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Abstract: Paper investigates transport control protocol (TCP) acknowledgment (ACK) optimization
in low power or embedded devices to improve their performance on high-speed links by limiting
the ACK rate. Today the dominant protocol for interconnecting network devices is the TCP and it
has a great influence on the entire network operation if the processing power of network devices
is exhausted to the processing data from the TCP stack. Therefore, on high-speed not congested
networks the bottleneck is no longer the network link but low-processing power network devices.
A new ACK optimization algorithm has been developed and implemented in the Linux kernel.
Proposed TCP stack modification minimizes the unneeded technical expenditure from TCP flow
by reducing the number of ACKs. The results of performed experiments show that TCP ACK rate
limiting leads to the noticeable decrease of CPU utilization on low power devices and an increase of
TCP session throughput but does not impact other TCP QoS parameters, such as session stability,
flow control, connection management, congestion control or compromises link security. Therefore,
more resources of the low-power network devices could be allocated for high-speed data transfer.

Keywords: transport control protocol; acknowledgement optimization; ACK filtering; Linux TCP stack

1. Introduction

The expansion of the Internet contributed to an exponential increase in network ap-
plications and, as a consequence, to increase the speed and productivity requirements of
embedded and mobile devices. This rises specific requirements for the operating system
and its networking module. Today a major number of the Internet of Things (IoT) and
embedded devices use the Linux operating system with the transport control protocol
(TCP)/IP stack implemented in Linux kernel, while application-layer protocols are imple-
mented in user space (HTTP, FTP, SSH, etc.). Such a choice of operating system liberates
manufacturers from the long and expensive development process and shortens the hard-
ware and software development lifecycle of new Internet-connected equipment [1]. Today
the dominant protocol for interconnecting network devices is the TCP and it has a great
influence on the entire network operation if the processing power of network devices is
exhausted to the processing data from the TCP stack.

The main uniqueness (and in some cases problem) in the default TCP protocol imple-
mentation is that the TCP protocol always tries to have the maximum possible utilization
of the data transmission link. On high-speed uncongested networks, the bottleneck is no
longer the network link but low-performance network devices and their diversity. The
transmission of TCP packets consumes all CPU resources of these devices and reduces
TCP performance due to increased round-trip time (RTT), jitter, and thus an unstable
TCP session.

The optimization of TCP data processing is also important to servers and server farms.
It can boost data center performance and decrease power consumption due to reduced
CPU load [2].
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The aim of the article is to propose and analyze the new TCP ACK rate limiting
algorithm implementation in the Linux kernel.

The paper is structured into seven sections. Section 2 gives an overview of TCP
performance optimization in related works. In Section 3 we provided the detailed workings
of the TCP acknowledgment mechanism in the Linux kernel. TCP ACK rate limiting
implementation on Physical Machines and comparison results with and without TCP ACK
rate limiting presented in Section 4. Limits of ACK rate-limiting in virtual machines, when
particular hardware characteristics are eliminated, investigated in Section 5. Application
scenarios and CPU performance of the modified system are addressed in Section 6. Finally,
the conclusions are reported in Section 7.

2. Related Work

As defined in RFC 793, TCP is a connection-oriented, end-to-end reliable data com-
munication protocol intended for setting up the reliable link between pairs of processes of
network nodes of separate but interconnected data communication networks. It controls
the data flow on the network by means of congestion avoidance and acknowledgment
(ACK). The critical disadvantage of TCP standard implementation as defined in the Internet
Standards (RFCs) of Internet Engineering Task Force (IETF), specifically (RFC 3782), is
efficient at low-speed networks (≤100 Mbps) however unsuitable for high throughput links
because of sluggish utilization of channel capacity (RFC 5681), and inadequate estimation
of the channel’s maximum throughput [3]. This is due to congestion window growth at
the beginning of the TCP session is a square function of the link delay (RFC 2581): a high
delay makes the congestion window size increase slowly. To overcome this disadvantage,
many TCP data flow control mechanisms have been introduced. Most of them are focused
to handle large amounts of data transfer, e.g., HSTCP, Fast, Cubic, STCP [4]. All these TCP
variants dependent on the received data packet acknowledgment rate (ACK) at the net-
work end-nodes and congestion window [5]. Current Linux OS uses the CUBIC congestion
control algorithm, which is suitable for high bandwidth networks with high latency, has
the cube-root congestion window growth function and low dependence on channels delay
at the beginning of TCP session.

