corresponding blocks are
small. The performance of the quad-tree-based method depends on the number of the
large blocks, so the smooth regions in multi-MSB planes are more suitable for quad-tree
compression. However, the small rough blocks are not always able to perform compression
well or even skip it. Our method exploits the advantages of the quad-tree structure to
segment the prediction error planes into blocks of different sizes according to the regional
complexity, thereby effectively exploring the characteristics of the prediction error image
and improving the performance.
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Table 1. Hierarchical quad-tree coding for the Lena image (512 × 512). 

Availa-
ble Plane 

LQ0   LU 0  
LQ1  LU1  

LL CC 10 +  
(Bits) 

LL WW 10 +  
(Bits) 

Extra Bits 
(Bits) 

Payload 
(Bits) 

0 188 (L = 7) 114 (L = 7) 45 (L = 7) 32 (L = 7) 3728 2548 7 1173 
1 1 (L = 1), 1 (L = 1),  0 0 261,072 2015 7 259,050 

Figure 13. Quad-tree map planes of Lena prediction error image.

Table 1 shows the number of available leaf nodes and their parent nodes distribution,
capacity, code length, extra bits, and payload for all available bit-planes of the Lena
prediction error image. From Table 1, we can know that the EC of the Lena image is 847,280
bits, the length of hierarchical quad-tree code for all the available bit-planes is 95,029 bits,
the length of the extra bits for each available bit-plane (that is the bit-plane serial number
and the end of the code for the bit-plane) is 7 bits, and the total is 56 bits. Obviously, the
EC minus the sum of the total code length and the amount of extra bits for the available
bit-planes is 752,195 bits, which can also be obtained from the payload of each available
plane in the last column of Table 1. Additionally, 3 bits, 18 bits, and 18 bits are required to
store the number of the available bit-planes, the overflow pixel information, and the length
of the total EC, respectively. Therefore, the total EC and the final payload are 752,156 bits
and 2.869 bpp, as seen in Table 2. Furthermore, we show the experimental results of all
four test images in Table 3. The net payloads of Lena, Jetplane, Man, and Baboon based on
our method reach 2.869 bpp, 3.247 bpp, 2.466 bpp, and 1.271 bpp, respectively.
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Table 1. Hierarchical quad-tree coding for the Lena image (512 × 512).

Available
Plane QL

0 UL
0 QL

1 UL
1

CL
0 +CL

1
(Bits)

WL
0 +WL

1
(Bits)

Extra Bits
(Bits)

Payload
(Bits)

0 188 (L = 7) 114 (L = 7) 45 (L = 7) 32 (L = 7) 3728 2548 7 1173

1

1 (L = 1),
3 (L = 2),
22 (L = 3),
34 (L = 4),
58 (L = 5),
77 (L = 6),
105 (L = 7)

1 (L = 1),
1 (L = 2),
8 (L = 3),

13 (L = 4),
22 (L = 5),
30 (L = 6),
42 (L = 7)

0 0 261,072 2015 7 259,050

2

18 (L = 3),
78 (L = 4),

196 (L = 5),
446 (L = 6),
1028 (L = 7)

9 (L = 3),
37 (L = 4),
86 (L = 5),

201 (L = 6),
440 (L = 7)

0 0 248,768 13,389 7 235,372

3

5 (L = 3),
48 (L = 4),

221 (L = 5),
720 (L = 6),
2335 (L = 7)

5 (L = 3),
30 (L = 4),

104 (L = 5),
351 (L = 6),
1086 (L = 7)

0 0 209,648 27,459 7 182,182

4

2 (L = 4),
39 (L = 5),
571 (L = 6),
3793 (L = 7)

2 (L = 4),
25 (L = 5),

345 (L = 6),
1921 (L = 7)

0 0 109,264 40,174 7 69,083

5 11 (L = 6),
619 (L = 7)

8 (L = 6),
402 (L = 7) 0 0 10,608 7020 7 3581

6 133 (L = 7) 68 (L = 7) 0 0 2128 1237 7 884
7 129 (L = 7) 65 (L = 7) 0 0 2064 1187 7 870

Total - - - - 847,280 95,029 56 752,195

Table 2. Total embedding capacity and auxiliary information for the Lena image.

