
electronics

Article

Carry-Propagation-Adder-Factored Gemmini Systolic Array for
Machine Learning Acceleration

Kashif Inayat and Jaeyong Chung *

����������
�������

Citation: Inayat, K.; Chung, J.

Carry-Propagation-Adder-Factored

Gemmini Systolic Array for Machine

Learning Acceleration. Electronics

2021, 10, 652. https://doi.org/

10.3390/electronics10060652

Academic Editor: Nikolay Hinov

Received: 1 February 2021

Accepted: 9 March 2021

Published: 11 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

System on Chips Laboratory, Department of Electronics Engineering, Incheon National University,
Incheon 22012, Korea; kashif.inayat@inu.ac.kr
* Correspondence: jychung@inu.ac.kr

Abstract: Systolic arrays are the primary part of modern deep learning accelerators and are being used
widely in real-life applications such as self-driving cars. This paper presents a novel factored systolic
array, where the carry propagation adder for accumulation and the rounding logic are extracted out
from each processing element, which reduces the area, power and delay of the processing elements
substantially. The factoring is performed in the column-wise manner and the cost of the factored logic,
placed at each column output, is amortized by the processing elements in a column. We demonstrate
the proposed factoring in an open source systolic array, Gemmini. The factoring technique does
not change the functionality of the base design and is transparent to applications. We show that
the proposed technique leads to substantial reduction in area and delay up to 45.3% and 23.7%,
respectively, compared to the Gemmini baseline.

Keywords: machine learning; Gemmini; systolic array; factorization; accelerator

1. Introduction

Recently, machine learning (ML) algorithms have acquired considerable attention
after deep learning (DL) demonstrated breakthroughs in various complex tasks such as the
ImageNet challenge. The vigorous ability of DL to solve complex tasks is not limited to
image recognition but also applicable in object detection, speech recognition, natural lan-
guage processing, etc. [1–3]. However, deep learning models require massive amounts of
computation and large memory footprints, and recent research have focused on DL acceler-
ators [4]. The matrix multiplication is the key primitive in computation of ML models, and
systolic arrays (SAs) for the matrix multiplication have been adopted widely [5,6]. Systolic
arrays, proposed in 1979, are two dimensional mesh that consist of processing elements
(PEs) organized in the form of a grid [7,8]. Due to data reusability, concurrency and simple
architectural characteristics, many industry giants such as Google [9], Nvidia [10], Intel [11]
and Samsung [12] utilized systolic array for general matrix multiplication (GEMM). With
the increasing interest in accelerators, many studies have been proposed using systolic
arrays [9–16], but to the best of our knowledge, all of them focus on dataflows to increase
memory bandwidth efficiency and maximum data reuse, etc.; none of them deal with the
logic level design of the systolic arrays. In this paper, we present a novel factored systolic
array and demonstrate it using an open-source (https://github.com/ucb-bar/gemmini)
systolic array, the Gemmini (Gemmini system on chip (SoC) RTL can be generated by
following this lab, EE-290-2, Hardware for Machine Learning, Lab-2) [17]. The main
contributions of this paper are outlined below:

• We present a novel factored systolic array, referred to as the carry-propagate-adder
(CPA)-factored systolic array.

• Using the practical systolic array baseline, we demonstrate that significant improve-
ments in key design metrics are possible without modifying the functionality of the
systolic array.

Electronics 2021, 10, 652. https://doi.org/10.3390/electronics10060652 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5504-6274
https://orcid.org/0000-0001-5819-1995
https://doi.org/10.3390/electronics10060652
https://doi.org/10.3390/electronics10060652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/ucb-bar/gemmini
https://www-inst.eecs.berkeley.edu/~ee290-2/sp20/assets/labs/lab2.pdf
https://doi.org/10.3390/electronics10060652
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10060652?type=check_update&version=2

Electronics 2021, 10, 652 2 of 11

The rest of this paper is organized as follows. Related work is given in Section 2.
We present the proposed design and the baseline in Section 3. In Section 4, we detail the
evaluation analysis. Section 5, gives the discussion and Section 6 concludes the paper.

