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Abstract: Analysis of the connection between different units that operate in the same area assures
always interesting results. During this investigation, the concerned area was a virtual power plant
(VPP) that operates in Poland. The main distributed resources included in the VPP are a 1.25 MW
hydropower plant and an associated 0.5 MW energy storage system. The mentioned VPP was a source
of synchronic, long-term, multipoint power quality (PQ) data. Then, for five related measurement
points, the conclusion about the relation in point of PQ was performed using correlation analysis,
the global index approach, and cluster analysis. Global indicators were applied in place of PQ
parameters to reduce the amount of analyzed data and to check the correlation between phase values.
For such a big dataset, the occurrence of outliers is certain, and outliers may affect the correlation
results. Thus, to find and exclude them, cluster analysis (k-means algorithm, Chebyshev distance)
was applied. Finally, the correlation between PQ global indicators of different measurement points
was performed. It assured general information about VPP units’ relation in point of PQ. Under the
investigation, both Pearson’s and Spearman’s rank correlation coefficients were considered.

Keywords: correlation analysis; clustering; power quality; multipoint measurement; virtual power plant

1. Introduction

The integration of renewable energy sources (RES) and energy storage systems (ESSs)
into electrical power networks is increasing scientifically. The important issue is to enable
controlling them efficiently. The present approach to assure this is integration into micro-
grids and virtual power plants (VPPs) [1]. Generally, VPPs are integrated units that are
equipped with an effective power flow control system. Virtual power plants consist of
generators, loads, and energy storage systems [2]. The research issues that are connected
with VPPs may be, e.g., energy management in VPPs [3–5]; active and reactive power
scheduling optimization [6–8]; playing a role in the energy market [9–11]; voltage control
by RES integrated in VPPs [12–14]; localization and management of EESs in VPPs [15–17];
power flow control and analysis [18–20]. Further, studies so far concern real cases from
Europe (Germany [21], Denmark [22], Greece [23], Ireland [24], United Kingdom [25]) or
other world regions (Australia [26], China [27], South Korea [28], India [29]). The general
methods presented in this article are connected with correlation analysis and cluster analy-
sis, which are applied to power quality (PQ) issues in VPPs. Thus, the literature review
concerns the mentioned issues.

The authors of [30] presented a method to identify the PQ disturbance sources based
on the monitoring data correlation between different nodes of the power system. The ap-
plied correlation methods were based on, e.g., the Pearson coefficient, the Spearman rank
coefficient, or the partial correlation coefficient. The correlation is calculated between both
the voltage and current indices to extract specific (problematic) nodes. The authors of [31]
considered using the technique for order preference by similarity to an ideal solution strat-
egy in consideration of the correlation between power quality indices to evaluate the power
quality. The investigated PQ indicators were based on frequency deviation, total harmonic
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distortion in voltage, voltage fluctuation, voltage flicker, voltage deviation, and three-phase
voltage unbalance. The applied correlation coefficient was Pearson. The authors of [32]
investigated the correlation between weather conditions and the flicker phenomenon.
The investigation was conducted in light of photovoltaics (PV) generation. The correlation
was performed using the Pearson coefficient. The authors of [33] considered the correla-
tion between total harmonic distortion in the current of the selected load and the energy
error of the meter. It was realized in order to solve the electric circuit that was supplied
from the inverter through a digital kWh meter. The investigated kind of correlation was
linear and assured the conclusion that independent factors are not significant. The authors
of [34] studied a method of voltage and current measurements from the point of common
coupling. The indicated measurements were filtered to isolate the flicker frequencies and
correlation coefficients were applied to define the source of the flicker. The authors of [35]
investigated the daily power generation during the year 2019. The research object was
a typical onshore wind power plant that consists of a 2 MW wind turbine. During the
investigation, the influence of meteorological factors on the power generation and PQ
level was assessed using Spearman’s rank correlation coefficient. The authors of [36] dealt
with the correlation between wind power and load in different weather conditions. The
research results enabled reducing the double uncertainties on the sides of the source and
load. In this research, X-means clustering was adopted to divide the daily meteorological
factors of wind speed and temperature. Then, the Pearson, Kendall, and Spearman corre-
lation coefficients were applied to assess the mentioned correlation. The authors of [37]
studied the total harmonic distortion performance of solar inverters. This article proposed
k-means cluster analysis to perform a characterization of the Total Harmonic Distortion
(THD) current from the collected data. The article also investigated the correlation of the
THD current, solar irradiance, and inverter’s output power ratio. The article proposed
applying a clustering-based analytical method using the k-means algorithm with Euclidean
distance to hybrid probabilistic and interval power flow calculation. Another important
element of the article was the application of the Pearson correlation coefficient to analyze
the correlations of input variables to obtain more realistic results of uncertain power flow
calculations. The authors of [38] conducted an influence analysis of household appliances
on the PQ of the energy consumed by the end-user. The investigation was realized at the
low voltage (LV) level. The methodology proposed using Pearson and Kendall correla-
tion analysis to define the measure of the relationship between linearly related variables.
The k-means algorithm is often used to determine a division of PQ parameters from the
observed measurement time. The authors of [39] conducted a comparative investigation
of using 1-min and 10-min aggregation times in PQ assessment and correlation analysis.
Correlation analysis was performed for PQ parameters and weather conditions of a 100 kW
PV power plant that is part of a VPP. The correlation was based on the Pearson coefficient.