Qp Length
(Bits) Qx Do (Bits) EC Length

(Bits)
Total EC

(Bits)
Net Payload

(Bpp)

3 0 18 18 752,156 2.869

Table 3. Experimental results on different testing images.

Testing
Images

Capacity
(Bits)

Code Length
(Bits)

Total Extra
Bits

(Bits)

Total EC
(Bits)

Net Payload
(Bpp)

Lena 847,280 95,029 95 752,156 2.869
Jetplane 950,592 99,319 108 851,165 3.247

Man 764,080 117,486 115 646,479 2.466
Baboon 410,736 77,433 130 333,173 1.271

Furthermore, we apply our method to conduct some experiments in three databases
BOSSBase [29], BOWS-2 [30], and UCID [31]. Because the bits with the value 0 on the
prediction error planes are more concentrated for the relatively smooth images, the total EC
is larger, and the length of hierarchical quad-tree code is shorter. As a result, more secret data
can be embedded, which means a larger net payload. On the contrary, the net payload of the
rough images is smaller because of the smaller total EC and larger auxiliary information. In
Table 4, we list the best case, the worst case, and the average value of three indicators ER,
PSNR, and SSIM for the three databases. For database BOSSBase, ER reaches from 7.824 bpp
to 0.476 bpp with the average value 3.504 bpp. For database BOWS-2, ER reaches from 7.145
bpp to 0.418 bpp with the average value 3.394 bpp. For database UCID, ER reaches from
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5.335 bpp to 0.192 bpp with the average value 2.746 bpp. Meanwhile, all of the images can
be restored without loss, i.e., PSNR→ +∞ and SSIM = 1. In additional, the SIPI [32] database
contains 73 images of a size of 256 × 256 and 53 images of a size of 1024 × 1024. In order to
evaluate the performance for images with other sizes, we also apply our method to conduct
experiments on these two types of images from the SIPI database. For the 256 × 256 images,
ER reaches from 5.321 bpp to 1.436 bpp with the average value 2.711 bpp. For the 1024 ×
1024 images, ER reaches from 3.657 bpp to 1.099 bpp with the average value 2.251 bpp. The
corresponding results and some images are given in Table 5 and Figure 14. These results
indicate the excellent performance of our method in the protection of sensitive data.

Table 4. Experimental results on three image databases.

Databases BOSSbase [29] BOWS-2 [30] UCID [31]

Best case
ER (bpp) 7.824 7.145 5.335

PSNR +∞ +∞ +∞
SSIM 1 1 1

Worst case
ER (bpp) 0.476 0.418 0.192

PSNR +∞ +∞ +∞
SSIM 1 1 1

Average
ER (bpp) 3.504 3.394 2.746

PSNR +∞ +∞ +∞
SSIM 1 1 1

Table 5. Experimental results on 256 × 256 and 1024 × 1024 images from the SIPI [32] database.

Image Size 256 × 256 1024 × 1024

Best case
ER (bpp) 5.321 3.657

PSNR +∞ +∞
SSIM 1 1

Worst case
ER (bpp) 1.436 1.099

PSNR +∞ +∞
SSIM 1 1

Average
ER (bpp) 2.711 2.251

PSNR +∞ +∞
SSIM 1 1
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3.3. Comparison with Some State-of-the-Art Methods

In this subsection, we compare our method with six state-of-the-art ones [22–27].
Figure 15 shows the comparison results of ER on four testing images including Lena,
Jetplane, Man, and Baboon. Among them, the Baboon image gains the lowest ER because it
is rough and there is too much auxiliary information recorded. In our method, the largest
embedding room is explored in the prediction error image by hierarchical quad-tree coding
for improving the ER of rough images. Clearly, our method outperforms the six previous
methods as the aspect of ER on the four testing images even for the rough image Baboon
with high auxiliary information, as seen in Figure 15.