2. Related Works

Early systolic array architectures were used to compute convolutions and GEMMs [9,13–16].
Detailed survey on ML accelerators is available in [18–21]. Researchers in academia have pro-
posed many modern SA architectures and we categorize them into the following three types:

2.1. Fixed ML Accelerator Designs

Due to incredible amount of interest in machine learning accelerators, the architecture
community has focused on designing efficient dataflows to maximize the operand reuse and
unnecessary data transfer in [22,23] for Convolutional Neural Networks (CNN). In [22],
the authors implemented indexed based Sparse CNN (SCNN) accelerator architecture
to improve the energy efficiency. However, indexed based approaches have significant
overhead costs for storing and computing on the indexes. In [23] Liu et al. introduced
density bound block (DBB) to make the bound on the number of non-zero elements in each
block to deal with the sparse data and sparsity is fixed at the design time in their scheme.
Unfortunately, with fixed sparsity any models that do not achieve or exceed this threshold
must fall back to dense operation with no benefit.

2.2. Flexible ML Accelerator Designs

To support a variety of workloads, flexible mapping by supporting multiple dataflows
has been proposed in ML accelerators [24–26]. In these studies, refs. [24,25] flexible acceler-
ators are natively designed for convolution to support data reusability. However, ref. [26]
introduces FlexSA, a flexible systolic array architecture for GEMMs operation, which dy-
namically re-configures the systolic structure. Indeed, flexibility is good for pruned or
sparse CNN accelerators but this flexibility increases implementation cost due to incre-
ment in data traffic in accelerators and extra control logic. This is acceptable for small
convolution/matrix computation but it severely increases the cost for large GEMMs.

2.3. Logic Level ML Accelerator Designs

Since the processing element and systolic array are the main components of ML
accelerators, some recent works proposed the re-architecting of these components at the
logic level [27,28], respectively. In [27], the Tetris accelerator was proposed that not only
deal with sparsity but also with zero bits in non-zero values through split-and-accumulate
(SAC) unit in PEs to increase the efficiency in accelerator. Tetris is good for small matrix tiles
but does not have enough computation power to work on larger networks without multiple
costly passes due to increment in complex control logic. In [28], Ullah et al. proposed a
factored radix-8 systolic array, in which differently sized SAs have been implemented and
suggested to perform extraction of radix-8 multiplier booth encoding and hard multiple
(3Y) computation of multiplicand Y as a pre-processing at the input of systolic array. It
also demonstrated the substantial improvements in 16 bit or higher systolic arrays, but
showed less improvements in 8 bit or lower SAs, which are typically used for inference
acceleration in edge devices.

In the above discussed previous work, much of the focus on ML accelerator design
has been on optimizing core dataflows to improve local reuse of data and reduce expensive
data movement between the processing elements, increase memory bandwidth efficiency,
etc. Thus, critically, the logic-level design of datapath components needs more attention.

We target the systolic array accelerator at logic level without adding control logic
complexities and proposed novel CPA-Factored Gemmini Systolic Array which provides
same functionality as the conventional systolic array and achieves significant improvements
in the area and delay.

Electronics 2021, 10, 652 3 of 11

3. Proposed Design
3.1. CPA-Factored Systolic Array

We consider a 2-dimensional (2-D) systolic array where PEs are organized in the
form of a mesh grid. Each PE receives two inputs A and B and utilize multiplication and
accumulation (MAC) to perform the multiplication and accumulation on every clock cycle.
Let X = A × B. Also, let CFB denote the partial sum stored in the accumulator register. The
multiplier in a PE is usually considered as a black-box primitive.

However, we consider the logic-level design of the multiplier here. Initially, the
multiplier performs partial product (PP) generation and partial product reduction in
the reduction tree. Then, it performs final addition using a carry propagation adder
(CPA), and the multiplier output X is added to CFB using another CPA. To avoid accuracy
degradation, systolic arrays for machine learning usually deploys a CPA with a high
bit-width (e.g., 32 bit instead of 8 bit or 16 bit), which causes significant delay and area
overhead in MAC computation. In systolic arrays, we can replace them with two Carry
Save Adders (CSAs) for the accumulation and place a CPA in each column output of the
array for the final addition.

A CSA is a 3:2 compressor, while reducing three inputs to two, does not propagate
carry; it rather keeps the carry (shift carry) in the next significant bit position with partial
sum (also known as pseudo sum), these two values are known as a redundant binary
representation [29,30]. For the delay and area perspective, the delay of CSA is a constant
with respect to the word-length and the area of CSA is linear. Thus, the PE delay, which is
often the critical path delay of the whole SA, and the PE area can be reduced significantly.
In addition, the area cost of the factored CPA can be amortized by PEs in a column and
becomes marginal as the size of the array increases. We refer to this structure as the CPA-
factored systolic array. However, this factoring will cause a double sequential area in each
PE because, in this case, we need to store two values (the sum and carry vectors) in two
accumulator registers (Accs, Accc) instead of one, as shown in Figure 1b.