The size of the congestion window of a TCP session is calculated in real-time and
relays on the ACK flow [4]. The TCP data sending node can increase the sending data rate
after received ACK. Therefore, for effective data flow control the unobstructed exchange of
ACK is very important, because any loss of ACK reduces TCP efficiency [6,7]. As a result,
the utilization of network capacity is directly related to the ACK rate. If the amount of TCP
packets on the network grows, the number of ACKs on the network grows as well. Thus,
high-speed networks suffer from the increase in technological expenditures related to ACK
transmission [8].

TCP performance can also deteriorate while exchanging short packets [9,10]. This is
caused by technological expenditures [8] and CPU overload [11].

The latter concern is described in [12], and it happens because the CPU load of the
network device depends on the number of TCP packets to process but not on packet
size. Such condition is more frequently observed on high-speed networks [11], since
the increase of data throughput increases the number of the TCP ACK packets on the
network [13]. Therefore, handling the heavy traffic of short TCP packets requires more
powerful network devices.

One way to optimize the TCP performance on high-speed networks or embedded
devices is to reduce the number of ACKs of the TCP session [14]. This could be achieved
by limiting the ACK rate [15], which is often applied on wireless networks [6,7], and could
be implemented in Linux kernel as TCP stack function.

Other related works investigate TCP performance optimizations by applying various
congestion control algorithms. Authors of [16] investigate optimization possibility by
dynamically changing the initial TCP window for short and long TCP flows. The authors
of [17] propose an algorithm for bandwidth and the RRT estimation, which leads to
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improved throughput in the network. TCP performance optimizations are also important
in the distributed sensor networks, wireless IoT devices because they generate a large
amount of data. Researchers try to optimize performance in these networks not only
by improving congestion control [18] but also by introducing negative acknowledgment
(NACK) into generic TCP functionality [19] or proposing parallel transmission hybrid
methods [20].

3. TCP Acknowledgment Mechanism in Linux Kernel

The Linux is an event-driven operating system (OS) that responds to external and
internal events or occurring interrupts [21]. The interrupt has a unique code that indicates
the OS to execute an appropriate service function. If the network interface card (NIC) of the
Ethernet network device receives a TCP packet, an interrupt occurs and the OS forwards
processing of the received data to the NIC driver [22]. The NIC driver puts the data packet
into the buffer and checks its integrity [23]. The validated packet is transferred to the OS
main memory that was allocated to store the NIC data. If the TCP packets overwhelm the
network device or the NIC buffer is full, the NIC drops the received packet and protects
the network device from rendering unresponsive [24].

After the TCP packet has been processed and validated, the kernel calls the function
to send an ACK [21]. The function sends the TCP ACK basing on such conditions:

1. The received TCP packet or unacknowledged packet is larger than the defined maxi-
mum segment size according to RFC 1122 or STD003 specification or time after last
ACK has been sent is more than 500 ms (OS depended);

2. The TCP receive window or device NIC buffer size is greater than the negotiated TCP
receive window or NIC buffer size;

3. Some data must be immediately piggybacked to the TCP data sender;
4. The network device receives an out-of-order TCP packet.

Otherwise, the TCP ACK sending can be postponed. However, in default, the Linux
kernel implementation ACK is sent after two TCP data packets are successfully received.

Therefore, the TCP ACK rate reduction by acknowledging every third, fourth, etc.
TCP data packet can notably lower network utilization and spare additional CPU re-
sources for TCP packet processing in embedded or other network devices with limited
computing power.

In the Linux kernel, triggering of ACK depends on TCP delayed ACK parameter
icsk_ack.rcv_mss and if there is sufficient space in the NIC buffer. This applies only if
there is no packet loss or reordering during the TCP session. Therefore, the most convenient
way to control the ACK rate by factor is through icsk_ack.rcv_mss. According to the TCP
specification (RFC 1122 and STD003) an ACK should be generated for at least every second
full-sized segment. In the Linux kernel, the maximum received segment size (MSS) of the
TCP packets after which ACK should be sent is defined in icsk_ack.rcv_mss and is used
for delayed ACK decision. By controlling the size of icsk_ack.rcv_mss we can increase or
decrease the frequency of the ACK. To use this variable for the ACK rate control and to
minimize alternation of Linux kernel code, a supplementary variable ack_rate_val must
be introduced. The only negative impact of using additional variables is that the kernel has
to dedicate more device resources for their storage and recalculation while processing the
received TCP packets.