Based on the literature review, the observations indicate that correlation analysis was
performed for single PQ parameters or for a single measurement point. The combination
of using global indices for area-related measurement points was not realized. Additionally,
all the investigations were realized without data cleaning as a first step to exclude outliers
before correlation analysis. Thus, in this research, deep correlation analysis was performed
for data that were cleaned using cluster analysis.

The presented case study is based on the analysis of a real virtual power plant that op-
erates at both low-voltage (LV) and medium-voltage (MV) distribution networks in Poland.
The studied part of the VPP concerns a 1250 kW hydropower plant (HPP), an associated
500 kWh battery energy storage system (BESS), and two LV loads. The aim of the research
concerns power quality issues in the indicated part of the VPP. The investigation was based
on synchronic, multipoint measurement performed on five related points. The range of
measurement contained 182 days—from 1 May 2020 to 28 October 2020. Therefore, this to-
tals 26 weeks, which represents the operation of the real VPP. To such a big PQ dataset,
the concept of global values was introduced. In the literature, it is known under different
names such as unified power quality index [40,41]; global power quality index [42,43]; syn-
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thetic power quality index [44,45]; or total power quality index [46,47]. Then, the selected
global indicators [42,43] were applied in place of PQ parameters to verify their correlation.
However, for such a big dataset, the occurrence of outliers is certain. To find and exclude
them, CA was applied. The selected algorithm was k-means with Chebyshev distance.
Finally, the correlation between PQ global indicators of the five mentioned points was
performed. I go on to assure the general information about VPP units’ relation in point of
PQ. Under the investigation, both Pearson’s and Spearman’s rank correlation coefficients
were considered and compared.

The article’s contributions are as follows:

• The investigation is based on real synchronic and multipoint measurement from the
virtual power plant. The data concern a long-term period of time—26 weeks.

• The article proposes using a global indicator in place of classical parameters to reduce
the size of the analyzed dataset. The indicators, where applicable, represent three
phase values as one value with maintaining features of each phase. Further, global
indicators are standardized to the limits of the selected PQ standard to simplify and
uniform the comparison and assessment.

• The global indicator concerns outside classic 10-min parameters, the extremum
200-millisecond values of voltage, and total harmonic distortion in voltage.

• Cluster analysis with the k-means algorithm and Chebyshev distance is proposed to
detect and exclude the outliers from the dataset, in order to assure that correlation
assessment is realized from a general point of view.

• The correlation between the different measurement points in view of PQ is realized
using both Pearson’s and Spearman’s rank correlation coefficients.

To summarize, the main aim of the investigation was to conduct correlation analysis
for multipoint measurement from the VPP cleaned by the CA method using PQ indicators
in place of classic parameters.

The article is organized into five sections. Section 2 introduces the source of data
and proposed methodology. Section 3 presents the result of combined correlation and
cluster analysis for PQ data from the VPP. Section 4 contains the discussion of results.
Section 5 draws conclusions.

2. Methodology

The methodology part of this research is based on three main issues. The first one is the
proposition of using global values in place of classic PQ parameters. Then, correlation analysis
using both Pearson’s and Spearman’s rank coefficients is proposed to define the relation in
point of PQ. Finally, the cluster analysis approach is proposed to find and exclude the outliers
that have a big impact on the correlation analysis, in order to assure that the correlation results
are appreciated. To summarize this methodology, Figure 1 was prepared.

Figure 1. Summary of the proposed methodology with the expected outcomes.