PE

PE

PE

PE

PE

PE

PE

PE

PE

(a)

A
B

ACC

RT

PPs GEN

(b)

A
B

CSA

CSA

ACCS
 ACCC

CPA

PE

PE

PE

PE

PE

PE

PE

PE

PE

CPACPA

CC
 CS

C

C_FB

C_FBS

C_FBC

CPA

CPA

RT

PPs GEN

CC
 CS

C

Figure 1. (a) Conventional systolic array (SA) architecture (i.e., Gemmini SA). (b) Proposed carry
propagation adder (CPA)-factored systolic array architecture. The systolic architecture with the
output stationary dataflow allows us to store the partial sum in a PE in the carry save representation
and to convert it into the binary form at the column output.

Moreover, every PE propagates these two values downwards. Thus, the pipeline
register cost for output migration in the systolic array is also doubled. However, this
increment in sequential cost can be compensated by simplifying the logic in PEs.

3.2. Gemmini Systolic Array Architecture

Gemmini [17] is an open source generator of systolic array accelerators that sup-
ports multiple data flows for application-specific integrated circuits (ASICs) and field
programmable gate arrays (FPGAs) implementation. We considered a Gemmini systolic
array with output stationary data flow as shown in Figure 2 that performs all the computa-

Electronics 2021, 10, 652 4 of 11

tion on 8 bit signed inputs. This Gemmini SA consists of a set of PEs interconnected as a
2-D array. Pipeline registers are placed in the input and output of PEs in such a way that
all PEs communicate only adjacent with nominal data migration and high computational
parallelism in a wave-front flow. Input matrices A, B and D are provided at the left edge
and the top edge of the systolic array to perform the GEMM through PEs as represented by
the equation:

C = A × B + D (1)

where A and B are the multiplied matrices, C is the result and D is accumulator preload
(bias matrix) in output stationary dataflow. This architecture is a practical version of
previously discussed proposed systolic array shown in Figure 1a. The Gemmini systolic
array MAC contains an 8 bit signed multiplier for multiplication and 32 bit adder (CPA) for
accumulation. Accumulation is performed with 32 bits to avoid accuracy degradation in
machine learning. Some components (double buffer and peripheral logic (PL)) are different
than Figure 1a because original Gemmini SA supports the full utilization of MAC and
rounding (e.g., PL circuitry is to truncate the final output 32 bit into 16 or 8 bit etc.) on final
output. To enable non-stop MAC (or full utilization of MAC) computation, each PE exploits
the double buffer so that inputs can be loaded for future computation or previous results
can be propagated at output of systolic array while the current compute cycle is running.

T
ile

PE
T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

19

32

32
32

B

A D

32

Mul�plier

8 19

8 8

...

...
[15] s

19

8

C

32 [18]

1 0 0 1

32 32

32 32

0 1

19 19

19

PROP PROP

CTLCTL

7 7

C2 C1

32

32 32

16

Peripheral

Logic
Peripheral

Logic

CPACPA

PROP

Figure 2. Gemmini systolic array architecture with output stationary dataflow.

To reduce the critical path delay, it has two accumulation registers and two dedicated
datapaths, one for each register. Thus, each register has a separate accumulator (CPA) and a
peripheral logic for accumulation, as shown in Figure 2. To select the input and outputs for
computation and propagation Gemmini systolic array double buffer has two multiplexers
(2:1 MUX) at input, one big multiplexer (MUX) (2:1 MUX) at output; these multiplexers are
driven by one bit propagation (PROP) select line.

3.3. CPA-Factored Gemmini Systolic Array Architecture

The architecture of the proposed CPA-factored Gemmini systolic array with output
stationary dataflow is shown in Figure 3 that also perform all computation on 8 bit signed
inputs. In this architecture, for MAC, we utilize the radix-4 signed multiplier (we adopted
the multiplier design from [31]) and we represent the partial sum in a PE in the carry save
representation and use two carry save adders for accumulation. Thus, we can remove
all the CPAs from the PE in Gemmini. As mentioned before, the CSAs provide binary
redundant representation that contain two values (partial sum and shift carry); therefore,

Electronics 2021, 10, 652 5 of 11

in the proposed Gemmini systolic array architecture, the double buffer has four registers to
accommodate four values (two values for computation and two values for propagation).
To get the final value, we place a CPA column-wise at the output of the array to add the
partial sum and shift carry values. The PL circuitry rounds the final dot-product from a
high bit-width down to a lower bit-width.