Electronics 2021, 10, x FOR PEER REVIEW 21 of 24 

 

 

3.3. Comparison with Some State-of-the-Art Methods 
In this subsection, we compare our method with six state-of-the-art ones [22–27]. Fig-

ure 15 shows the comparison results of ER on four testing images including Lena, Jetplane, 
Man, and Baboon. Among them, the Baboon image gains the lowest ER because it is rough 
and there is too much auxiliary information recorded. In our method, the largest embed-
ding room is explored in the prediction error image by hierarchical quad-tree coding for 
improving the ER of rough images. Clearly, our method outperforms the six previous 
methods as the aspect of ER on the four testing images even for the rough image Baboon 
with high auxiliary information, as seen in Figure 15. 

  
(a) Lena (b) Jetplane 

  
(c) Man (d) Baboon 

Figure 15. Comparisons between the proposed method and the current state-of-the-art methods [22–27] on four testing 
images. 

In order to further show the advantage of our method, we conduct some experiments 
in three databases [29–31]. The average ERs of our method in BOSSBase, BOWS-2, and 
UCID reach 3.504 bpp, 3.394 bpp, and 2.746 bpp, respectively. In Figure 16, we list some 
detailed comparison results for each database by applying our method and the state-of-
the-art ones. Table 6 shows the detailed information of net payload in different image 
databases applying different methods. Clearly, our method can increase the average ER 
of three databases. These results show that our method outperforms some previously 
known ones from the average ER. 

Table 6. Net payload comparison on different image databases (bpp). 

Image Databases 
Net Payload of Different Methods 

[23] [24] [25] [22] [26] [27] Proposed Method 
BOSSbase [29] 0.966 1.447 1.999 1.957 2.323 3.361 3.504 
BOWS-2 [30] 0.968 1.346 1.836 1.881 2.245 3.246 3.394 

UCID [31] 0.893 1.179 1.035 1.586 1.877 2.688 2.746 
 

Figure 15. Comparisons between the proposed method and the current state-of-the-art methods [22–27] on four testing images.

In order to further show the advantage of our method, we conduct some experiments
in three databases [29–31]. The average ERs of our method in BOSSBase, BOWS-2, and
UCID reach 3.504 bpp, 3.394 bpp, and 2.746 bpp, respectively. In Figure 16, we list some
detailed comparison results for each database by applying our method and the state-of-
the-art ones. Table 6 shows the detailed information of net payload in different image
databases applying different methods. Clearly, our method can increase the average ER of
three databases. These results show that our method outperforms some previously known
ones from the average ER.

Table 6. Net payload comparison on different image databases (bpp).

Image
Databases

Net Payload of Different Methods

[23] [24] [25] [22] [26] [27] Proposed
Method

BOSSbase [29] 0.966 1.447 1.999 1.957 2.323 3.361 3.504
BOWS-2 [30] 0.968 1.346 1.836 1.881 2.245 3.246 3.394

UCID [31] 0.893 1.179 1.035 1.586 1.877 2.688 2.746
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4. Conclusions

In this paper, we apply hierarchical quad-tree coding and multi-MSB prediction to
present a new RDHEI method with high embedding rate. Content owner calculates the pre-
diction error to make the multi-MSB planes more concentrated and compresses redundant
information by using the hierarchical quad-tree coding to vacate larger embedding room.
The data hider can embed additional data without knowing the content of the original im-
age. Data extraction and image recovery can be performed separately on the receiver side.
Our method applies hierarchical quad-tree coding, which makes the blocks corresponding
to the available leaf nodes compressed adequately and vacated more room for embedding.
Meanwhile, vacating room before image encryption can make the most of the redundancy
in the prediction error image. Specifically, the total embedding capacity can be deduced
by the number of overflow pixels, the available leaf nodes and their parent nodes based
on the quad-tree segmentation on each available prediction error plane. Experimental
results show that the proposed method has excellent performance in privacy protection
and higher embedding rate compared with some state-of-the-art methods.

However, as can be seen from the experimental results of rough images, the embed-
ding rate is still low due to the large amount of auxiliary information and small redundancy.
Therefore, we are interested in improving prediction performance or other bit-plane re-
arrangement mechanism in the future work. Because a more accurate prediction results
in the smoother prediction error planes, which can increase the embedding capacity. In
addition, the more accurate prediction algorithm or a better bit-plane rearrangement mech-
anism is used, the fewer overflow pixels will be, thereby reducing the length of auxiliary
information and improving the performance of the method.
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