The main problem with reducing ACK and TCP, in general, is that the OS is not aware
of network the condition (throughput, jitter, delay, transport technologies) and its variation.
Therefore, TCP must adapt to these changes. The TCP receiver does not know the TCP state
of the data sender CP (slow start, congestion avoidance, fast recovery, etc.). If the reduction
of ACK starts too soon, it will have a harmful effect on the TCP session throughput, if it
started too late, no gain on TCP session throughput or system performance will be attained.

Such an ACK optimization concept has been proposed by authors in [25] and summa-
rized in [26] as shown in Figure 1.
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Figure 1. Acknowledgment rate limiting algorithm.

In the beginning, to avoid the activation of ACK rate limiting or to disable it after
data packet loss or retransmission, the kernel tracks the TCP session status. The ACK
limiting will not start until the TCP initialization state is passed, because of the time needed
to check if the TCP session is stable and no packed drops occurred. If a network link is
congested, the kernel will not initialize ACK rate limiting and do not allow any reduction
of ACK packets.

Afterward, the ACK rate limiting is activated if the client-side TCP congestion window
size is maximum, the TCP session has been stable and the throughput of the current TCP
session does not decrease.

However, if the TCP session delay increases or its throughput decreases after the last
increase of ACK rate limiting, the algorithm falls back to the previous value. The ACK
limiting value is at its maximum and additional ACK rate reduction could lead to TCP
performance degradation or jittering problems that will be encountered due to the too-low
ACK rate. Therefore, the TCP receives window and TCP congestion window sizes must be
increased to achieve the same TCP throughput. The increase of the jitter is the side effect
of the too-small TCP receiver window caused by too low ACK rate. The TCP data sender
buffer would be full and stop data sending until it receives the ACK from the receiver.
After receiving an ACK, which acknowledges all the data in the TCP sender buffer, all
awaiting TCP packets in the TCP sender buffer are transmitted and that causes packet
burst or jitter.

The proposed ACK rate limiting and TCP session state tracking implemented in Linux
kernel __tcp_ack_snd_check() function (Figure 2).
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Figure 2. Modified Linux kernel tcp_input.c source code of __tcp_ack_snd_check() for checking
TCP session state.

The ACK rate limiting is disabled if a packet lost or out of order packet is received, the
ACK rate-controlling variables are reset, and the TCP session recovers using fast retransmit
mode (Figure 2, Lines 4801–4811). In the initial TCP session state or after out of order
packet is received (indicated by ofo_possible) the function resets tp->init_pkt_cnt,
which controls the start of ACK rate limiting. Further, tp->init_pkt_cnt is compared
to tp->start_ack_lmt, which is obtained from tcp_ack_limit_init() (Figure 3). If the
TCP session is in the initial state, it goes through the slow start phase. During this phase,
ACK rate limiting is disabled and the maximum allowed ACK rate, tp->ack_rate_max, is
calculated as ratio RWND/3 MSS.
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Figure 3. Changes in Linux kernel tcp.h source code for a new tcp_ack_limit_init().

Consequently, the function increments tp->init_pkt_cnt and checks TCP session
state. When tp->init_pkt_cnt becomes greater than start_ack_lmt, the function can
proceed (Figure 2, Line 4813) and start ACK rate limiting. At first, the function must record
the current state of TCP session, and after it goes into the loop once more to take time
measurements. It increases tp–>ack_pkt_cnt until it reaches tp->start_ack_lmt2; the
value is increased after every TCP data segment has been received. At the start of TCP
session, tp->start_ack_lmt2 is set to the value of tp->start_ack_lmt and represents
TCP data segment after which ACK rate limiting can start. If the time needed to receive the
number of TCP segments stored in tp->start_ack_lmt2 is smaller or equal to previous
time measurements, tp->tcp_ack_rate_val can be increased, yet tp->tcp_ack_rate_val
must be decreased, but not less than the initial one (Figure 2, Line 4827). It prevents the
variable from becoming zero, which will start the generation of ACKs for every received
data segment.