2.1. Global Indicators

The present extension of PQ analysis is the application of global values that represent
more parameters but maintain their features. This article used the indicators of a global
index—the aggregated data index (ADI)—used in, e.g., [42,43]. It includes both classic
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10-min PQ parameters and extreme values from 10-min data. The indicators used in this
investigation were the voltage indicator (I_U), voltage envelope indicator (I_∆U), flicker in-
dicator (I_Pst), unbalance indicator (I_ku2), harmonic indicator (I_THDu), and maximal
harmonic indicator (I_THDumax). The indicators were obtained in the indicated manners:

• The voltage indicator as a mean value of differences between the nominal values
and three phase values of the voltage and standardized to the limit value from the
selected standard;

• The voltage envelope indicator as a difference between 200 millisecond maximal
and minimal values of voltage noticed in the same 10-min aggregation time and
standardized to the double limit value of the selected standard;

• The unbalance indicator is standardized to the limit value from the selected standard;
• The flicker indicator and harmonic indicator as a mean value of the three phase values

and standardized to the limit value from the selected standard.

The applied indicators generally assure one value, which represents three phase
values. The extension to classic assessment is the application of 200 millisecond extremal
values, which proceed from each 10-min datum for voltage and total harmonic distortion in
voltage. Additionally, all of them respond to the limit values of the standard. The selected
standard during this investigation was the European standard EN 50160 [48], and the limit
values were as follows:

• Voltage: 10 % of declared voltage;
• Short-term flicker severity: 1.0;
• Unbalance—2%;
• Total harmonic distortion in voltage—8%.

2.2. Correlation Analysis

Analysis of the correlation between variables enables describing the relationship
between them [49]. In a general way, the correlation seems like an easy process [50].
However, during correlation assessment, there is a need to analyze different circumstances,
e.g., [51]:

• Linear or nonlinear dependence of data; thus, if nonlinear data are treated as linear,
they may affect the final assessment;

• Correlation analysis is very sensitive to outliers.

Thus, for different types of data, different correlation coefficients are applied [52].
The commonly used coefficients are Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient. In point of the mathematical equation for both, Equation (1) presents
Pearson’s coefficient and Equation (2) Spearman’s rank coefficient [53].

rP =
∑N

i=1(xi − x)(yi − y)

∑N
i=1(xi − x)2 ∑N

i=1(yi − y)2 (1)

rS = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
(2)

where:

• rP—Pearson’s correlation coefficient;
• rS—Spearman’s rank correlation coefficient;
• xi, yi—i-th values of observations from populations x and y;
• x, y—means from populations x and y;
• di = r1i − r2i—the difference between the ranks of the corresponding feature values xi

and yi;
• r1i—rank of the i-th object in the first ordering;
• r2i—rank of the i-th object in the second ordering;
• n—number of objects under study.
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Both coefficients reach values in the range of [−1,1] [54]. The interpretation of the
correlation level based on the determined correlation coefficients is presented in Table 1.

Table 1. Correlation level description based on correlation coefficient level [55].

Coefficient Correlation Level Description

r = 0 No correlation
0 < |r| ≤ 0.1 Slight correlation

0.1 < |r| ≤ 0.4 Poor correlation
0.4 < |r| ≤ 0.7 Noticeable correlation
0.7< |r| ≤ 0.9 High correlation

0.9 < |r| Strong correlation

The crucial element during correlation analysis is to select the appreciated coefficient
due to its feature [56]. The Pearson coefficient features are as follows:

• The analyzed values must have a distribution comparable to a normal distribution;
• It is required that there is a linear relationship between the variables.

The Spearman rank coefficient:

• It is more robust to outliers compared to Pearson’s correlation coefficient;
• It can be used to determine any monotonic relationship, including nonlinear relationships.

Additionally, to verify the correlation, the following hypotheses were defined [57]:

• H0: δ = 0;
• H1: δ 6= 0.

The statistic assumes a Student’s t-distribution with k = n − 2 steps. The value of
the test statistic is determined by comparing the p-value (obtained from the Student’s
t-distribution) with the assumed significance level α. The most common significance level
α is equal to 0.05. To conclude [49]:

• If the p-value is less than the significance level (α = 0.05) then decision: reject H0.
This means that there is sufficient evidence to conclude that there is a significant
relationship between parameters because the correlation coefficient is significantly
different from 0.

• If the p-value is not less than the significance level (α = 0.05) then decision: do not
reject H0. This means that there is insufficient evidence to conclude that there is a
significant linear relationship between parameters because the correlation coefficient
is not significantly different from 0.

