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Abstract: Co-simulation techniques have evolved significantly over the last 10 years. System simula-
tion and hardware-in-the-loop testing are used to develop innovative products in many industrial
sectors. Despite the success of these simulation techniques, their efficient application requires a
systematic approach. In practice the integration and coupling of heterogeneous systems still require
enormous efforts. At this point in time no unified process for integration and simulation of DCP-
based co-simulation scenarios is available. In this article we present ProMECoS, a process model for
efficient, standard-driven distributed co-simulation. It defines the necessary tasks required to prepare,
instantiate and execute distributed co-simulations according to the DCP standard. Furthermore, it
enables the exploitation of front-loading benefits, thus reducing the overall system development
effort. ProMECoS is based on the IEEE 1730 standard for Distributed Simulation Engineering and
Execution Process. It adopts the artefacts of the DCP specification, and defines additional process
artefacts. The DCP specification and its associated default integration methodology were developed
by a balanced consortium in context of the ITEA 3 project ACOSAR. The DCP is compatible to the
well-adopted FMI standard. Therefore both standards can be used together for seamless develop-
ment using models, software, and real components. ProMECoS provides the necessary guidance for
efficient product development and testing.

Keywords: co-simulation; distributed simulation; system simulation; DCP; FMI; standardization

1. Introduction
1.1. Motivation and Incitement

Today computer simulation represents a state-of-the-art methodology for develop-
ment of many different kinds of systems. It is commonly used for design space exploration,
conceptual analysis, prototyping, verification and validation activities. The introduction of
co-simulation methodologies marked a leap ahead in simulation technology. Co-simulation
considers a number of numeric integrators larger or equal to one, combined with a number
of modeling tools larger or equal to one [1]. This results in a situation where a heteroge-
neous simulation environment consists of different subsystems, that are interacting with
each other. These subsystems are characterized by distributed development and simultane-
ous execution. The broad introduction of co-simulation methodologies enabled holistic
cross-domain simulations. At the same time, the problem of setting up and running such
co-simulations is often considered complex [2]. The setup of such a co-simulation scenario
requires a multitude of configuration and parameter settings, that highly depend on the na-
ture of the used models and also the complete system. Despite its complexity, co-simulation
has influenced the development of several classes of systems, like embedded systems or
cyber-physical systems (CPS). This holds especially true for the automotive engineering
domain. The automotive industry is characterized by a multi-tiered organization. A deep
hierarchy of suppliers performs distributed development and integration of automotive
components, parts, and systems, that in the end are manufactured to complete vehicles.
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Figure 1 sketches the expected cost for simulation-driven development of CPS over
time. It considers four different phases of system development as frequently seen in
industry. During the concept and design phase the system’s main characteristics, purpose,
functional description, as well as potential hazards and risks to that functionality are
defined. During the model-in-the-loop (MiL) phase, a functional simulation model of the
system under development is created and tested under simulation conditions. During
the software-in-the-loop (SiL) phase, target platform specific code is used for test under
simulated conditions. During the hardware-in-the-loop (HiL) phase, a prototype or final
sample of the system is tested under simulated conditions. Dependent on the context
of product development, a fifth phase may be present. It covers the final product or a
series production prototype in its intended real-world environment, or an environment
that comes close to that. A typical example thereof is vehicle-in-the-loop testing.
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Figure 1. Front loading benefits of simulation driven development of cyber-physical systems
over time.

The dashed line in Figure 1 shows the progress of overall product development cost
C for a traditional development process over time t. It represents the numeric integral
(Equation (1)) of the spent effort E, which can be measured in person-days, for example.

C =
∫ t

0
E dt (1)

Typically, the spent efforts increase at a higher rate when changing from one develop-
ment phase to the next. During a development phase, the spent efforts increase at a lower
rate. It can also be seen that for this traditional development process the modeling and
simulation activities often start with the model-in-the-loop phase.

The solid line in Figure 1 shows the progress of overall development cost for a
standard-driven development process. It has two main characteristics, in comparison with
the dashed line: First, initial efforts on modeling and simulation are already spent during
a concept and design phase. During that phase, requirements for model interfaces and
interconnections are defined. Second, the phase transitions are characterized by a much
lower rate of effort. The early knowledge of interface and interconnection information is
supposed to enable these flat phase transitions.

The application of this principle is generally known as front-loading.The authors of [3]
define front-loading as “a strategy that seeks to improve development performance by
shifting the identification and solving of problems to earlier phases of a product develop-
ment process”. They describe the integration of multiple components from the aerospace
domain, and recognize the problem of fit. As one particular solution they identified digital
mock-ups, allowing for a virtual assembly of components. It can be seen that the cost of
one design iteration in simulation is up to 60 times lower, compared to a physical prototype.
Another front-loading initiative at an automotive OEM is quoted with benefits in the
vicinity of 30–40 percent.

The following problem is stated. In industry, well-defined process definitions foster
front-loading, as they prescribe sequences of development activities that can be tailored
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to purpose. The Distributed Co-Simulation Protocol (DCP) [4] is an application level
communication protocol. It is designed to integrate models or real-time systems into
simulation environments. Therefore its scope applies to the introduced front-loading
challenge and effort reduction of MiL, SiL, and HiL simulation. The current DCP 1.0
specification document covers the design of a simulation subsystem, called DCP slave, and
its associated artifacts, like the DCP slave description file (DCPX). At this point in time,
the DCP is missing a process description, that helps to determine its effective usage and to
overcome the presented front-loading problem.

This article is organized as follows. Section 1.2 presents a literature review in the field
of co-simulation and its related processes and procedures. In Section 1.3, the contribu-
tion of this article is stated. Section 2 presents ProMECoS, a process model for efficient
standard-driven distributed co-simulation. In Section 3.1, the application of ProMECoS is
demonstrated. Finally, conclusions and possible future research activities are presented in
Section 4.

1.2. Literature Review

Standardization plays an important role for industrial application of any technology. It
enables comparison of solutions, increases interoperability, and fosters market competition.
For the sake of giving a brief overview, Table 1 summarizes a selection of publications with
respect to the field of standard-driven co-simulation. Subsequently, the most important
aspects of these publications are explained in detail.

Table 1. Literature overview.

Topic Standard Reference

Couplings, parameters, and other settings n/a [5–9]
Functional Mock-Up Interface FMI 2.0 [10,11]
Distributed Co-Simulation Protocol DCP 1.0 [4,12,13]
Protocol-based test DCP 1.0 [14]
Conceptual modeling DCP 1.0 [15]
Virtual and Hybrid Testing Next Generation (VHTNG) ED247, DDS [16]
High Level Architecture, Use Cases HLA, IEEE 1516 [17,18]
Simulation Engineering and Execution Process DSEEP, IEEE 1730 [19]
DSEEP in context of service-oriented architectures DSEEP, IEEE 1730 [20]

Typical challenges highlighting the complexity of co-simulation include the coupling
of exchanged quantities for non-iterative co-simulation [6], selection of step-size, correction
signals, and tuning parameters [5]. The challenge of couplings for real-time applications
is addressed in [7–9], considering frequently experienced effects like dead-time, data loss,
and noise. Furthermore, multiple variants of a single co-simulation scenario may be con-
sidered to optimize configuration settings or explore different product variants [21]. The
Functional Mock-up Interface (FMI) was introduced in [11]. It was proposed to solve the
need for interoperability between models and solvers, representing a digital, functional
mock-up of components, parts, and systems. The FMI was developed in the MODELISAR
project, starting in 2008. Its specification is standardized as a Modelica Association Project
(MAP). Its current version is 2.0.2 and was released in December 2020 [10]. The FMI
specification defines an interface for model exchange and co-simulation. By doing so, it uni-
fied approaches to tackle aforementioned challenges regarding, e.g., coupling algorithms.
Today more than 100 commercial and non-commercial software tools support the FMI
(http://fmi-standard.org/tools/, accessed on 22 Jan 2021). For distributed simulation
environments, network communication technologies are frequently used in practice. How-
ever, such a “communication layer is not part of the FMI standard” ([10], p. 97). The
ACOSAR project [22] was targeted towards this issue. ACOSAR stands for “Advanced Co-
Simulation Open System Architecture”. ACOSAR was an ITEA 3 (http://www.itea3.org,
accessed on 22 Jan 2021) (Information Technology for European Advancement) project. Its

http://fmi-standard.org/tools/
http://www.itea3.org
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main goal was the development and preparation for standardization of the “Distributed
Co-Simulation Protocol” (DCP). The consortium (see Table 2) had a strong focus on the
automotive domain. Its members operate on all levels of the automotive supply chain.
Three original equipment manufacturers (OEM), nine companies from the automotive
supply chain, including simulation tool vendors, system and component providers, as
well as four partners from research and academia cooperated. Their main goals were (1)
the specification and demonstration of the DCP, and (2) preparation of standardization
of the DCP with a recognized standardization body in order to promote it as the next
co-simulation standard.