4. TCP ACK Rate Limiting on Physical Machine

The TCP session parameters on high-speed, not congested networks, such as RTT,
throughput, etc., mostly depend on network hardware and the diversity of its components.
To test the impact of ACK rate limiting on TCP session performance and eliminate the
effects of other factors the proposed ACK rate limiting algorithm has been experimentally
tested using the setup shown in Figure 4.

Figure 4. Test setup of transport control protocol (TCP) acknowledgment (ACK) rate limiting on
physical machine.

The test-bed consists of two identical Ubiquiti RouterStationPro routers with installed
OpenRTW image build for MIPS-based CPU architecture systems and computer for net-
work traffic capture and inspection. Both routers have MIPS-based architecture CPU and
amount of RAM limited to 128 MB. The ACK rate limiting has been enabled on router 1.
The router 2 without ACK limiting has been used for comparison. The routers were inter-
connected using 1 Gbps links, TCP offloading was disabled on NICs of both sides. The
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throughput of 100 s duration TCP session has been measured using the Linux iperf tool
that is commonly used for network performance measurements and generation of TCP data
streams. The same tests have been performed on both routers with identical settings. The
throughput measurement data have been acquired using Linux dmesg tool by outputting
values of TCP ACK limiting variables via the kernel messaging subsystem.

The tests have been conducted imitating a real-world situation of TCP data transmis-
sion from the TCP client to the server. In such a configuration, the TCP packets sending
device or the TCP client is the data processing bottleneck, because of few CPU resources
compared to the server. Therefore, the increase of the TCP session throughput by limiting
the ACK rate is because of reduced data processing on the TCP client side. The test results
of TCP throughput are shown in Figures 5 and 6.

TC
P 

m
es

sa
ge

s 
(p

ps
)

0

500.0

1.0k

1.5k

2.0k

Time (s)
0 20 40 60 80 100

TCP data
TCP ACK

TCP data
TCP ACK

Figure 5. TCP data and acknowledgment packet rate on router without ACK rate limiting.
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Figure 6. TCP data and acknowledgment packet rate on router with ACK rate limiting.

The TCP session throughput and the ACK rate on the router without the ACK rate
limiting are uniform during the whole test period (Figure 5). However, on the router
with the ACK rate-limiting (Figure 6) TCP session throughput starts to increase after
approximately 20 s from the beginning of data transmission. At this point, the ACK
rate limiting algorithm starts to reduce ACKs. The upper ACK rate limit has been set to
2000 packets and after reaching it the ACK rate is lowered.

At the same time, the ACK rate rapidly reduces until the ACK rate limiting algorithm
detects the increase of RTT of the current TCP session (Figure 6). After approximately 45 s
ACK rate limiting algorithm stops reducing ACKs after multiple drops of TCP packets.
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The TCP session goes into a slow-start phase and the ACK rate limiting algorithm resets
ACK rate limiting variables. After approximately 51 s, the ACK rate limiting restarts.

The performed tests indicate an increase of TCP session up to 60% on the router
with ACK rate limiting enabled. However, on different devices with different hardware
configurations, the increase of TCP session throughput can be influenced by many factors,
especially if TCP offloading is turned on and the data transmitting and receiving devices
have unique settings.

Figures 5 and 6 show that TCP session throughput on the router with modified Linux
kernel TCP stack for ACK rate limiting is identical to TCP throughput of the router with
unmodified kernel from the beginning of TCP sessions and until ACK rate limiting starts
at 19 s. The spikes and peaks are visible in Figure 6 caused by smaller ack_pkt_cnt used
for testing of ACK rate limiting algorithm to observe a faster ACK rate-limiting function
grow and simulate the situation with small TCP RWND on the receiver side.

This indicates that the Linux kernel TCP stack modifications do not degrade the
overall TCP session performance and successfully functions even after packet drops.

In order to investigate the effect of ACK rate limiting on the TCP link delay TCP
session, RTT (Figures 7 and 8) has been examined.

Figure 7. RTT deviation on router with an unmodified Linux kernel.

Figure 8. RTT deviation on router with a modified Linux kernel.

By comparing results in Figures 7 and 8, an increase of RTT have been observed on
the router with the modified kernel after ACK rate limiting has been activated and until a
packet drop occurred. After that, RTT decreases and becomes the same as on the router
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with the unmodified kernel. Such behavior can be explained by the fact that during the test,
the TCP data sending system does not hav enough processing power to handle increased
data traffic after ACK rate limiting is enabled. However, even in such a situation, the TCP
data sender benefits from the ACK rate limiting because it still requires fewer recourses to
process TCP data.