2.3. Cluster Analysis to Disclude Outliers

Correlation analysis, especially using Pearson correlation, is very sensitive to outliers.
Thus, to obtain general information about relations, the outliers should be excluded. How-
ever, excluding data from long-term data that are represented by many parameters may
be hard. The proposed solution in this article is cluster analysis (CA), as a representative
of data mining techniques [58]. The main aim of clustering is to assure the division of
data at the point of their features [59]. Non-hierarchical CA is based on assigning all
observations to the earlier known number of clusters in order to maximize/minimize some
evaluation criteria [60]. Non-hierarchical methods may be based on different algorithms
such as the k-means algorithm, the k-median algorithm, or the expectation maximization
(EM) algorithm. Further, one of the issues is to select an appreciative measure of distance.
The known measures are, e.g., Euclidean, Manhattan, or Chebyshev.

In this paper, the author suggests using the non-hierarchical approach with the k-
means algorithm with Chebyshev distance. The Chebyshev distance was selected because
it is very sensitive to the extreme value of the parameters [61]. It enables finding outliers
from the data [62]. The k-means algorithm aims to find the extremum of the objective
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function using the measure of the distance between objects. The applied k-means algorithm
function with Chebyshev is presented in Equation (3) [63,64]:

OF (OB, CM) = ∑c
i=1 ∑d

j=1 eij ∗∑i max |ai − bi|, (3)

where:

• OF—objective function;
• OB—matrix of the object belonging to a cluster;
• CM—matrix in which a row vector represents the centroids of clusters;
• i = 1, 2, 3, . . . , c—number of objects;
• j = 1, 2, 3, . . . , d—number of classes (clusters);
• eij—element indicating the fact of assignment of the i-th object to the j-th class (cluster);
• ai—vector of observations belonging to cluster x;
• bi—vector of observations belonging to cluster y.

3. Results

This section presents the results of four investigation directions. The first concerns
the application of global indicators in place of PQ parameters and assessment of their
correlation. Then, CA is applied to data division in point of excluding outliers, which affect
correlation analysis. Then, the correlation between PQ global indicators is performed
between different measurement points in the VPP. The applied coefficients are Pearson
and Spearman.

3.1. Virtual Power Plant as a Source of Area-Related PQ Data

The source of data used in this article is a VPP that operates in Poland, in the region
of Lower Silesia. The VPP operates on a fragment of the distribution network at both
medium voltage (MV) and low voltage (LV) levels [64]. It is connected to a 110 kV Polish
grid by two substations of 110/20 kV. In this investigation, one MV network was selected
that has earth fault current compensation [64]. The main distributed energy resources that
are integrated into the investigated VPP are a 1250 kW HPP and a 500 kW battery ESS,
which are connected at the MV level to a distribution system.

The simplified scheme of the studied fragment of the VPP is presented in Figure 2.
The mentioned elements of the VPP are as follows:

• 1.25 MW hydropower plant that is denoted as MV_H;
• 0.5 MW battery ESS that is denoted as MV_E;
• 20 kV line that connects the HPP and ESS substation to the high-voltage/medium-

voltage substation that is denoted as MV_L;
• The representative low-voltage load, which is associated with MV_L, that is denoted

as LV_L;
• The representative low-voltage load, which is associated with the substation of the

HPP and ESS, that is denoted as LV_H&E.

The indicated units of the VPP are monitored by power quality recorders. Power qual-
ity recorders are indicated as “R”, and their connection is also included in Figure 2. MV_H
and MV_E are connected to one node and their PQ recorders use the same voltage trans-
former. Thus, in this research, they are treated as one point for further investigation,
denoted as MV_H&E.

The PQ measurement duration was 182 days (26 weeks). The time aggregation
of power quality data was 10 min, so the selected time period should be represented
by 26,208 10-min data. However, the coverage of multipoint synchronic data was 97.7%
(25,069 10-min data). Additionally, from the indicated dataset, the 10-min values that
contain voltage events were excluded in accordance with the flagging concept of IEC
61000-4-30 [65]. The only extension was that the 10-min data were excluded if, in at least
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one of the measurement points, a voltage event occurred. Finally, the investigated data
concerned 24,612 10-min data.

Figure 2. The virtual power plant (VPP) fragment with the power quality (PQ) recorders’ placements,
where: MV_L: medium-voltage line that connects the hydropower plant (HPP) and energy storage
system (ESS) to the 110/20 substations; MV_H: 1250 kW HPP; MW_E: 500 kW ESS; LV_L: a low-
voltage load related to MV_L; LV_H&E: a low-voltage load related to the HPP and EES substation.