Figure 2 shows an overview of the main concept behind DCP. It is an application level
communication protocol, and represents a versatile solution for exchange of simulation-
related configuration information and data [12,13]. The DCP is compatible to the FMI
by design, addressing an existing, large community of developers and tool vendors. For
example, the FMI’s initialization mode can be utilized via DCP as well. The DCP does not
only enable distributed co-simulation, but the integration of real-time and/or non-real-time
systems. Therefore it enables the definition, configuration and execution of a wide range of
different simulation- and test-scenarios, including MiL, SiL, and HiL scenarios. The DCP
specification document defines a data model, a finite state machine, and a communication
protocol including a set of protocol data units. Furthermore, a test suite is available [14],
that offers extensive, customized protocol-based testing for DCP slaves, prior to integration
into larger simulation scenarios.

© VIRTUAL VEHICLEAugust 2014 / Benedikt ACOSAR - Project proposal 1
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Figure 2. The DCP concept [22]. A co-simulation environment (left) should connect to a real-time
system (right). The DCP (center) can be mapped to a transport protocol, which uses a communication
system.

Table 2. The ACOSAR project consortium.

Feature Project Information

Name ACOSAR: Advanced Co-Simulation Open System Architecture

Consortium 16 partners from 3 countries (Austria, France, Germany)

Structure 3 original equipment manufacturers (Porsche, Renault, and Volkswagen)
9 partners from automotive supply chain, including tool vendors, sys-
tem and component providers (AVL List GmbH, Robert Bosch GmbH,
dSPACE GmbH, ETAS GmbH, ESI-ITI GmbH, Ks.MicroNova GmbH,
Spath Micro Electronic Design GmbH, Siemens PLM Software, TWT
GmbH)
4 partners from research and academia (Ilmenau University of Technol-
ogy, Leibniz Universität Hannover, RWTH Aachen University, VIRTUAL
VEHICLE Research Center)

Leader Virtual Vehicle Research GmbH, Austria
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An attempt to characterize the future challenges in automotive software engineering
was made in [23]. It states that the car industry needs completely new development
processes, which are much more influenced by software issues than our processes used
today. As an example, processes and models of software engineering influence more and
more what is going on in mechanical engineering in the automotive domain. Integration is
considered a major challenge, since subsystems lack precise descriptions in a distributed
process. Development of the DCP represents one piece of evidence for these statements.

High level architecture (HLA) [24] represents a well-known standard for distributed
simulation. It serves the idea of combining several simulations for a larger purpose.
It emerged from the military and defense domain. It is formally defined in three key
documents of standard IEEE 1516. Straßburger [17] provides an overview of HLA, includ-
ing a historical timeline. In HLA distributed simulation participants are called federates.
Federates communicate using a run-time infrastructure (RTI), which can be regarded as
distributed operating system add-on. During simulation, all data transferred must pass
through the RTI. The RTI uses a “Federate Interface Specification” to communicate with
federates. It defines 6 categories of services, including federation management and data dis-
tribution management. The author admits that HLA with its federate interface specification
is considered as one of the most complex standards available.

Since HLA exhibits such a strong complexity, the need for a unified process for its
application emerged. This was recognized by standard IEEE 1730, that fills this gap.
It is called “Distributed Simulation Engineering and Execution Process”, abbreviated
DSEEP [19]. It is intended as a higher-level framework, into which lower-level practices
can be integrated and tailored for specific uses. It provides overlay-standards for other
standards in the field of distributed simulation, including HLA. DSEEP features a generic
7-step process, where each step groups several corresponding activities.

The latest releases of HLA and DSEEP date back to 2010. Until today, HLA was
used in multiple domains, e.g., for smart grid research[18]. Recent advances in cloud
technologies and service-oriented architectures led to the idea of “Modeling and Simulation
as a Service” (MSaaS)—a paradigm shift from component-based technologies, that is now
changing how we model and simulate [20]. The authors present a revised view on DSEEP,
considering recent developments, e.g., the use of a SysML conceptual model, or service-
based simulation applications. A language for domain specific modeling for distributed
co-simulation is presented in [15]. It allows the development of a conceptual model for
DCP-based simulation scenarios, that can be developed further and also used for scenario
integration. On the long run, the MSaaS paradigm will foster the use of co-simulation
approaches in digital twins [25,26].

The “Virtual and Hybrid Testing Next Generation” (VHTNG) research project from
the avionics domain is described in [16]. The project identified that no standards for
configuration, data communication, and data exchange formats are available for avionics
test benches. Therefore it followed similar goals than the ACOSAR project, but with a
less generic approach, tailored to the needs of the avionic domain. The paper describes a
modular, open test bench architecture based on avionics standard ED247 and OMG data
distribution service (DDS).

1.3. Contribution

The specification of the DCP standard was designed to foster the principle of front-
loading, to improve interoperability and enable the flat phase transitions described in
Section 1.1. Our literature review shows that:

1. Simulation standards benefit from a process description, facilitating their application
in industry. This was the case for HLA, where a process description is provided by
DSEEP.

2. Although the DCP is a lightweight standard, it defines numerous artifacts that must
be considered, e.g., the DCP slave description, or a slave configuration.
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3. Currently, no unified process description related to the application of DCP 1.0 exists,
although this would be beneficial for industrial MiL, SiL, and HiL applications, as
well as in MSaaS-schemes.

For these reasons we claim the following contributions. In this article we aim at the
introduction of a DCP standard-driven process that:

1. defines the necessary tasks required to prepare and execute distributed co-simulations,
2. defines the necessary engineering artifacts that need to be created or exchanged,
3. arranges the tasks and artifacts in an ordered sequence, and
4. enables aforementioned exploitation of front-loading benefits, thus reducing the

overall development effort.

2. Process Model for Efficient Distributed Co-Simulation (ProMECoS)
2.1. Scope

In this article we introduce ProMECoS, a process model for efficient distributed
co-simulation. ProMECoS is a process model targeted at the DCP in its first released version
1.0. It focuses on preparation, configuration, instantiation and execution of distributed co-
simulations. However, ProMECoS is not to be mistaken for an architecture model, like the
Reference Architecture Model Automotive (RAMA) [27] or the Automotive Open System
Architecture (AUTOSAR) [28]. It does not reference specific system components, functions,
or simulation use cases. Instead, ProMECoS is open to be integrated into such architecture
models. For the FMI and the AUTOSAR standard this is shown in [29]. Therefore this
article focuses on a generic process model.

The process model is designed as an overlay to IEEE 1730 [19], entitled “IEEE Recom-
mended Practice for Distributed Simulation Engineering and Execution Process” (DSEEP).
IEEE 1730 states that at a more abstract level, it is possible to identify a sequence of seven
very basic steps that all distributed simulation applications will need to follow to develop
and execute their simulation environments. Moving forward in the process, these steps
must be performed sequentially. The process allows one to go back to any previous step at
any time. IEEE 1730 avoids specifications of unnecessary constraints on how simulation
environments are developed and executed. Furthermore, it provides a high degree of
flexibility with regard to how supporting processes are organized and structured. ProME-
CoS aims to exploit these facts. Figure 3 shows the IEEE 1730 top-level process flow view
(bottom) and related ProMECoS tasks organized in layers (top). During development of the
DCP three different layers of system integration were identified [15]. On the information
layer, all DCP artifacts, like the DCP master and all slaves of the intended co-simulation
scenario, are subject to integration solely based on their meta-data. The DCP standard
supports this approach by specification of the DCP slave description (DCPX) file format.
On the instantiation layer, the real master and slaves are integrated with the communication
system. As soon as all participants of the co-simulation are able to communicate, instantia-
tion is complete. On the execution layer, the instantiated master and slaves dynamically
interact with each other. Protocol data units (PDU) are sent and received using the specified
transport protocol.