However, because we factor out the final addition outside PEs column-wise, it is not
reasonable to deploy this PL circuitry inside PE. Thus, we factor out the PL circuitry from
all PEs and place it next to the CPA in each column with the small cost of an additional 7 bit
register for the control line CTL (five SHIFT bit, one ENABLE and one PROP) in PE and
7 bits increment in pipeline registers of systolic array. However, the overall incremented
sequential cost is further offset by removing redundant hardware, which is explained in
the coming section.

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

T
ile

PE

B
19

32

Mul�plier

A

8 71

8 8

CSA 3:2

39

39 32

71

PROP

PROP

!PROP

!PROP

CTL
7

...
[15] s

...
[15] c

19

D

8

32

3239

32

3232

1 0 0 1

0 1 0 1

3232

C1_s

C1_c

C2_s

C2_c

1616

[31:0]

C_FB

32 LSB

[63:32]

32

[70:64]

MSB 7

CTL, CC, CS

39

32

CPA

Peripheral

Logic

32

CPA

Peripheral

Logic

32

CPA

Peripheral

Logic

CTL

7

CTL

7

CTL

7

Figure 3. CPA-Factored Gemmini systolic array architecture with output stationary dataflow.

3.4. Double Buffer Complexities in Systolic Arrays

As mentioned earlier, the Gemmini SA double buffer has two datapaths, that is basically
to remove the multiplexer delay from the critical path of the accumulator, but it also creates
a redundancy in the hardware and this redundant hardware is replicated across all PEs in
the systolic array, increasing the overall area of the systolic array significantly. However, the
proposed CPA-factored Gemmini systolic array exploit the double buffer, which has two
dedicated outputs (one for accumulator computation and one for output propagation) and a
common accumulator (CSAs) inside PE. This helps to remove the redundant adder and factor
out a common PL circuitry. In this way, the CPA-factored Gemmini systolic array offsets the
aforementioned effect of sequential area growth in the total area. The proposed SA double
buffer has two multiplexers at input and two multiplexers at output, adding a multiplexer
delay in the MAC critical path but our MAC design can accommodate this as we already
eliminated the CPA delay in the MAC critical path.

4. Evaluation and Analysis
4.1. Evaluation Setup and Baseline

In this work, our baseline is Gemmini generated 8 × 8 output stationary SA archi-
tecture with 32 bit accumulator word-length (acc. WL). Therefore, we compared the the
proposed PE and SA designs with the Gemmini designs. We also analyzed the proposed PE
and SA designs in comparison to the Gemmini PE and SA designs at different accumulator

Electronics 2021, 10, 652 6 of 11

word-lengths (16, 32 and 64 acc. WL). All the designs were implemented in Verilog and
verified using Synopsys VCS. For verification, we built the test binaries using bare-metal
software (Bare-metal software given in the Gemmini open source repository) test and
checked the correctness of both designs in bare-metal environment. Moreover, an indus-
trial 32 nm standard cell library was used to map the designs and was synthesized by the
Synopsys Design Compiler. For the power measurements, PrimePower was used. The
first switching activity interchange format (SAIF) file was generated by post processing
the gate-level simulation using random input vectors in VCS; then, power dissipation was
acquired by annotating the SAIF file to the netlist. All experiments were performed on a
Linux machine.

4.2. Comparison of 8 × 8 Systolic Array with 32 Acc. WL
4.2.1. Processing Element

The comparison of PE area, delay, power, power delay product (PDP) and area delay
product (ADP) is shown in Table 1. Even though the binary redundant representation and
the forwarded control signals added the register cost in the proposed PE as compared to
the baseline, the baseline Gemmini systolic array’s PE total area is still higher compared to
the proposed SA’s PE. Similarly, as in the proposed CPA-factored Gemmini SA, we used
two CSAs instead two CPAs and removed the CPA completely from the PE, on average the
total delay is also improved.

Table 1. Implementation results for 8 × 8 Gemmini [17] and the proposed CPA-Factored Gemmini
processing elements (PEs).