3.2. Correlation between PQ Parameters and Global Indices

The first element of the investigation was to compare the correlation between single
PQ parameters and their global indicators. The global indicators respond to the mean
value of three phases and the limit value in accordance with standard EN 50160 [48].
Generally, the correlation between them should be strong. The results of those correlations
are presented in Table 2.

• The correlation for the voltage indicator, harmonic indicator, and maximal harmonic
indicator was higher than 0.9.

• The correlation for the asymmetry indicator was equal to 1 because the indicator is
just a standardization to the limit value.

• The envelope indicator is not strongly correlated because 200 ms are more random in
point of maximal and minimal values. However, correlation analysis of the voltage
envelope indicator assures important information that generally 200 ms extremum
values are more connected with lower than higher than the nominal voltage.

• A specific value was noticed for the flicker indicator for the LV_H&E point. The lower
value of the correlation would suggest that some outliers are noticed. For other
measurement points, the correlation of the flicker indicator is strong.

Table 2. Correlation between global indicators and PQ parameters using Pearson correlation.

MV_L MV_H&E LV_H&E LV_L

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3

I_U 0.97 0.98 0.97 0.99 0.99 0.98 0.96 0.97 0.97 1.00 1.00 1.00

I_∆U
max 0.34 0.25 0.20 0.07 0.12 0.15 −0.08 −0.08 −0.06 −0.20 −0.17 −0.19
min −0.49 −0.53 −0.55 −0.44 −0.41 −0.36 −0.56 −0.48 −0.53 −0.58 −0.56 −0.59

I_Pst 0.98 0.97 0.97 0.97 0.95 0.94 0.92 0.76 0.90 0.92 0.94 0.92
I_ku2 1.00 1.00 1.00 1.00

I_THDu 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.98 0.99 1.00 0.99
I_THDumax 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.92 0.98 0.99 0.99 0.99



Electronics 2021, 10, 641 8 of 16

Thus, attention was paid to the correlation of the flicker indicator and the short-term
flicker severity for phase L2 in the LV_H&E point, which is presented in Figure 3. As it
can be observed, the relation between them has two trends. Therefore, the data should be
divided into two groups to exclude outliers, as a step to generalize the results of correlation
assessment between different measurement points.

Figure 3. Spread chart for the flicker indicator and the short-term flicker severity for phase L2
in LV_H&E.

3.3. Cluster Analysis to Detect Short-Term Working Conditions

In the result presented in the previous subsection, the correlation has two trends.
To section them, CA with the k-means algorithm was applied. The selected measure of the
distance was Chebyshev to assure the maximization of differences between the obtained
groups (clusters). The input to CA was three phase values for LV_H&E to include the
general information about the flicker issue in all phases. The classification was realized
with a final number of clusters equal to 2. The number of each cluster is as follows:

• Cluster 1: 24,409;
• Cluster 2: 203.

Then, for each cluster separately, correlation analysis was performed. The results are
presented in Table 3. Additionally, the spread chart for the flicker indicator and the short-
term flicker severity for phase L2 in the LV_H&E point is presented in Figure 4. Therefore,
in the rest of the investigation, only data from cluster 1 were investigated, in order to assure
that they will respond to the general working conditions and are not affected by short-term
specific circumstances.

Table 3. Correlation between the flicker indicator and the short-term flicker severity in LV_H&E for
different clusters.

Correlation for LV_H&E
Pst

L1 L2 L3

I_Pst
Cluster 1 0.91 0.94 0.90
Cluster 2 0.85 −0.03 0.90
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Figure 4. Spread chart of cluster 1 data for the flicker indicator and the short-term flicker severity for
phase L2 in LV_H&E.

3.4. Correlation Analysis of Units in VPP Using Global Indicator Pearson Coefficient

The next element of the investigation was to check the correlation in point of power
quality of the different points of the VPP. The analysis was performed only for data that
consisted of cluster 1. The correlation between global indicators of each measurement point
to others was compared. The applied coefficient was the Pearson coefficient in Table 4.
In the table, the green highlight is used when the correlation strength was at least high.
Additionally, the correlation results with a p-value higher than 0.05 are highlighted using *.
The indicated observations are as follows:

• The voltage indicators are highly correlated. The only exceptions are MV_L and
LV_H&E. Further, a higher correlation is observed between LV measurement points
and MV_H&E than MV_L.

• The voltage envelope indicator and flicker indicator for both MV points are at least
highly correlated.

• For each measurement point, the envelope indicator is connected with the
flicker indicator.