The three ProMECoS layers are allocated to the steps of IEEE 1730 as shown in Figure 3.
The information layer covers IEEE 1730 steps 2, 3, and 4, the instantiation layer covers
step 5, and the execution layer covers step 6. The DCP specification does not contribute
to steps 1 and 7 by design. The definition of stakeholder needs, simulation environment
objectives, and planning activities is not supported by any specific technical measures or
definitions. The same holds for data analysis, evaluation, and feedback of results.
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Figure 3. General process flow of ProMECoS and IEEE 1730.

2.2. Mapping of Tasks

ProMECoS defines numerous tasks for each of its three layers. In forward direction,
these tasks must be processed sequentially, due to logical dependencies and the flow of
work products. All tasks of ProMECoS can be mapped to IEEE 1730 activities. This is shown
in Table 3. The ProMECoS tasks and their identifiers are listed in the first two columns. In
subsequent columns, the corresponding IEEE 1730 activities, identified by their number,
are given. In the rows below, the character “x” indicates that DCP specific tasks match
with these activities. Activities of IEEE 1730 that are not assigned a ProMECoS task may
not be omitted automatically. The necessity for these activities must be evaluated during
initial process tailoring. A typical example for such an activity is IEEE 1730 2.3, “Develop
Simulation Environment Requirements”. The simulation environment requirements are
written to guide further implementation activities in the process. Regarding the DCP, the
requirements may target, e.g., computing platforms, operating systems, and networks.
Hence, a DCP capable library may be compiled for usage on a specific operating system.

Table 3. ProMeCoS mapping of tasks to IEEE 1730 activities.

id ↓ ProMECoS/IEEE 1730 → 2.1 3.1 3.2 3.3 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6.1 6.2

1.1 Develop conceptual scenario x
1.2 Select slaves x

1.3 Define underlying architecture x
1.4 Select protocol standards x
1.5 Select operating mode x x
1.6 Design interconnections x
1.7 Enhance slaves x
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Table 3. Cont.

id ↓ ProMECoS/IEEE 1730 → 2.1 3.1 3.2 3.3 4.1 4.2 4.3 4.4 5.1 5.2 5.3 6.1 6.2

1.8 Generate scenario description x
1.9 Export scenario description x
1.10 Define scenario configuration x
1.11 Design or select master x

1.12 Deliver slaves x x
1.13 Deliver master x
1.14 Provide infrastructure x

2.1 Assign infrastructure x
2.2 Instantiate master x
2.3 Instantiate slaves x

3.1 Perform registration x
3.2 Execute scenario x
3.3 Pick up logs and results x
3.4 Perform deregistration x

2.3. Process Artifacts
2.3.1. Integration Methodology and Roles

The DCP specification includes a non-mandatory integration methodology ([4], Sec-
tion 10-B). It is shown in Figure 4. This default integration methodology is not a process
description. Instead, it highlights the relationships between the most important DCP related
artifacts. ProMECoS supports this integration methodology. The integration methodology
is based on two fundamental roles, namely the “DCP slave provider” and the “DCP inte-
grator”. As its name suggests, the slave provider is responsible for provision of a slave and
its associated description to the integrator. A DCP slave is either a simulation model or
a real-time system on a ready-to-run execution platform that is accessible via DCP over
a given supported communication medium ([4], Section 3.1.3). The integrator’s tasks are
related to import (see Section 2.3.2, ProMECoS Task 1.7), instantiation (see Section 2.4.5,
ProMECoS Tasks 2.1, 2.2, 2.3), configuration (see Section 2.3.4, ProMECoS Task 1.10), and
operation (see Section 2.3.5, ProMECoS Tasks 3.1–3.4) of at least one slave in a co-simulation
scenario.

DCP provider

DCP slave 
description
(.DCPX file)

DCP integrator

import
import

DCP slave provider A

export

DCP Master

DCP provider

DCP slave 
description
(.DCPX file)

DCP slave provider BDCP integrator

provide provide
Scenario configuration

Information

DCPML slave feature diagram

DCPML output dependency 
diagram

DCP slave
Scenario simulation

DCP slave

instantiate
instantiate

configure configure

describe describe

Instantiation

Execution

s1

s2

s1 s2

s1 s2

communication system

PDU

Figure 4. The default integration methodology and its artifacts [4], highlighting the provider (center)
and integrator roles ((left) and (right)).
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2.3.2. Generation and Description of DCP Slaves

A DCP slave can be realized on different computing platforms using different pro-
graming languages. It is essential that it is accessible via a supported transport protocol
using DCP protocol data units (PDU). Communication must follow the specified protocol.
Furthermore, one slave can only be controlled by exactly one master. Supported transport
protocols of DCP version 1.0 are user datagram protocol (UDP/IPv4), transmission control
protocol (TCP/IPv4), Bluetooth radio frequency communication (RFCOMM), Universal
Serial Bus (USB), and controller area network (CAN, according to Kayak CAN definition,
KCD). Typical examples for DCP slaves are software components, electronic control units
(ECU), robotic components, real-time test equipment, or even large test rigs.

In order to enable the integration of a DCP slave into a larger co-simulation scenario,
it must always be accompanied by a DCP file [13]. The DCP file is a zip encoded file [30]
having the extension .dcp. This file must be consistent with the delivered slave at all times,
to prevent erroneous assumptions about a slave’s features and capabilities. Its internal
structure is normative and designed to hold multiple DCPX files which are compliant to
different DCP version numbers. This is one example of several design provisions taken into
account to provide a future-proof DCP specification. The DCP slave description (DCPX)
is a Extensible Markup Language (XML) file which describes one single DCP slave. It
contains all static information related to one specific DCP slave. Its structure is defined
by a set of normative XML XML Schema Definition (XSD) files. The XSD schema does
not only define the required structures of elements and attributes, but also supplementary
assertions and constraints. Assertions and constraints are highly efficient for expressing
logical relationships between elements and attributes.

Assertions are expressed in the xs:assert tag using the XML Path Language (XPath).
An XPath expression addresses parts of an XML document in terms of a tree structure
(Document Object Model, DOM). One location step in this tree consists of axis, node-test,
and an optional predicate. An example for such an assertion is shown in Listing 1.

Listing 1. Assertion for capability flag and XML child element, as defined in the DCP slave description
schema file [13].

1 < x s : a s s e r t t e s t ="
2 ( ( . / C a p a b i l i t y F l a g s /@canMonitorHeartbeat eq true ( ) ) and boolean ( . / Heartbeat ) )
3 or
4 ( ( . / C a p a b i l i t y F l a g s /@canMonitorHeartbeat eq f a l s e ( ) ) and boolean ( . / Heartbeat )

eq f a l s e ( ) )
5 "/>

It links the capability flag canMonitorHeartbeat to the defined XML child element
Heartbeat. This prevents, e.g., a set capability flag while the associated configuration
information contained in the child element is missing. Assertions are a feature of XSD
version 1.1. However, an XSL transformation (XSLT) file is specified, transforming the
provided XSD version 1.1 schema definition file into a XSD version 1.0 schema definition
file. Furthermore, xs:unique, xs:key and xs:keyref tags are used to express constraints.
Typical examples of application include the verification of uniqueness of names and the
verification of cross-referenced key values. In context of the DCP specification assertions
and constraints provide strong formalisms which can be used for automated DCPX valida-
tion. This has shown to be advantageous in comparison to informal textual rules given in a
specification document.

2.3.3. Information-Based Integration of Slaves and Scenario Description

A distributed co-simulation scenario is defined as the structural integration of multiple
slaves to perform a common simulation task. Since the DCP file contains only information
about one single slave, a data structure for representation of such scenarios is needed. For
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DCP, such a description file in terms of an XML schema description was proposed in [31].
Figure 5 shows the structure of this schema, including elements, groups and attributes.C:\work\spaces\ACOSAR\dcpScenarioDescription\dcpScenarioDescription.xsd 15.03.2020 12:04:38

Page 1Registered to Martin Krammer (Virtual Vehicle)
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name

description

generationTool

author

masterSettings
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opMode

dcpSlaves

1 ∞..

dcpSlave

attributes

id

chosenSettings

attributes

opMode

TimeRes

Variables

1 ∞..
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valueReference

steps

TransportProtocols

dcpSlaveDescription

dcpLinks

1 ∞..

dcpLink
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sourceSlaveId

sourceVr

targetSlaveId

targetVr

Figure 5. Graphical representation of the proposed XML schema for DCP scenario description, based
on [31].