5. TCP ACK Limiting on Virtual Machine

To explore the limits of the application of ACK rate limiting and eliminate the impact of
particular hardware characteristics, similar tests have been performed on virtual machines
running on KVM virtualization software with the default configuration. Virtual routers
have been implemented using an open-source OpenWRT Linux distribution because it
is commonly installed on embedded or low computing power devices [27]. Router 1
(Figure 9) has improved the Linux kernel with implemented ACK rate limiting.

The virtualization has been implemented using the computer with one × 86 architec-
ture CPU, and 512 MB RAM was dedicated for each OpenWRT router. On virtual machines,
the default NIC device virtio, that implements packet segmentation in the NIC driver, has
been replaced by Intel e1000 connected to the physical NIC of the KVM server using the
network bridge. Additionally, on NICs of KVM server and TCP devices, the TCP offloading
features have been disabled [28,29]. The full setup of the performed tests is shown in
Figure 9.

Figure 9. Test setup of the TCP ACK rate limiting on the virtual machine.

The network has been built from three interconnected computers using 1 Gbps Ether-
net connections. The TCP packet capture and analysis have been performed on a separate
computer. To obtain more accurate results, TCP offloading features have been turned off
on all computers’ physical NICs. This is done to rid-off TCP offloading influence on TCP
session behavior and limit factors impacting TCP session characteristics to the KVM server
CPU computing power.

The proposed Linux kernel TCP stack modification for the ACK rate limiting performs
two main functions. The first function is to set values of ACK rate limiting variables during
runtime based on the characteristics of the TCP packet flow over a defined period. The
second function decides if ACK must be sent. It is important to note that ACK could be
sent even without reaching the specified ACK rate limit if the TCP ACK timeout expires.

To evaluate the ACK rate limiting algorithm and, in more detail, analyzing TCP session
behavior during normal operation or after packet drop occurs, the values of variables
responsible for ACK rate limiting have been outputted using Linux dmesg tool. For this
purpose, the additional printing commands have been introduced in the ACK rate limiting
implementation code.
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The change of the values of maximum ACK rate limiting ack_rate_max and current
ACK rate ack_rate_val variables is shown in Figure 10.
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Figure 10. The change of ack_rate_max and ack_rate_val during TCP session.

It can be seen that ack_rate_val starts to increase after approximately 10 s of the
beginning of the TCP session, its value changes from zero and reaches its maximum at
approximately 20–25 s. At approximately 30 s, the algorithm notices a degradation of
TCP throughput and the first decrease off ack_rate_val is observed, which indicates that
ACK rate limiting is functioning. At the same time, the decrease of ack_rate_val is again
observed at approximately 50 s and 80 s, which indicates that the TCP packets transmission
rate has been reduced. Additionally, TCP data and ACK rates have been monitored with
wireshark to analyze the impact of the ACK limiting algorithm on overall TCP session
throughput.

During the performed tests smaller ack_pkt_cnt have been chosen. This variable sets
the number of TCP packets that must be transmitted before the ACK rate could be reduced.
Small ack_pkt_cnt makes the ACK rate limiting algorithm responds more rapidly and
increases ack_rate_val more frequently to examine the TCP stability in short TCP sessions.

To analyze the impact of the ACK rate limiting algorithm on TCP sessions throughput
the identical tests have been performed on identical OpenWRT images with the same network
configurations. The one has been compiled with, and the other without, Linux kernel
TCP stack modification. The TCP packet stream at the maximum rate for 100 s has been
generated using iperf tool. The network traffic has been captured and analyzed with
wireshark tool running on a separate network traffic monitoring PC (Figure 9).

The TCP sessions throughputs with and without ACK rate limiting are shown in
Figures 11 and 12, and the corresponding TCP sessions RTT measurements in Figures 13
and 14. The decrease of RTT in a virtual environment can be explained by the reduced
packet per second (PPS) rate. With enabled ACK filtering, we can reduce packet rate, this
reduces the interrupt rate in VM system, this can have a significant impact on system
performance and latency [30].
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Figure 11. TCP session throughput on router with an unmodified Linux kernel.
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Figure 12. TCP session throughput on router with a modified Linux kernel.