• The harmonic and maximum harmonic indicators are correlated in all measurement
points and between them also.

• The majority of determined correlation coefficients are significant with a
p-value < 0.05—290 of 300 correlations.
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Table 4. Correlation using Pearson’s coefficient between global indicators for the investigated measurement points in the VPP.

MV_L MV_H&E LV_H&E LV_L

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

M
V

_L

1 1.00

2 −0.10 1.00

3 −0.10 0.91 1.00

4 −0.12 0.06 0.05 1.00

5 0.15 −0.10 −0.12 0.11 1.00

6 0.12 −0.07 −0.10 0.10 0.98 1.00

M
V

_H
&

E

1 0.75 −0.08 −0.10 0.03 0.20 0.16 1.00

2 −0.12 0.97 0.87 0.05 −0.12 −0.09 −0.11 1.00

3 −0.08 0.85 0.93 0.02 −0.13 −0.11 −0.17 0.84 1.00

4 −0.20 0.07 0.07 0.49 0.09 0.09 −0.23 0.08 0.08 1.00

5 0.13 −0.10 −0.12 0.09 0.98 0.96 0.11 −0.12 −0.12 0.09 1.00

6 0.10 −0.08 −0.10 0.07 0.95 0.97 0.06 −0.09 −0.09 0.08 0.98 1.00

LV
_H

E&
E

1 0.66 −0.07 −0.09 0.07 0.20 0.15 0.87 −0.10 −0.17 −0.14 0.11 0.05 1.00

2 −0.12 0.22 0.17 0.03 −0.13 −0.11 −0.14 0.31 0.21 0.10 −0.13 −0.11 −0.13 1.00

3 −0.10 0.17 0.19 0.00 * −0.12 −0.10 −0.22 0.21 0.31 0.14 −0.10 −0.09 −0.18 0.80 1.00

4 −0.03 0.03 0.04 0.22 0.00 * 0.01 * −0.01 * 0.04 0.08 0.33 0.00 * 0.01 * −0.29 0.06 −0.01 1.00

5 0.15 −0.10 −0.12 0.02 0.74 0.73 0.17 −0.11 −0.09 −0.07 0.76 0.75 −0.03 −0.13 −0.16 0.38 1.00

6 0.12 −0.09 −0.10 0.02 0.76 0.78 0.12 −0.09 −0.08 −0.05 0.78 0.80 −0.06 −0.11 −0.13 0.34 0.98 1.00

LV
_L

1 0.86 −0.10 −0.11 −0.05 0.21 0.17 0.95 −0.14 −0.16 −0.27 0.14 0.09 0.83 −0.16 −0.21 −0.03 0.20 0.15 1.00

2 −0.26 0.24 0.20 0.12 −0.16 −0.12 −0.20 0.31 0.22 0.14 −0.15 −0.11 −0.18 0.29 0.22 0.08 −0.13 −0.10 −0.28 1.00 0.83

3 −0.24 0.17 0.19 0.10 −0.17 −0.13 −0.25 0.22 0.30 0.16 −0.15 −0.11 −0.24 0.23 0.30 0.12 −0.11 −0.09 −0.30 0.83 1.00

4 −0.31 0.15 0.15 0.51 −0.01 * 0.01 * −0.27 0.16 0.12 0.66 0.00 * 0.01 * −0.19 0.15 0.15 0.19 −0.13 −0.09 −0.34 0.23 0.21 1.00

5 0.18 −0.12 −0.14 0.04 0.96 0.92 0.16 −0.14 −0.14 0.05 0.97 0.94 0.16 −0.15 −0.12 −0.04 0.73 0.74 0.20 −0.20 −0.20 −0.07 1.00

6 0.15 −0.10 −0.12 0.03 0.94 0.94 0.11 −0.12 −0.11 0.04 0.96 0.96 0.11 −0.13 −0.10 −0.03 0.73 0.77 0.15 −0.16 −0.16 −0.06 0.98 1.00

Where: 1—I_U; 2—I_∆U; 3—I_Pst; 4—I_ku2; 5—I_THDu; 6—I_THDumax. Additionally, the green highlight is used for correlations that were at least high, and light green for noticeable correlations. * There is
insufficient evidence to conclude that there is a significant relationship because the correlation coefficient is not significantly different from 0: p-value > 0.05.
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3.5. Correlation Analysis of Units in VPP Using Global Indicators Pearson vs. Spearman
Rank Coefficient

Another element of the investigation was to compare different correlation coefficients—
Pearson and Spearman rank. The properties of the Spearman rank coefficient are compara-
ble to those of the Pearson coefficient except for one particular feature. In the case of the
Pearson coefficient, the relationship between variables must be linear, while the Spearman
rank correlation coefficient, unlike the Pearson coefficient, defines any monotonic relation-
ship, including a nonlinear relationship. Thus, the correlation results using the Spearman
rank coefficient are presented in Table 5. The observations in point of comparison are
as follows:

• The results of the Pearson and Spearman rank correlations indicated the same relations
in point of at least a high correlation level for the voltage and its envelope issues.
The same observation is noticed for the harmonic and maximal harmonic comparison.