The schema consists of three main branches. The masterSettings element has the
attribute opMode to define the chosen operating mode for the scenario. The dcpSlaves
element is dedicated to the slaves of the scenario. This element has one dcpSlave child
element per slave. Within one scenario, one slave is uniquely identified by the slave
identifier. The slave identifier is assigned by the creator of the scenario description. Each
dcpSlave element has two child elements. The optional dcpDescription element is the
root node of a copy of the DCP slave description. The chosenSettings element defines
choices and selections made by the integrator. For example, this includes the time resolution
actually used for simulation, since the slave description may provide multiple valid single
resolutions or resolution ranges. The dcpLinks element contains the linkage of variables.
It uses the previously defined slave identifiers and value references for unique definition
of a single link.

2.3.4. Computation of Scenario Configurations

For each slave of a co-simulation scenario, transmitting at least one variable value to
another slave, or receiving at least one variable from another DCP slave, a configuration
must be distributed prior to data exchange. The DCP’s data exchange is organized by data
ids. Variables assigned to one data id share common properties, e.g., receiver and time
resolution. A valid configuration is represented by a set of configuration PDUs sent by the
master. The DCP specification defines a separate PDU family for that. In case of a slave,
which is unable to receive configuration PDUs, or non-native DCP [12,13] an agreement
for a common configuration between slave providers and the integrator is needed prior to
slave integration.

Depending on the targeted co-simulation scenario, the number of possible config-
urations can be high. In the long run, manual generation and preservation of a valid
configuration is not reasonable, as it applies to exactly one unique co-simulation scenario.
It seems more adequate to specify an algorithm for the calculation of a configuration. Based
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on the slave descriptions and scenario description on hand, this can be fully automated
and is therefore considered a strength of the DCP standard.

For this task a group of suitable algorithms is proposed in [31]. This configuration
problem can be seen as an instance of the 1D bin packing problem [32]. The classical
one-dimensional bin packing problem is to pack a list of items into a number of bins. The
bin packing problem translates to the DCP configuration problem, where the number of
bins corresponds to the available data_ids. The DCP specification allows a maximum
number of 216 data_ids. The items correspond to variable values identified by a value
reference, having the length of their indicated data types. Based on this finding, four
candidate algorithms were considered, namely First-Fit (FF), Best-Fit (BF), as well as their
offline versions First-Fit-Decreasing (FFD) and Best-Fit-Decreasing (BFD). It is known that
the offline versions perform better than the online versions, with respect to approximating
an optimal solution [33,34]. Furthermore, in context of the DCP it is reasonable to select an
offline algorithm, as all needed information is available at the time of configuration.

Figure 6 shows an illustrative example for three different possible configurations,
resulting from different distributions of variables to data_ids. The considered scenario to
generate these distributions included four slaves [31], with a total number of 75 connections
for data exchange between them. The configurations were created using the FFD variant
of bin packing algorithms. For 128 bytes data_id capacity, the scenario requires just 7
data_ids, the largest being 88 bytes. For 32 bytes data_id capacity, the scenario requires 15
data_ids. In this case, one data_id between some pairs of slaves is not sufficient anymore.
The mapping from slave id 1 to slave id 2 now requires 3 data_ids, where two of them are
of maximum size of 32 bytes. Finally, considering 8 bytes data_id capacity, the scenario
requires a total number of 47 data_ids. The mapping from slave id 1 to slave id 2 now
requires 11 data_ids, all of them are of size 8 bytes. All three distribution results are
considered optimal w.r.t. bin utilization, since all data_ids between any two DCP slaves
are of maximum given size, except the one with the highest data_id. Considering User
Datagram Protocol over Internet Protocol Version 4 (UDP/IPv4) as the underlying transport
protocol, the third configuration causes 3.2 times the bandwidth utilization compared to
the first configuration. However, considering data losses, processing queues, and real-time
requirements, smaller packet sizes may still be advantageous.
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Figure 6. Exemplary distribution results of the 1D FFD bin packing algorithm for different data_id
capacities [31].

2.3.5. Use of a Master and Co-Simulation Execution

The definition of a DCP master is not covered by the DCP specification document.
Its exact functionality and behaviour must be derived from requirements, imposed by
the selected slaves of the co-simulation scenario. For example, if one slave requires the
heartbeat feature to operate as intended, the master must be capable to send state request
PDUs to this slave periodically at a given interval, as specified. Requirements like this can
be determined through the available slave description files. General requirements for a
master are elaborated in [35].

A master must be able to communicate using PDUs, using the same communication
system and transport protocol as the slaves which are subject to be controlled. Therefore, it
must be aware of the addressing scheme. In case of CAN bus based communication, the
configuration is distributed prior to communication system start-up. In case of UDP/IPv4,
the IP addresses can be obtained from the slave descriptions. If the slave descriptions do
not contain IP addresses, the integrator needs to obtain them from another source, e.g., a
network service like DHCP.

The DCP specification defines three different operating modes to cover different
time domains [12]. In soft-real-time (SRT) operating mode the simulated time should be
synchronous to wall clock time. In hard-real-time (HRT) operating mode the simulated time
is synchronous to wall clock time. In non-real-time (NRT) operating mode the simulated
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time is independent from wall clock time. It can be faster or slower. The necessary real-time
capabilities of a master depend on the co-simulation scenario. For example, if the entire
co-simulation scenario consists of NRT DCP slaves, the master clocks the simulation. If
NRT and SRT/HRT slaves are supposed to operate within one co-simulation scenario, the
master must be able to clock the NRT DCP slaves at a frequency that corresponds to the
resolution of the SRT/HRT DCP slaves.

Every standard compliant slave must operate according to the specified DCP state
machine. During operation, this state machine passes through several phases.

Registration phase: In this phase, the master has started up and has access to informa-
tion about DCP slaves that may potentially used for simulation. This can be achieved by
reading DCP slave descriptions, using a network service, or talking to a network adminis-
trator. From a protocol perspective, the master sends a register PDU to each slave he needs
to work with. As soon as these slaves have acknowledged such a registration attempt,
they are controlled by this master exclusively. The register PDU also carries additional
information. This includes the intended operating mode, the version of the DCP protocol
to be used, and the universally unique identifier (UUID). The latter can be used to identify
the slave implementation that corresponds to the slave description file.

Configuration phase: In the second phase, the master configures its registered slaves,
by generating a valid configuration based on information contained in the slave description
files. This configuration is then rolled out to all DCP slaves. If a slave cannot receive
configuration PDUs, as indicated by the corresponding capability flag, this step is omitted.

Initialization phase: In the third phase, the master may trigger the initialization of all
registered slaves. This means that an initial consistent state between all registered slaves
shall be reached. To do so, the outputs of all slaves are computed based on input data. At
the end of this phase, all slaves are prepared for the simulation phase. The scenario design
for initialization is considered early in ProMECoS, as this may require the introduction of
additional variables and connections.

Simulation phase: During the simulation phase the simulated time advances. It is
dependent on the chosen operating mode. Input and output data of slaves are exchanged
and test cases examined.

Stopping phase: Finally, the stopping phase is intended to stop the simulation in a safe
way. While, e.g., simulation environments may be stopped immediately, any connected
real-time systems may require some time to stop. After stop, slaves may be reset to be
ready for the next simulation run, or deregistered and released from the master.

Error handling: Two states in the state machine are reserved for user-defined error
handling procedures. The criteria for transition to these states are application specific and
must be designed by the slave provider. This mechanism can be used to indicate a problem
or failure that prevents the slave from continued operation. This way, a DCP slave can be
treated as a safety-element-out-of-context (SEooC) [36]. As soon as one slave indicates that
it has switched to the Error superstate, the master has the possibility to take action for the
entire scenario. For example, the master may stop all other slaves that are still operating as
intended, to prevent any damage to hardware and/or connected physical devices.