Designs Size Area Delay Power PDP ADP
(µm2) (ns) (mW) (ns·mW) (ns·µm2)

Gemmini [17] 8 6763 2.01 1.01 2.02 13, 594

Proposed 8 3782 1.67 1.14 1.90 6316

However, since the sequential area is more than double in the proposed design due
to redundant representation and the control signal, the power gets degraded slightly as
compared to Gemmini designs. Overall the proposed PE shows improvement in all the
key metrics over the baseline except power and have been normalized with respect to
the baseline as shown in the Figure 4 (left). It can be seen that the area and delay of the
proposed PE are 44.1%, 16.9% less than those of the Gemmini systolic array PE, respectively.
The PDP and ADP are also improved by 6.1% (improvement in PDP is not significant due
to the power degradation) and 53.5% as compared to Gemmini PE, respectively.

Ar
ea

De
lay

Po
we
r

PD
P

AD
P

0.0

0.5

1.0

N
or
m
al
iz
ed

PE
Ar
ea

De
lay

Po
we
r

PD
P

AD
P

0.0

0.5

1.0

N
or
m
al
iz
ed

SA

 Gemmini Proposed

Figure 4. Performance comparison of 8 × 8 proposed CPA-Factored Gemmini PE, SA and baseline
Gemmini PE, SA.

Electronics 2021, 10, 652 7 of 11

4.2.2. Systolic Arrays

The performance comparison of CPA-factored Gemmini SA area, delay, power, PDP
and ADP is shown in Table 2 with baseline Gemmini SA. The additional bits we stored
in PE cost in the systolic array as well, because we have pipeline registers at input and
output of each PE to keep data migration in wave-front flow. However, at the same time,
the factorization of CPAs, peripheral circuitry and modified double buffer not only balance
out the aforementioned sequential area cost by removing the combinational area but also
reduce the total area significantly in the proposed systolic array as compared to the baseline
Gemmini systolic array.

Table 2. Implementation results for 8 × 8 Gemmini [17] and proposed CPA-Factored Gemmini
systolic arrays (SAs).

Designs Size Area Delay Power PDP ADP
(mm2) (ns) (W) (ns·W) (ns·mm2)

Gemmini [17] 8 0.46 2.02 0.074 0.1489 0.94

Proposed 8 0.31 1.72 0.083 0.142 0.53

The area and delay of CPA-Factored Gemmini SA are 33.3% and 14.9% less than those
of Gemmini SA, respectively (the proposed SAs evaluation normalized metrics are shown
in Figure 4 (right) to those of corresponding baseline for the comparison). Moreover, the
PDP and ADP performance of proposed SA is 4.7% and 43.1% better than those of the
baseline, respectively.

4.3. Comparison of Different Acc. WL Systolic Arrays

We also compared the proposed design of PEs and SAs with different acc. WLs
according to all key metrics (area, delay, etc) with Gemmini designs in Table 3. In the
PEs, due to the proposed CPA factoring, the combinational area improvement increases
as the acc. WL increases, but the delay improvement remains stable (as now there is no
carry propagation in the PE design: thus, this improvement is stable with the accumulator
length.) because of CSAs.

Table 3. Implementation results for 16, 32 and 64-bit accumulator word-length (acc. WL) Gemmini and proposed CPA-
Factored Gemmini SAs.

Design Acc.
WL

Gemmini [17] Proposed

Area Delay Power PDP ADP Area Delay Power PDP ADP
(µm2) (ns) (mW) (ns·mW) (ns·µm2) (µm2) (ns) (mW) (ns·mW) (ns·µm2)

PE
16 2929 1.96 0.62 1.21 5741 2508 1.67 0.47 0.79 4188
32 6763 2.01 1.01 2.02 13, 594 3782 1.67 1.14 1.90 6316
64 14, 495 2.38 1.57 3.73 34, 498 6270 1.67 2.10 3.67 10, 471

Design Acc.
WL

Gemmini [17] Proposed

Area Delay Power PDP ADP Area Delay Power PDP ADP
(mm2) (ns) (W) (ns·W) (ns·mm2) (mm2) (ns) (W) (ns·W) (ns·mm2)

SA
16 0.22 1.99 0.047 0.094 0.43 0.20 1.68 0.038 0.063 0.34
32 0.46 2.02 0.074 0.15 0.94 0.31 1.72 0.083 0.142 0.53
64 0.97 2.48 0.125 0.30 2.37 0.53 1.87 0.157 0.294 0.99

For SAs, Figure 5 breaks the combinational and sequntial area down for insight
comparison with the delay. It can be seen that the reduction in the SA combinational
area and delay (26.9–68%, 14.7–23.7%, respectively) significantly increases as the acc. WL
increases and correspondingly, the degradation in sequential area is not significant. Thus,
it reduces the total area (7.1–45.3%) in the proposed SAs too as the acc. WL increases.
Moreover, the PDP and ADP performance of the proposed SAs is up to 31.9% and 58.2%
better than those of baseline, respectively.