• Spearman rank coefficients indicated a decrease in the correlation between the voltage
envelope and flicker indicators. The results indicated that the correlation was not high,
but still noticeable.

• The Spearman rank correlation indicated a higher number of noticeable correlations
between global indicators. The change is observed generally for flicker indicators
between measurement points.

• Generally, the Spearman rank coefficient indicated a generally higher correlation
between global indicators with a lower than high correlation. At the same time,
a lower correlation was found for those in the Pearson assessment with at least a
strong correlation level.
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Table 5. Correlation using the Spearman coefficient between global indicators for the investigated measurement points in the VPP.

MV_L MV_H&E LV_H&E LV_L
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

M
V

_L

1 1.00
2 −0.25 1.00
3 −0.21 0.73 1.00
4 −0.11 0.10 0.05 1.00
5 0.16 −0.23 −0.25 0.09 1.00
6 0.13 −0.19 −0.21 0.08 0.98 1.00

M
V

_H
&

E

1 0.73 −0.19 −0.22 0.01 0.21 0.17 1.00
2 −0.25 0.92 0.67 0.09 −0.25 −0.21 −0.23 1.00
3 −0.09 0.48 0.65 0.01 * −0.22 −0.18 −0.28 0.55 1.00
4 −0.20 0.13 0.09 0.42 0.09 0.09 −0.23 0.14 0.09 1.00
5 0.14 −0.24 −0.24 0.08 0.98 0.96 0.12 −0.25 −0.18 0.09 1.00
6 0.11 −0.20 −0.20 0.06 0.95 0.97 0.07 −0.21 −0.14 0.09 0.98 1.00

LV
_H

E&
E

1 0.68 −0.21 −0.25 0.04 0.22 0.17 0.88 −0.24 −0.31 −0.15 0.14 0.09 1.00
2 −0.23 0.57 0.38 0.08 −0.18 −0.15 −0.23 0.63 0.32 0.19 −0.17 −0.14 −0.21 1.00
3 −0.14 0.28 0.35 0.02 −0.15 −0.13 −0.31 0.34 0.56 0.20 −0.13 −0.10 −0.22 0.72 1.00
4 −0.07 0.11 0.13 0.27 0.00 * 0.02 −0.06 0.12 0.16 0.46 0.01 * 0.03 −0.28 0.10 −0.02 1.00
5 0.14 −0.19 −0.16 0.01 * 0.74 0.73 0.17 −0.20 −0.10 −0.08 0.76 0.75 −0.02 −0.20 −0.24 0.30 1.00
6 0.11 −0.16 −0.13 0.01 * 0.74 0.77 0.12 −0.16 −0.08 −0.06 0.77 0.79 −0.05 −0.17 −0.20 0.28 0.98 1.00

LV
_L

1 0.85 −0.26 −0.26 −0.05 0.22 0.18 0.95 −0.29 −0.25 −0.26 0.15 0.10 0.84 −0.28 −0.29 −0.08 0.18 0.14 1.00
2 −0.34 0.56 0.41 0.13 −0.26 −0.21 −0.27 0.61 0.33 0.21 −0.25 −0.21 −0.28 0.51 0.31 0.17 −0.19 −0.15 −0.37 1.00 0.66
3 −0.21 0.31 0.39 0.07 −0.24 −0.20 −0.29 0.39 0.65 0.17 −0.20 −0.16 −0.32 0.34 0.48 0.21 −0.11 −0.08 −0.32 0.66 1.00
4 −0.32 0.28 0.23 0.47 −0.02 0.00 −0.27 0.29 0.14 0.64 −0.02 0.00 * −0.20 0.29 0.22 0.30 −0.13 −0.10 −0.35 0.36 0.23 1.00
5 0.18 −0.28 −0.27 0.04 0.96 0.93 0.16 −0.29 −0.21 0.05 0.98 0.94 0.19 −0.20 −0.14 −0.04 0.74 0.73 0.20 −0.31 −0.25 −0.09 1.00
6 0.15 −0.25 −0.24 0.02 0.94 0.95 0.12 −0.26 −0.17 0.05 0.96 0.97 0.14 −0.18 −0.13 −0.02 0.74 0.76 0.16 −0.27 −0.21 −0.07 0.98 1.00