2.4. Task Descriptions
2.4.1. Concept

Task 1.1 “develop conceptual co-simulation scenario ” serves as a vehicle for trans-
forming simulation objectives into functional and behavioral descriptions for DCP slave
providers and especially the integrators. In IEEE 1730 this is also denoted as “conceptual
model”. A conceptual model is the collection of information that describes a simulation
developer’s concept about the simulation and its pieces [37]. The conceptual co-simulation
scenario is implementation independent, the technologies and realizations behind DCP
master and slaves are abstract. A language to support the development of such a con-
ceptual model is the Systems Modeling Language (SysML) [38]. Approaches to develop
a conceptual model for simulation purposes are described in [39,40]. A SysML profile
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dedicated to the DCP is available [15]. The DCP modeling language (DCPML) implements
domain specific characteristics and defines an abstract syntax. Based on its fundamental
language constructs, a range of stereotypes for modeling is defined. Four separate diagram
types are available to cover different aspects of the simulation model. For a conceptual
model, the Project Diagram and the Scenario Diagram are sufficient. The Dependency
Diagram and the Slave Feature Diagram may be used afterward to complete the model
and use it as a means for full scenario description.

In industry and academia alike, chances are good that single components for simula-
tion are already available. For this reason, task 1.2, “selection of slaves”, evaluates these
existing components. The slave provider must determine if an existing model or real-time
system meets the requirements of the integrator, and if it is feasible to transform the system
into a slave according to the DCP specification. If DCP slaves are already available, their
slave descriptions are subject to evaluation.

2.4.2. Underlying Architecture

Despite the fact that ProMECoS focuses on application of the DCP, the relationship to
the underlying simulation architecture and related standards is of great importance. Task
1.3 “define underlying architecture” addresses situations, where different communication
systems, transport protocols, middlewares, and computing platforms should be used
complementary to or in connection with the DCP. Gateways or bridges may be used to
connect simulation participants and route simulation data across different networks. This
also includes connection of legacy devices, which can be justified in a number of ways.
Either a device is not able to run any software code, developers are not in favor to touch
existing systems, or a belated DCP implementation is not reasonable from an economic
point of view. An example for such a scenario is reported in [41]. In that paper, a cross-
domain co-simulation is connected to a remote small-scale test bed using a device called
PCM. The “Physical Converter Module” was developed in the ACOSAR project. It is
intended to

• enable DCP-based access to legacy devices that do not implement the DCP by them-
selves,

• allow connections of real components and systems with simulations,
• act as a gateway or router between different networks.

To provide this connectivity it features several different inputs and outputs. To connect
physical components, four analogue and four digital inputs and just as many outputs are
available. Furthermore, it provides two inputs for PT100 temperature sensors as well as
brushless DC motor drivers. To establish DCP connections, two Ethernet ports, two CAN
bus connectors, a USB port, and a Bluetooth interface (via USB) are available. The PCM
is enclosed in a robust and compact aluminum case, which makes it suitable for usage in
laboratories, test beds, and other industrial facilities.

Subsequently, task 1.4 deals with “selection of supported protocol standards”. This
includes the underlying transport protocol for the DCP, but also the related transport
protocols of connected communication systems. For example, the translation of DCP PDUs
to CAN bus messages requires a dedicated algorithm. The underlying communication
system and supported protocol standards directly affect real-time requirements of the
targeted co-simulation scenario.

Therefore task 1.5, “selection of operating mode” determines real-time criteria for
the entire co-simulation. For this task, the capabilities of the underlying communication
systems and computational capacities of selected slaves are crucial. The choice of the
operating mode significantly influences all subsequent tasks. Especially task 1.11 is affected,
as the master must implement the specified operating mode. E.g., to operate a scenario
including both SRT and NRT slaves, the master must be able to handle both in a coordinated
way to achieve a SRT scenario.

Task 1.6 addresses the design of interconnections. This task defines connections
between inputs, output, and parameters. On one hand, the integration of pure software
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components is affected by coupling errors. Solutions to this problem exist [5,6]. On the
other hand, if co-simulation is extended to the real-time domain, coupling of models or
real-time systems is affected by network delay and jitter [7,8]. A solution to that problem is
proposed in [9]. If such coupling algorithms should be used to reduce coupling errors or
compensate unwanted communication effects, they need to be addressed in this task.

Furthermore, it can be beneficial to start a distributed co-simulation scenario from
a state that differs from its rest position. For this reason task 1.6 also addresses the
development of initialization and synchronization strategies and procedures. Due to
the causal dependencies between simulation participants, this often affects the entire co-
simulation scenario or large portions of it. The co-simulation scenario must be brought
into a state, where given variables must fulfill specified initial start conditions. The DCP
supports initialization calculations to achieve a consistent initial condition of connected
DCP slaves [13]. The DCP description file may contain information about a slave’s output
dependencies. Such a dependency describes if an output is controllable by an input or
parameter over time. Dependency information can be specified for the DCP’s Initialization
and Run superstates separately. The first is applicable prior to simulation, whereas the
latter is applicable during simulation. Additionally, a slave can mark outputs to be valid in
Initialization superstate only, so-called initial outputs.

An example for such an initialization strategy is detection and break of cyclic de-
pendencies. A cyclic dependency in a co-simulation scenario exists when two criteria are
met. First, slaves are connected in a cyclic structure, also known as closed-loop simula-
tion. Second, the affected outputs depend on their inputs. If such a cyclic dependency is
detected, the integrator and the involved slave providers can make an attempt to break it.
This would be possible by, e.g., adding additional parameters having dependencies from
affected outputs. Initialization strategies may affect the entire co-simulation scenario in a
way that additional inputs, outputs and parameters are required. If necessary, they must
be designed in the subsequent task.

Task 1.7, “enhancement of existing and design of new slaves” is accomplished primar-
ily by the slave providers. Based on the conceptual model created earlier and requirements
stated by the integrator, each provider must come up with a plan for the slave design. This
includes three steps. First, the model or real-time system which is subject to encapsulation
in a DCP slave must be analyzed. If the real-time system is safety critical for operation
within a co-simulation scenario, the applicable known failures must be identified. This
can either be achieved by looking at available documentation, or conduction of a safety
analysis. Second, the exposed interface of the real-time system must be analyzed. If an
input signal shared via DCP is able to cause a failure on the real-time system, the DCP
needs to address this issue. This is achieved in the third step. Criteria and transitions from
the normal operation states to the error handling states must be defined (see Section 2.3.5).
Variables may be monitored for updated values to detect data loss. Inputs and outputs may
be prevented from overflowing with the introduction of additional delimiting functions.
Note that this exact functionality is not covered by the DCP specification as it is highly
use case specific. At the end of this task, each DCP slave provider should deliver a slave
description to the integrator, the implemented slave follows later in task 1.12.

2.4.3. Scenario

Based on the conceptual model and the selected DCP slave description files the co-
simulation scenario description must be developed. This is scheduled for task 1.8. Saving
the scenario description using a specific file format (DCPS) is covered by task 1.9. In task
1.10, either a valid configuration is generated manually, or a suitable algorithm for configu-
ration is chosen and implemented. After execution of the algorithm, the result is processed
by the master. Task 1.11 is concerned with the design or selection of a suitable master. The
scenario and slave description files serve as a basis for master requirements. Design or
selection of a master can vary in complexity. Some important variability points are:



Electronics 2021, 10, 633 16 of 26

• If a slave requires heartbeat monitoring to function properly, the master needs to be
able to handle the affected PDUs accordingly.

• If a slave requires roll out of a configuration, it must be able to prepare and send
configuration PDUs.

• If an initialization mechanism was developed earlier, the master must be able to
trigger the appropriate states for calculation and data exchange during initialization
superstate.

• If the scenario includes indirect slave-to-slave communication, the master must be
able to send and receive data PDUs.

• If slaves are able to process reset PDUs, the master may trigger multiple simulation
runs in a row without the need for reconfiguration.

Most of these points can be identified by analysis of the six capability flags that are
defined in the slave description.