Figure 13. TCP session RTT on router with an unmodified Linux kernel.
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Figure 14. TCP session RTT on router with a modified Linux kernel.

From TCP sessions throughput results (Figures 11 and 12), it is seen that in a virtual
environment the router with ACK rate limiting performs better, exhibits more uniform
data rates over a given period and TCP sessions throughput is up to 30% higher. The router
with a modified Linux kernel has almost twice smaller RTT compared to the router with the
unmodified kernel as shown in Figures 13 and 14, a RTT histograms have been calculated
(see Figures 15 and 16).

In Figure 12, noticeable short drops of TCP session throughput of 10–20 s period
could be observed. It correlates with peaks of RTT of the TCP session (Figure 14) and
is due to excessive ACK rate reduction. Such an undesirable effect can be eliminated
by lowering the rate of the ACK reduction in the ACK rate limiting algorithm. From
obtained TCP sessions RTT data given in Figures 13 and 14, a RTT histograms have been
calculated (see Figures 14 and 15). It can be observed that in the router with ACK, rate
limiting-enabled maximum values of the RTT histogram are shifted towards lower RTT
and are more concentrated between 5–10 ms. The maximum values of RTT histogram
on the router without ACK rate limiting are spread more widely, between 10–20 ms. The
shorter RTT is important and attractive to multimedia and real-time applications.
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Figure 15. TCP session RTT histogram on router with an unmodified Linux kernel.
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Figure 16. TCP session RTT histogram on router with a modified Linux kernel.

The recurrent RTT peaks observed in the Figure 14 correlates with the peaks of TCP
session throughput (Figure 11) and are caused by high CPU utilization. Therefore, a more
conservative ACK rate limiting reduces even more the TCP session RTT and maintains the
lower average RTT for a longer period.

It is important to note that tests results show that even on the router with unmodified
Linux kernel ACK rate (Figure 12) is much lower than could be expected according to
RFC 5681 and RFC 1122, which requires that “ACK should be generated for every second
full-size segment”, and is close to the router with enabled ACK rate limiting. It can be
explained that the router without ACK rate limiting encountered the high CPU demand
caused by the high TCP packet rate and in order to limit the CPU load the kernel had
to reduce ACK rate and consequently TCP session throughput. Therefore, the ACK
rate limiting under the same circumstances (Figure 17) still can halve the ACK rate and
consequently free router resources allocated for ACK checking and further processing. It
allows the TCP receiver under heavy data traffic to reach much greater TCP throughput
and shorter RTT. Furthermore, ACK rate limiting also lessens a load on the TCP packet
sender, because of the reduced number of received ACKs and fewer resources needed to
handle them.

Figure 17. Comparison of ACK transmission between a modified and an unmodified Linux kernel.

The last tests of ACK rate limiting have been performed to examine how the reduction
of ACK rate influences the growth of the congestion window (CWND) on TCP packet
sending device after a packet drop. The change of CWND size and slow start threshold
(SSTRESH) during the TCP session has been analyzed using the Linux tcpprobe, the TCP
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traffic tracking and recording kernel tool based on kprobe. The CWND size is directly
proportional to the ACK rate, therefore, after the reduction of ACK rate, a reduction of the
CWND growth rate could be expected. The tests result on CWND size and SSTHRSH are
shown in Figures 18 and 19. In both cases, with and without ACK rate limiting, the TCP
session CWND growth and recovery behave identically and no significant difference in
TCP Cubic congestion control operation has been observed.

Figure 18. Slow start threshold and congestion window on TCP sender with an unmodified Linux kernel.

Figure 19. Slow start threshold and congestion window on TCP sender with a modified Linux kernel.

Most importantly, in the Linux kernel with ACK rate limiting, TCP Cubic operates as
in the congestion avoidance phase that is critical to the TCP session recovery process. The
ACK rate limiting influences TCP session CWND growth (see Figure 19) and makes TCP
sessions more competitive to obtaining more network resources over other TCP sessions.
The network device with a modified Linux kernel has a slightly lower SSTRESH and smaller
CWND, therefore, TCP Cubic avoids CWND the exponential growth phase. Such TCP
Cubic behavior is influenced by shorter RTT that leads to a high TCP data rate. However,
packet drop due to the tRTO timer expiration could happen at lower SSTRESH and smaller
CWND size. Nevertheless, during the test period, the network device with the modified
Linux kernel has more constant and smaller TCP sessions CWND size (Figure 19). This
makes the TCP packet transmission rate more uniform and the utilization of device NIC
buffer is more stable.
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6. Discussion

The results presented in previous sections show that the presented ACK rate limiting
implementation does not harm TCP performance and QoS parameters. The TCP session
throughput increases and exhibits more uniform data rates, RTT remains the same or
even smaller comparing to the system with the unmodified kernel. The TCP session
CWND growth and recovery behave identically to the system without ACK limiting and
no significant difference in TCP Cubic congestion control operation has been observed.