Where: 1—I_U; 2—I_∆U; 3—I_Pst; 4—I_ku2; 5—I_THDu; 6—I_THDumax. Additionally, the green highlight is used for correlations that were at least high, and light green for noticeable correlations. * There is
insufficient evidence to conclude that there is a significant relationship because the correlation coefficient is not significantly different from 0: p-value > 0.05.
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4. Discussion

This article studied a virtual power plant that operates in Lower Silesia in Poland.
The realized investigation was based on synchronic measurements from five PQ recorders
located at different points of the VPP area. The power quality measurements were realized
at medium and low voltage levels. The PQ measurement lasted 182 days—26 weeks of the
year 2020. Thus, this measurement represents long-term data from different related points.

The research also concerned the application of global values in point of classical
PQ parameters. The used global indicators assure one value, which represents three
phase values, as a mean of them. The proposed extension to classic approaches such as
those in [66,67] or [68] was based on the application of 200 millisecond extremal values that
proceeds from each 10-min aggregation interval for voltage and total harmonic distortion in
voltage. Additionally, the indicators were standardized to the limit values of the selected PQ
standard EN 50160. However, it is worth noticing that other limits based on a specification
of the measurement object may be applied.

The investigation concerned the correlation analysis of global indicators and PQ
parameters. Generally, the correlation of them should be strong, due to the mathematical
relation between them. The exception should be the envelope indicator because it concerns
both minimal and maximal values. The results indicate the specific results for one of the
indicators—flicker issues for one of the low-voltage loads. Thus, it was confirmed that
specific conditions occurred, and these kinds of “outliers” may affect the general results of
correlation between measurement points.

To solve the problem with the outlier, the cluster analysis approach was proposed.
Clustering with the k-means algorithm was applied for Chebyshev distance. The Cheby-
shev distance was selected because it is directed to maximization of the differences between
data. The application of k-means clustering enabled detecting and excluding the outliers
that were not included during further investigation.

For a clean PQ dataset, the correlation of PQ global indicators between different
measurement points was performed. Firstly, the Pearson coefficient was selected, in order
to define the linear correlation. An at least high correlation was generally indicated for the
voltage indicator of each measurement point. A correlation between harmonic levels (both
harmonic and maximal harmonic indicators) was noticed between all measurement points.
Additionally, a correlation between the voltage envelope and flicker indicators was noticed
for each point separately. The article also concerned the Spearman rank coefficient, in order
to verify whether the correlation between parameters has a nonlinear nature. In point of
the voltage, voltage envelope, harmonic, and maximal harmonic indicators, the Spearman
rank coefficient gave similar results. Generally, the Spearman rank coefficient indicated
that there is a noticeable correlation for the flicker indicator between measurement points,
which was not noticed by the Pearson coefficient. Finally, the general observation is that the
Spearman rank correlation indicated a higher number of noticeable correlations between
global indicators than the Pearson coefficient. This may be caused by the nonlinear nature
of their correlation.

The proposed methodology was verified on the basis of virtual power plant data.
However, it may also be implemented into other objects where there is a need to define the
relationship between units in point of the power quality.

5. Conclusions

The article proposed a combined approach to obtain information from PQ data that
proceed from a real virtual power plant. The proposed methodology is based on correlation
analysis, cluster analysis, and global values. The proposed approach reduced the amount of
analyzed data by application of global indicators, maintaining the main features of classic
parameters. Additionally, the indicators proposed an extension based on the application of
200 millisecond extremum values, in order to sensitize the comparison. The proposed clus-
ter analysis excluded outliers that affect correlation results. It enabled realizing inferences
in a general manner. Correlation analysis was performed using the Pearson coefficient,
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in order to assess linear correlations, and the Spearman rank coefficient, in order to con-
sider nonlinear relationships. Concluding, the assessment of correlations plays a vital role
because it is the foundation for various modeling techniques. Further, for values, as well
as objects, that are highly correlated, it is possible to predict one variable/object based
on another.
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59. Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Borkowski, K.; Jasińska, E. The Application of Hierarchical Clustering to Power Quality

Measurements in an Electrical Power Network with Distributed Generation. Energies 2020, 13, 2407. [CrossRef]
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