2.4.4. Implementation

At this point in ProMECoS, the specification of the scenario and its slaves, the master,
and the infrastructure should have reached a maturity level that allows implementa-
tion of these artifacts. The main output of task 1.12 is a ready-to-run DCP slave, this
is accomplished by each slave provider. Thorough verification of a slave is crucial for
its release. In [14], a V-model for development, verification and validation of a DCP
slave is proposed. In that work the idea of protocol-based verification is elaborated.
Protocol-based verification can be used to test a slave for compliance to the DCP specifi-
cation document. However, sending plain, pre-defined sequences of PDUs to slaves for
protocol-based verification is not reasonable. A DCP slave may expose non-deterministic
behaviour, due to, e.g., network delay, affecting the protocol and state machine ([4], p. 21).
Protocol-based verification for DCP is based on a generic test procedure definition. This
generic test procedure consists of steps and transitions between these steps. A transi-
tion corresponds to a sent or received DCP PDU. This generic test procedure definition
is subject to extension. Test procedure extensions are based on the description of the
slave-under-test, hence they can be tailor-made for each individual slave. This concept
is supported by two open-source software projects. The DCP Test Generator (Available
at https://github.com/modelica/DCPTestGenerator (accessed on 22 Jan 2021)) generates
such tailor-made sequences of PDUs, and stores them in a separate test procedure XML
file. The DCP Tester (Available at https://github.com/modelica/DCPTester (accessed
on 22 Jan 2021)) mimics a master. It takes test procedure files as an input and stimulates
the slave-under-test. A test procedure is successfully executed if the procedure returns at
defined steps. Protocol-based test integrates seamlessly into other verification activities,
e.g., and can be automated in an continuous-integration/continuous-delivery (CI/CD)
software development approach.

An implemented and configured master is delivered by the integrator in task 1.13.
The infrastructure for master and slaves is prepared in task 1.14. This includes network
design, initialization and configuration of network elements, like transceivers and network
adapters, setup of supporting software, as well as wiring and physical connections of
network adapters. For Ethernet and IP-based networks the slave description schema file
specifies that the statement of IP address and port information is optional. If the provider
and integrator were able to agree on fixed IP addresses and ports beforehand, no more
work needs to be done at this point. However, in reality the integrator strives for flexibility.
The provider cannot foresee network addresses and ports to be used. In this case, the
integrator must obtain and set this information in another way, which not specified. For
that purpose, he might rely on other sources, e.g., the responsible network engineer or a
service like dynamic host control protocol (DHCP).

https://github.com/modelica/DCPTestGenerator
https://github.com/modelica/DCPTester
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2.4.5. Instantiation

The tasks assigned to the instantiation layer are used to take the now available master
and slaves to the infrastructure. In task 2.1 preparatory work is done. If required, in case of
IP-based networking, the integrator assigns IP addresses and port information obtained
previously in task 1.14 to the master and slaves. Subsequently, the master and slaves are
launched. The master is instantiated as soon as it is able to send PDUs, e.g., a state request
INF_state (PDU). This is covered by task 2.2. A slave is instantiated as soon as it can be
reached via DCP protocol, e.g., by answering a state request PDU with a corresponding
response RSP_state_ack (PDU). This is covered by task 2.3.

2.4.6. Execution

According to the front-loading principle of DCP, at the execution layer all slaves and
the master are running. All necessary measures were taken upfront so that the actual
co-simulation can now be executed. ProMECoS assumes that all involved slave state
machines are operated by the master in lock-step. This means that for normal operation all
slaves are either within the same common current state sc, within the current state and the
next requested state {sc, sc+1}, or within the current state, the next requested state and the
state after the requested state {sc, sc+1, sc+2}. If all slaves have reached state sc+1 or sc+2,
this state becomes the new common current state. This alternative behavior depends on
master-triggered or self-triggered state transitions, as specified in the DCP state machine.
Self-triggered transitions are indicated using the prefix SIG_.

The following tasks of ProMECoS are aligned to the DCP state machine. In task 3.1
the master makes a registration attempt to each slave of the co-simulation scenario. If
successful, the master takes exclusive control of each slave.

Task 3.2 is intended to execute the co-simulation scenario. The master controls the sce-
nario to pass through the different phases of the state machine as described in Section 2.3.5.
Therefore, it may use the calculated configuration, performs initialization and synchro-
nization steps as designed, reacts to unexpected events in terms of error handling, and
shuts down each slave of the scenario safely. In scope of this task, the encapsuled model or
real-time system is used to execute the intended test cases.

Task 3.3 is related to the DCP’s logging features. Any collected log file entries may be
picked up by the master at this point, after simulation and before deregistration.

Finally, task 3.4 is dedicated to deregistration. At deregistration the master releases its
controlled slaves. The slaves may stay in state ALIVE, which allows them to be registered
again. Alternatively they may also exit from DCP execution completely.

3. Application of ProMECoS
3.1. Use Case

To highlight the applicability of ProMECoS a use case from the automotive domain
is considered. It is based on a real testbed application of AVL List GmbH (http://www.
avl.com (accessed on 22 Jan 2021)). Various aspects of this use case are also described
in [12,13,41]. The use case in this article aims at the demonstration of the interplay of
ProMECoS process artifacts, performance evaluations (as conducted in [41]) are not in
focus. Its complexity (primarily driven by the number of involved variables) was reduced
for simplified comprehension and better legibility. Power train and full vehicle test benches
are typically used for integration and performance tests. Especially for new propulsion
systems, like hybrid electric vehicles or battery electric vehicles, interplay of subsystems
for optimal energy consumption and efficiency is of utmost importance. To measure energy
consumption and assess propulsion efficiency, power train components like combustion
engines, electric motors, batteries and inverters are connected with a dynamometer. In this
example, we propose an engine, mounted onto a testbench, and a vehicle model including
a driver. Due to the fact that the industrial utilization of test benches is typically high and
their use costly, a MiL simulation is set up before moving on to a HiL test rig. Because

http://www.avl.com
http://www.avl.com
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of that a model of the engine is used. The efficiency of setting up such a DCP-based
co-simulation scenario relies on the following key capabilities:

1. Existing models can be reused. This holds true for FMUs, which can be seamlessly
embedded into DCP slaves.

2. MiL simulation is performed in NRT mode, but can be switched to SRT mode before
integrating real hardware.

3. A model can be replaced with its real counterpart system, sharing the same inputs,
outputs, and parameters.

The goal is to simulate the driving performance of a given vehicle including a real
engine on a test bench following a Worldwide harmonized Light vehicle Test Procedure
(WLTP) test cycle. WLTP was developed by the “United Nations Economic Commission for
Europe” (UNECE) to replace the “New European Driving Cycle” (NEDC) as the European
vehicle homologation procedure. The final WLTP specification was released in 2015. These
objectives account for step 1 of IEEE 1730.

ProMECoS starts with the development of a conceptual co-simulation scenario. In this
case, three components can be identified.

• The engine model has inputs for the accelerator pedal and rotating shaft speed. It
communicates the required torque demand to the vehicle model.

• The vehicle model has inputs for the torque demand and desired vehicle velocity.
Based on the current load, it communicates the accelerator pedal position and rotating
shaft speed to the engine model. The vehicle model includes a driver model.

• The drive cycle model communicates the required vehicle velocity to the driver inside
the vehicle model.

This co-simulation scenario was modeled using a prototypical implementation of
DCPML [15] for Enterprise Architect by SparxSystems. Figure 7 shows a scenario diagram,
including stereotypes for three slaves (vehicle, engine, and drive cycle). Ports are used to
represent the inputs and outputs of these slaves. They are linked using connectors. The
initial conceptual DCPML model is enriched with additional information as ProMECoS
progresses. This is achieved using additional property elements and tagged values. The
resulting model can be transformed into DCPX files and the overall DCPS file. This
functionality was prototypically implemented in terms of an add-in for Enterprise Architect,
exporting these artifacts.
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Figure 7. The conceptual model in DCPML showing the three DCP slaves.