The proposed modification of the TCP stack should not introduce any effect on TCP
flow control, connection management, congestion control, etc. It reduces the unneeded
packet processing by limiting the ACK rate. The ACK limiting will not start until the TCP
initialization state is passed, the client-side TCP congestion window size is maximum, the
TCP session has been stable. If a network link is congested, the kernel will not initialize
ACK rate limiting and do not allow any reduction of ACK. The ACK rate limiting is
disabled if a packet lost or out of order packet is received, and the TCP session recovers, as
usual, using fast retransmit mode.

Modifications should not compromise security. TCP SYN flooding attacks are used in
TCP init state, while ACK limiting is not yet activated. TCP ACK “overclocking” attack
is based on generating several ACK for every received TCP data segment. Proposed
modifications suggest the opposite solution, ACK limiting.

The lower network utilization spares additional CPU resources for TCP packet pro-
cessing in embedded or other network devices with limited computing power. The relation
between receiving the system with ACK limiting performance and CPU load is shown in
Figure 20. The increase of the performance should be understood as relative CPU load
reduction caused by employing ACK rate limiting, e.g., in case of 80% ACK drop the
performance increased by 30% in comparison with the unmodified system under 25% CPU
load. Meanwhile, if the CPU load of an unmodified system is more than 60% (more than
routers overload threshold) in case of 80% ACK drop the increase of system performance is
approx 32%.

Figure 20. Relation between performance and CPU load in receiving system with ACK limiting.

The reduction of needed CPU resources for TCP data processing will benefit not only
TCP data receiver with ACK limiting enabled, but also the TCP data sender, even not using
ACK limiting. The TCP sender will have fewer TCP packets to process because the TCP
data receiver will not send back ACK for every second TCP data segment.

The significant impact of ACK rate limiting would be e.g., customer-premises equip-
ment (CPE) such as routers and modems that are used in small offices or at home, NAS, or
other IoT devices that are used for data storage and usually have limited CPU resources.
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Reduced TCP data rates free a significant amount of CPU resources and increase TCP
data throughput.

The reduction of ACK messages could also lead to better performance of the network
in general, i.e., routers, firewalls, proxies, load balancers, which are directly affected by
high TCP data rates and could have a significant gain in CPU resources.

7. Conclusions

The proposed ACK rate limiting algorithm can be used in embedded and low-power
devices without any impact on TCP session stability or degradation of its performance.
However, the upper limit of ACK rate reduction should be carefully determined based on
the CWND and the network conditions.

The algorithm tried to achieve the best TCP session throughput and did not overload
network device CPU under current link conditions and communicating peers’ configura-
tions by measuring the receiving TCP data packet rate and delay. The results of performed
tests suggested that the ACK rate limiting could increase TCP throughput and reduce the
CPU load of TCP data processing up to 50% in tested configurations.

The ACK rate limiting did not affect the performance of network devices or TCP data
throughput on not congested network links. However, in some cases, the fluctuation of
RTT leaded to the expiration of the tRT O timer of the TCP session and caused TCP packet
drops. More often such a big fluctuation of RTT occured on network devices experiencing
the heavy CPU utilization and that resulted in TCP packet retransmission. Even with
this disadvantage, the performed test results show, on average, much better TCP session
throughput with ACK rate limiting enabled.

The degradation of TCP data throughput can be observed in a case when the TCP
receiver is the bottleneck. The CPU load of the TCP receiver limited the TCP packet
receiving rate and thus TCP session throughput was limited.

The proposed modification of the TCP stack should not introduce any effect on TCP
flow control, connection management, congestion control, etc., or impact the security.
However, a more thorough examination of possible side effects of the proposed ACK
limiting on TCP flow control, connection management, congestion control, and connection
security in different QoS scenarios would be carried out.
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