Electronics 2021, 10, 652 8 of 11

16 WL 32 WL 64 WL
0.0

0.2

0.4

0.6

0.8

A
re

a
(m

m
2)

 Gemmini SA Combinational
 Gemmini SA Squential

SAs

 Proposed SA Combinational
 Proposed SA Squential

1.6

1.8

2.0

2.2

2.4

 Gemmini SA Delay Proposed SA Delay

D
el

ay
 (n

s)

Figure 5. Delay, combinational area and sequantial area comparison of different accumulator
wordlength (acc. WL) proposed CPA-Factored Gemmini systolic arrays (SAs) and baseline SAs.

5. Discussion

CPA-factored Gemmini SA focuses its whole systolic array design at the logic level on
improving the overall area and the delay for machine learning accelerators, which is very
different from the direction taken in many of the previous state-of-the-art works.

Broadly speaking, the architecture community has focused on exploring of possible
dataflows by exploiting model sparsity and model pruning, etc., and proposed fixed or
flexible machine learning accelerators. All of these works are highly relevant to this field
but do have some limitations: First, most of these ML accelerators use convolutional
neural networks (CNNs) and few mentioned other neural networks (NNs). Unfortunately,
according to Google, CNN utilization in data center NNs is barely 5% and mostly utilized in
edge devices [9]. Second, fixed or flexible ML accelerators both work well with small scale
convolution/matrix computation but for large GEMMs computation, design complexities
increase, such as threshold match, huge data communication and additional control logic.

For large GEMMs, Google introduced the first tensor processing unit (TPUv1) in [9],
which used an 8-bit integer systolic array to accelerate the inference and to replace gen-
eral purpose computing units such as GPUs/CPUs in data centers. In TPUv1, the main
architecture feature was the systolic array, which reduces the area and power of the large
matrix multiplication unit. However, the MAC of TPUv1 (and many other ML accelera-
tors including Gemmini) utilize conventional components (e.g., multipliers and adders).
Recently, ref. [28] proposed the factored systolic array (FSA) using the radix-8 multiplier,
in which the authors adopted non-conventional approach by considering systolic array
and multiplier together and factored out the booth encoding and hard multiple (3Y) as
a pre-processing unit. However, it is worth noting that the systolic array (either radix-4
or radix-8 multiplier) delay and area complexity mainly lies on the MAC accumulation
feedback. The carry propagate adder is the main bottleneck in this feedback as it adds a
huge delay due to the carry propagation. Thus, this delay increases as the accumulator
word-length increases.

Therefore, in this paper we suggested considering systolic array and computing
components multiplier and adders all together (unlike [28], which considered only SA and
multiplier). We demonstrated the idea of performing accumulation using CSAs inside PE
in binary redundant form and factoring out the CPA from PE and placed column-wise in
SA for the final addition to get the final output. We have seen that this simple proposed
technique leads to a substantial reduction in the area and delay.

Electronics 2021, 10, 652 9 of 11

Since the proposed design gained significant improvement in the area and delay, it
can be useful in data centers or for the cloud: whether in training or inferences as in both
cases area and delay constraints applies to accelerators.

6. Conclusions

This work presented a novel systolic array based on CPA and rounding logic factoring,
and demonstrated that the proposed CPA-Factored SA can substantially ameliorate the
area and delay. This factoring is done at the cost of an increased number of registers in the
processing elements and systolic arrays, which cause power degradation. However, the
growth in sequential area is compensated for by reducing the double buffer complexities
and removing the redundant hardware. Compared with the baseline Gemmini SA design
equipped, the CPA-Factored Gemmini SA achieved significant improvements in area and
delay. Moreover, we have also shown that, for high precision cases when acc. WL increases,
the reduction in area and delay also increases substantially when compared to the baseline.

Consequently, this paper provides substantial evidence of the critical importance of
the reconsideration in the design path of arithmetic components for machine learning
accelerators. For future research, we believe more exploration is required in that research
path to enable these designs to work on low-powered edge devices, which may be our
future work.