Listing 2 shows the engine’s DCP slave description. It represents a simulation model,
based on a combustion engine’s curve family. Line 2 contains meta information about
the slave. In lines 4 and 5 the operating mode is declared. On one hand this model is
designed for pure software simulation in non-real-time operating mode. On the other
hand the model’s soft-real-time operating mode makes it suitable for real-time simulations.
The model’s time resolution is specified in line 8, where the denominator value if given.
The numerator value is not explicitly specified. In such a situation, the slave description
schema file may be used to pull default values. This approach helps to reduce redundant
transmission of configuration information and can be automated by using a parser sup-
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porting XML schema definitions and the DCPX schema file itself. Lines 11 to 21 are used
for transport protocol related settings, in this case UDP over IPv4 is used on a local host.
Line 22 lists the slave’s capability flags. In lines 23 to 39 the three variables are defined
(accelerator pedal position, shaft speed and torque demand).

Listing 2. DCP slave description file representing the engine model.

1 <?xml version=" 1 . 0 " encoding="UTF−8 " ?>
2 <dcpSlaveDescr ipt ion dcpMajorVersion=" 1 " dcpMinorVersion=" 0 " dcpSlaveName="

dcpslave_SimpleEngine " uuid=" b5279485 −720d−4542−9 f29 −bee4d9a75ef9 "
variableNamingConvention=" f l a t " >

3 <OpMode>
4 <SoftRealTime/>
5 <NonRealTime />
6 </OpMode>
7 <TimeRes>
8 <Resolut ion denominator=" 100 " />
9 </TimeRes>

10

11 <Transpor tProtoco ls>
12 <UDP_IPv4 maxPduSize=" 65507 " >
13 <Control host=" 1 2 7 . 0 . 0 . 1 " port=" 8083 " />
14 <DAT_input_output host=" 1 2 7 . 0 . 0 . 1 " >
15 <AvailablePortRange from=" 2048 " to=" 65535 " />
16 </DAT_input_output>
17 <DAT_parameter host=" " >
18 <AvailablePortRange from=" 2048 " to=" 65535 " />
19 </DAT_parameter>
20 </UDP_IPv4>
21 </Transpor tProtoco ls>
22 < C a p a b i l i t y F l a g s canAcceptConfigPdus=" t rue " canHandleReset=" t rue "

canHandleVariableSteps=" t rue " canProvideLogOnRequest=" t rue "
canProvideLogOnNotif ication=" t rue " />

23 <Var iab les>
24 <Var iable name=" alpha " valueReference=" 1 " d e s c r i p t i o n =" load " >
25 <Input>
26 <Float64 s t a r t =" 0 . 5 " />
27 </Input>
28 </Var iable>
29 <Var iable name=" speed " valueReference=" 2 " d e s c r i p t i o n =" speed "

>
30 <Input>
31 <Float64 s t a r t =" 2000 " />
32 </Input>
33 </Var iable>
34 <Var iable name=" torque " valueReference=" 3 " d e s c r i p t i o n =" torque

" >
35 <Output>
36 <Float64 />
37 </Output>
38 </Var iable>
39 </Var iab les>
40 </dcpSlaveDescr ipt ion>

For the DCP scenario description, the proposed DCPS file format was used. An excerpt
of that file is shown in Listing 3. In line 3 the overall operating mode is defined, so the
master is informed that this will be executed as a soft-real-time simulation. From line 4 to 23
the slave identifiers are assigned. Furthermore, each slave is assigned a local operating
mode. From line 24 to 30, the interconnections between slaves are described as links. The
file is shortened, as each slave’s description is contained in the scenario description.
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Listing 3. Excerpt of the used DCP scenario description file.

1 <dcpScenar ioDescr ipt ion xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema− i n s t a n c e "
name=" t e x t " xsi:noNamespaceSchemaLocation=" dcpScenar ioDescr ipt ion . xsd ">

2 <ma st e rS e t t in gs opMode=" 1 "/>
3 <dcpSlaves>
4 <dcpSlave id=" 1 ">
5 <chosenSet t ings opMode=" 1 " />
6 <dcpSlaveDescr ipt ion>
7 . . .
8 </dcpSlaveDescr ipt ion>
9 </dcpSlave>

10 <dcpSlave id=" 2 ">
11 <chosenSet t ings opMode=" 1 " />
12 <dcpSlaveDescr ipt ion>
13 . . .
14 </dcpSlaveDescr ipt ion>
15 </dcpSlave>
16 <dcpSlave id=" 3 ">
17 <chosenSet t ings opMode=" 1 " />
18 <dcpSlaveDescr ipt ion>
19 . . .
20 </dcpSlaveDescr ipt ion>
21 </dcpSlave>
22 </dcpSlaves>
23 <dcpLinks>
24 <dcpLink sourceSlaveId=" 1 " sourceVr=" 4 " t a r g e t S l a v e I d =" 2 "

targe tVr=" 1 " />
25 <dcpLink sourceSlaveId=" 1 " sourceVr=" 5 " t a r g e t S l a v e I d =" 2 "

targe tVr=" 2 " />
26 <dcpLink sourceSlaveId=" 2 " sourceVr=" 3 " t a r g e t S l a v e I d =" 1 "

targe tVr=" 1 " />
27 <dcpLink sourceSlaveId=" 3 " sourceVr=" 1 " t a r g e t S l a v e I d =" 1 "

targe tVr=" 7 " />
28 </dcpLinks>
29 </dcpScenar ioDescr ipt ion>

Since this concrete scenario contains only four links between three slaves, a pragmatic
approach for generation of a scenario configuration was applied. For each slave sending
at least one output variable to another slave, one data_id is used for that purpose. This
is possible since all outputs sent from slave 1 to slave 2 share the same step size (1) and
resolution (1/100th of a second). Listing 4 shows part of the rolled out configuration.
It contains all PDUs and their fields transmitted to the slave representing the engine
(slave_id == 1). On line 4 and 5 two PDUs are used to configure the same data_id for
two input variables.

All slaves and the master were implemented using DCPLib (Available at https://
github.com/modelica/DCPLib (accessed on 22 Jan 2021)), an open-source software library
written in C++ programming language. It provides several packages: The DCPLib::Core
package contains common classes like constants and PDU definitions. The DCPLib::Slave
package is needed to create slaves. At this point in time, DCPLib supports ethernet
networks for UDP and TCP over IP version 4 support. Furthermore, DCPLib::Xml and
DCPLib::Zip support the handling of DCP files. The DCPLib::Master package contains the
necessary functionality for construction of a master. However, DCPLib does not include
any coupling algorithms or automation functions.

For the slave representing the engine, an existing FMU was successfully encapsulated
using DCPLib. From an operational point of view, this is achieved by mapping the states
of the DCP state machine with the states of the FMI state machine. Subsequently, received
PDUs can trigger FMU functions, and called FMU functions can also trigger sending of
PDUs. Table 4 shows the used mapping. FMI’s Initialization Mode is covered by DCP’s
CONFIGURED, INITIALIZING, INITIALIZED, and SENDING_I states, denoted as superstate
Initialization. In this use case, the vehicle starts to move from standstill, hence no
additional precalculations before the start of simulated time are necessary. The DCP’s

https://github.com/modelica/DCPLib
https://github.com/modelica/DCPLib
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states COMPUTING, COMPUTED, and SENDING_D are only required if the slave is
executed in non-real-time operating mode. FMI’s stepInProgress and slaveInitialized
must be available from SYNCHRONIZING throughout to SENDING_D, in order to enable both
real-time and non-real-time operating modes for the slave.

Listing 4. The configuration rolled out to slave 1.

1 CFG_scope , type_id : 0x2b , pdu_seq_id : 1 , r e c e i v e r : 1 , data_id : 1 , scope : 0x0
2 CFG_scope , type_id : 0x2b , pdu_seq_id : 2 , r e c e i v e r : 1 , data_id : 2 , scope : 0x0
3 CFG_output , type_id : 0x23 , pdu_seq_id : 3 , r e c e i v e r : 1 , data_id : 1 , pos : 0 ,

source_vr : 3
4 CFG_input , type_id : 0x22 , pdu_seq_id : 4 , r e c e i v e r : 1 , data_id : 2 , pos : 0 ,

t a r g e t _ v r : 1 , source_data_type : 0x9
5 CFG_input , type_id : 0x22 , pdu_seq_id : 5 , r e c e i v e r : 1 , data_id : 2 , pos : 1 ,

t a r g e t _ v r : 2 , source_data_type : 0x9
6 CFG_time_res , type_id : 0x20 , pdu_seq_id : 6 , r e c e i v e r : 1 , numerator : 1 ,

denominator : 100
7 CFG_target_network_information , type_id : 0x25 , pdu_seq_id : 7 , r e c e i v e r : 1 ,

data_id : 1 , t r a n s p o r t _ p r o t o c o l : 0x0 , t a r g e t _ p o r t : 60002 , t a r g e t _ i p _ a d d r e s s
: 1 9 2 . 1 6 8 . 1 . 1 0

8 CFG_steps , type_id : 0x21 , pdu_seq_id : 8 , r e c e i v e r : 1 , s teps : 1 , data_id : 1
9 CFG_source_network_information , type_id : 0x26 , pdu_seq_id : 9 , r e c e i v e r : 1 ,

data_id : 2 , t r a n s p o r t _ p r o t o c o l : 0x0 , source_port : 60001
10 CFG_source_network_information , type_id : 0x26 , pdu_seq_id : 10 , r e c e i v e r : 1 ,

data_id : 2 , t r a n s p o r t _ p r o t o c o l : 0x0 , source_port : 60001

Table 4. Mapping of DCP states to FMI states.

FMI States DCP States

instantiated ALIVE

instantiated

CONFIGURATION
PREPARING
PREPARED
CONFIGURING

Initialization Mode

CONFIGURED
INITIALIZING
INITIALIZED
SENDING_I

slaveInitialized, stepInProgress

SYNCHRONIZING
SYNCHRONIZED
RUNNING
COMPUTING
COMPUTED
SENDING_D

slaveInitialized, terminated STOPPING

terminated STOPPED

error ERRORHANDLING
ERRORRESOLVED

The three DCP slaves and the master were instantiated on different computers in
the testing lab. After that, the tasks of the execution layer started. Listing 5 shows the
DCP related communication between the master and the vehicle model, which is assigned
slave identifier 2. The simulation results were acquired from all slaves after execution of
ProMECoS, in step 7 of IEEE 1730. Figure 8 shows the values over time for each output
variable of the scenario, including the actual vehicle velocity.
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Listing 5. Registration of the vehicle model. At the same time it is assigned slave identifier 2.

1 0 .000214501 , STC_register , type_id : 0x1 , pdu_seq_id : 0 , r e c e i v e r : 2 , s t a t e _ i d :
0x0 , slave_uuid : b5279485 −720d−4542−9 f29 −bee4d9a75ef9 , op_mode : 0x01 ,

major_version : 1 , minor_version : 0
2 0 .003068939 , RSP_ack , type_id : 0xb0 , resp_seq_id : 0 , sender : 2
3 0 .003567495 , NTF_state_changed , type_id : 0xe0 , sender : 2 , s t a t e _ i d : 1
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Figure 8. Simulation result.

3.2. Analysis

The described use case was successfully built, instantiated and executed according to
ProMECoS. Since the 30 min WLPT profile starts from vehicle standstill, no initialization
had to be used. The step-size was set to 10 ms, resulting in a total number of 180.000 steps
in NRT and SRT operating mode. On standard office computers with data exchange over
standard Ethernet network, this leads to a computation time in NRT mode of 3:50 min. All
introduced process artifacts gear into each other to achieve the goal of front-loading:

• The conceptual model identified the required slaves, where one of them (the engine
model) was available from a previous model-in-the-loop simulation as a FMU. In
course of the process, it was encapsulated in a DCP slave.

• The roles of providers and the integrator were assigned to respective persons and com-
panies.
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• The underlying communication architecture is based on an Ethernet network. The
UDP transport protocol was used for this distributed co-simulation. The operating
mode was set to NRT, to prepare the scenario for future connection to a real automotive
test bench operated in SRT mode. The conceptual model was used to generate the
scenario description file.

• Based on the scenario description file, a configuration was generated. Due to the man-
ageable amount of of interconnections between slaves, each variable was manually
assigned to a separate data_id or UDP packet. During scenario execution, it was
rolled out by the master to the three slaves.

• The master was tailor-made for the scenario at hand using DCPLib. The instantiation
and execution was performed on two networked computers in our lab.

Following ProMECoS, the effort to extend this co-simulation scenario by connecting
remote facilities, like engine test beds, is considered minimal if the facility shares the
same DCP interface. DCP-based use cases including the integration of test beds are also
described in [12,13,42]. Furthermore, the successful remote integration of slaves over the
internet is described in [41].

At this point in time, DCPLib implements the DCP specification only, and does
not offer countermeasures to deal with coupling errors. Industrial commercial soft-
ware simulation tools implementing patented solutions to these problems are available
(Model.CONNECT by AVL List GmbH, www.avl.com (accessed on 22 Jan 2021)) The
application and configuration of such mechanisms is not in scope of this article. However,
ProMECoS considers the integration of such mechanisms in Task 1.6.

4. Conclusions

ProMECoS is a systematic way to set up distributed co-simulations using the DCP. It
can be applied to integrate simulation models and also real-time systems. In contrast to
other simulation architectures, like HLA for example, ProMECoS embeds a wire-protocol
definition in connection with native and non-native DCP mappings. It relies on lightweight
artifacts, including the slave descriptions, the scenario description, the mapping of PDUs
to a transport protocol, the generated co-simulation configuration, the executable slaves
themselves, and the master controlling the co-simulation. The entire process is designed
to be IEEE 1730 compatible, which means that all ProMECoS tasks can be mapped to an
IEEE 1730 activity. The design of the DCP specification fosters the front-loading prin-
ciple, hence ProMECoS takes advantage of this property. A corresponding distributed
co-simulation can be planned and designed completely, before moving on to instantiation
and execution. ProMECoS covers the FMI standard indirectly, as a DCP slave may include
a single FMU, or even an FMI-based co-simulation scenario. In such a situation, the model
description file of the FMU must also be considered as a usable artifact during the design
of a new DCP slave.

ProMECoS has a high potential for automation. The process artifacts are well-defined,
and can be created, modified, analyzed, validated and processed in an automated way.
This was also one of the main aspects during development of the DCP. For example, the
DCP slave description schema files not only specify the structure of XML data. They were
also enriched with numerous assertions and constraints, enabling instant validation of
static slave data. The same holds true for other artifacts, like the scenario description file.

ProMECoS represents the first attempt to come up with a defined process for dis-
tributed co-simulation in context of the DCP specification. However, it has some limitations,
that could be addressed in future work:

• The integration of ProMECoS and the DCP standard into architecture models (RAMA,
AUTOSAR, etc.) requires further research.

• In the future, the DCP scenario description might be replaced by standardized system
structure and parameterization [43] (SSP) XML files.

• ProMECoS does not cover step 1 (definition of objectives) and 7 (analysis of results) of
IEEE 1730, as these activities are out of scope of the DCP specification. Nevertheless

www.avl.com
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the formulation of objectives and analysis of results represent highly relevant topics
for distributed co-simulation in context processes and standards, and are therefore
subject to further research.

• Within steps 2–6, the DCP specification targets the specification and design of a slave
only. The features and capabilities of the required master are not defined by the DCP
specification. A master, which is mandatory, can be of high complexity, e.g., when
different operating modes like NRT and SRT are mixed in one scenario. Scenarios like
this represent an interesting field for future work, as such master algorithms will be
needed in, e.g., HiL settings.

• Furthermore, ProMECoS assumes co-simulation scenarios with slaves in lock step
operation. This means that all slaves are registered, configured, initialized, synchro-
nized, used for simulation, and shut down at the same time, disregarding delays
and other effects contributing to non-determinism. Not operating slaves in lock step
implies severe consequences, like the definition of synchronization points for dynamic
addition or removal of slaves during simulation. This is expected to be required in
the future, especially in context of IoT (internet-of-things, see [26]), digital twins and
virtual validation. This is an open issue not only in ProMECoS, but in the specification
of the DCP standard, and is therefore subject to further research.

• At this point in time, DCP supports five transport protocols for different commu-
nication systems. It provides a framework for addressing connection-oriented and
connection-less, reliable and unreliable, as well as native and non-native transport pro-
tocols. If the necessity for adoption of new protocols arises in the future, ProMECoS
and the DCP specification may both be subject to modifications.

All in all, the DCP is used in research and industry to address the need for distributed
co-simulation. ProMECoS contributes to the simulation and test community by offering a
systematic approach to execution of such simulations.
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