Author Contributions: Conceptualization, J.C.; data curation, K.I.; formal analysis, K.I. and J.C.;
funding acquisition, J.C.; investigation, K.I. and J.C.; methodology, K.I. and J.C.; project adminis-
tration, J.C.; software, K.I.; supervision, J.C.; validation, K.I. and J.C.; writing—original draft, K.I.;
writing—review and editing, J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Samsung Research Funding & Incubation Center of Samsung
Electronics under Project Number SRFC-TB1803-02.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ML Machine Learning
DL Deep Learning
GEMM General Matrix Multiplication
CNN Convolutional Neural Network
MAC Multiplication and Accumulation
SAC Split-and-Accumulate
PP Partial Product
CPA Carry Propagate Adder
CSA Carry Save Adder
SA Systolic Array
PE Processing Element
ADP Area Delay Product
PDP Power Delay Product

References
1. Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.; Srinivasan, S.; Das, D.; Kaul, B.; Krishna, T. SIGMA: A sparse and irregular

gemm accelerator with flexible interconnects for dnn training. In Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February 2020; pp. 58–70.

2. Hegde, K.; Yu, J.; Agrawal, R.; Yan, M.; Pellauer, M.; Fletcher, C. UCNN: Exploiting computational reuse in deep neural networks
via weight repetition. In Proceedings of the ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, 1–6 June 2018; pp. 674–687.

3. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of go without human knowledge. Nature 2017, 550, 354–359 . [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature24270
http://www.ncbi.nlm.nih.gov/pubmed/29052630

Electronics 2021, 10, 652 10 of 11

4. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep NEURAL Networks; Synthesis Lectures on Computer
Architecture; Morgan and Claypool Publishers: San Rafael, CA, USA, 2020; Volume 15, pp. 1–341 .

5. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105,
2295–2329. [CrossRef]

6. Kwon, H.; Chatarasi, P.; Pellauer, M.; Parashar, A.; Sarkar, V.; Krishna, T. Understanding reuse, performance, and hardware
cost of dnn dataflow: A data-centric approach. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, Columbus, OH, USA, 12–16 October 2019; pp. 754–768.

7. Kung, H.T.; Leiserson, C.E. Algorithms for VLSI processor arrays/eds. In Introduction to VLSI Systems; Mead, C., Conway, L., Eds.;
Addison-Wesley: Boston, MA, USA, 1979.

8. Gentleman, W.M.; Kung, H.T. Matrix triangularization by systolic arrays. In Real-Time Signal Processing IV; International Society
for Optics and Photonics: Bellingham, DC, USA, 1982; Volume 298, pp. 19–26.

9. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

10. NVIDIA. Nvidia Turing Gpu Architecture; NVIDIA: Santa Clara, CA, USA, 2019.
11. Cyphers, S.; Bansal, A.K.; Bhiwandiwalla, A.; Bobba, J.; Brookhart, M.; Chakraborty, A.; Constable, W.; Convey, C.; Cook, L.;

Kanawi, O.; et al. Intel ngraph: An intermediate representation, compiler, and executor for deep learning arXiv 2018,
arXiv:1801.08058.

12. Song, J.; Cho, Y.; Park, J.S.; Jang, J.W.; Lee, S.; Song, J.H.; Lee, J.G.; Kang, I. 7.1 an 11.5 tops/w 1024-mac butterfly structure
dual-core sparsity-aware neural processing unit in 8nm flagship mobile soc. In Proceedings of the IEEE International Solid-State
Circuits Conference-(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 130–132.

13. Kung, H.T.; Song, S.W. A Systolic 2-d Convolution Chip; Technical Report; Department of Science, Carnegie-Mellon University:
Pittsburgh, PA, USA, March 1981.

14. Kung, H.T. Why systolic architectures? IEEE Comput. 1982, 15, 37–46. [CrossRef]
15. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]
16. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Toward uniformed representation and acceleration for deep

convolutional neural networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 2072–2085. [CrossRef]
17. Genc, H.; Haj-Ali, A.; Iyer, V.; Amid, A.; Mao, H.; Wright, J.; Schmidt, C.; Zhao, J.; Ou, A.; Banister, M.; et al. Gemmini: An agile

systolic array generator enabling systematic evaluations of deep-learning architectures. arXiv 2019, arXiv:1911.09925.
18. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive

survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
19. Capra, M.; Bussolino, B.; Marchisio, A.; Shafique, M.; Masera, G.; Martina, M. An updated survey of efficient hardware

architectures for accelerating deep convolutional neural networks. Future Internet 2020, 12, 113. [CrossRef]
20. Dave, S.; Baghdadi, R.; Nowatzki, T.; Avancha, S.; Shrivastava, A.; Li, B. Hardware acceleration of sparse and irregular tensor

computations of ml models: A survey and insights. arXiv 2020, arXiv:2007.00864.
21. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-based accelerators of deep learning networks for learning and classification:

A review. IEEE Access 2018, 7, 7823–7859. [CrossRef]
22. Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.W.; Dally, W.J. SCNN:

An accelerator for compressed-sparse convolutional neural networks. Acm SIGARCH Comput. Archit. News 2017, 45, 27–40.
[CrossRef]

23. Liu, Z.G.; Whatmough, P.N.; Mattina, M. Systolic tensor array: An efficient structured-sparse gemm accelerator for mobile cnn
inference. IEEE Comput. Archit. Lett. 2020, 19, 34–37. [CrossRef]

24. Lu, W.; Yan, G.; Li, J.; Gong, S.; Han, Y.; Li, X. Flexflow: A flexible dataflow accelerator architecture for convolutional neural
networks. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), Hilton,
Austin, TX, USA, 4–8 February 2017; pp. 553–564.

25. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

26. Lym, S.; Erez, M. Flexsa: Flexible systolic array architecture for efficient pruned dnn model training. arXiv 2020, arXiv:2004.13027.
27. Lu, H.; Wei, X.; Lin, N.; Yan, G.; Li, X. Tetris: Re-architecting convolutional neural network computation for machine learning

accelerators. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA,
USA, 5–8 November 2018; pp. 1–8.

28. Ullah, I.; Inayat, K.; Yang, J.S.; Chung, J. Factored radix-8 systolic array for tensor processing. In Proceedings of the 57th
ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1-6.

29. Ercegovac, M.D.; Lang, T. Digital Arithmetic; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2004.
30. Hwang, K. Computer Arithmetic Principles, Architecture, and Design; John Wiley and Sons Inc: Hoboken, NJ, USA, 1979; pp. 69–91.
31. Bewick, G.W. Fast Multiplication: Algorithms and Implementation. Ph.D. Thesis, Department of Electrical Engineering, Stanford

University, Stanford, CA, USA, 1994.

http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/MC.1982.1653825
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1109/JPROC.2020.2976475
http://dx.doi.org/10.3390/fi12070113
http://dx.doi.org/10.1109/ACCESS.2018.2890150
http://dx.doi.org/10.1145/3140659.3080254
http://dx.doi.org/10.1109/LCA.2020.2979965
http://dx.doi.org/10.1109/JETCAS.2019.2910232

Electronics 2021, 10, 652 11 of 11

Short Biography of Authors

Kashif Inayat received his B.E degree in electronics engineering from Iqra Univeristy Islamabad
Campus, Pakistan in 2014, his M.S. degree in electronics and computer Engineering in 2019 from
Hongik University, South Korea. He worked as a engineer at Digital System Design Lab at Iqra
University Islamabad, from 2014 to 2017. He also worked as a researcher at R&D Institute Incheon
National University on Samsung Electronics funded projects, South Korea. He is currently pursuing
his Ph.D. in electronics engineering at Incheon National University. His current research interests
include neuromorphic, computer arithmetics and information security.

JAEYONG CHUNG received the B.S. degree in electrical engineering from Yonsei University, Seoul,
South Korea, in 2006, and the M.S. and Ph.D. degrees in electrical and computer engineering from
the Department of Electrical and Computer Engineering, University of Texas, Austin, in 2008 and
2011, respectively. He worked at the Strategic CAD Lab (SCL), Intel and IBM T.J. Watson Research
Center, from summer 2008 and summer 2010, respectively. From 2011 to 2013, he was with the Design
Compiler Team, Synopsys, Inc., Mountain View, CA. He is currently an Associate Professor with
the Department of Electronic Engineering, Incheon National University, Incheon, South Korea. His
current research interests include neuromorphic systems and deep learning.

	Introduction
	Related Works
	Fixed ML Accelerator Designs
	Flexible ML Accelerator Designs
	Logic Level ML Accelerator Designs

	Proposed Design
	CPA-Factored Systolic Array
	Gemmini Systolic Array Architecture
	CPA-Factored Gemmini Systolic Array Architecture
	Double Buffer Complexities in Systolic Arrays

	Evaluation and Analysis
	Evaluation Setup and Baseline
	Comparison of 88 Systolic Array with 32 Acc. WL
	Processing Element
	Systolic Arrays

	Comparison of Different Acc. WL Systolic Arrays

	Discussion
	Conclusions
	References

