
electronics

Article

Approximate Array Multipliers

Padmanabhan Balasubramanian * , Raunaq Nayar and Douglas L. Maskell

����������
�������

Citation: Balasubramanian, P.;

Nayar, R.; Maskell, D.L. Approximate

Array Multipliers. Electronics 2021, 10,

630. https://doi.org/10.3390/

electronics10050630

Academic Editors: Flavio Canavero

and Sunggu Lee

Received: 22 January 2021

Accepted: 2 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore; nayar.raunaq@ntu.edu.sg (R.N.); asdouglas@ntu.edu.sg (D.L.M.)
* Correspondence: balasubramanian@ntu.edu.sg; Tel.: +65-6790-4745

Abstract: This article describes the design of approximate array multipliers by making vertical or
horizontal cuts in an accurate array multiplier followed by different input and output assignments
within the multiplier. We consider a digital image denoising application and show how different
combinations of input and output assignments in an approximate array multiplier affect the quality
of the denoised images. We consider the accurate array multiplier and several approximate array
multipliers for synthesis. The multipliers were described in Verilog hardware description language
and synthesized by Synopsys Design Compiler using a 32/28-nm complementary metal-oxide-
semiconductor technology. The results show that compared to the accurate array multiplier, one of
the proposed approximate array multipliers viz. PAAM01-V7 achieves a 28% reduction in critical
path delay, 75.8% reduction in power, and 64.6% reduction in area while enabling the production
of a denoised image that is comparable in quality to the image denoised using the accurate array
multiplier. The standard design metrics such as critical path delay, total power dissipation, and area
of the accurate and approximate multipliers are given, the error parameters of the approximate array
multipliers are provided, and the original image, the noisy image, and the denoised images are also
depicted for comparison.

Keywords: approximate computing; arithmetic circuits; multiplier; logic design; low power; high
speed; complementary metal-oxide-semiconductor (CMOS)

1. Introduction

Approximate computing is considered to be a high speed, low power, and energy-
efficient alternative to accurate computing [1]. Many applications of approximate com-
puting have been discussed in the literature, which includes multimedia [2], hardware
implementation of neural networks for artificial intelligence and machine learning [3],
neuromorphic computing [4], big data and analytics [5], software engineering [6], memory
systems for multi-core processors [7], graphics processing units [8], etc. Approximate
computing includes approximate hardware, software, and memory storage. Approximate
hardware covers approximate arithmetic circuits [9] and approximate logic circuits [10].
With respect to approximate arithmetic circuits, the designs of approximate adders and
multipliers have been given much attention. This is understandable given that addition
and multiplication are important arithmetic operations which are frequently performed in
microprocessors, digital signal processors, and application-specific processors [11].

This paper deals with approximate multiplication. Many architectures exist for un-
signed and signed multiplication which include the Braun array, Wallace tree, Dadda tree,
Booth algorithm, Baugh Wooley algorithm, etc. [12]. Also, logic compressors may be used
to realize the multiplication [13]. However, considering an unsigned multiplication, among
the different multiplier architectures, the Braun array multiplier has a simple and regular
structure [14] that is easy to layout, and which can be pipelined as per need to increase
the throughput. To perform small multiplications, the array multiplier is preferable in
terms of simplicity and structural regularity while for large multiplications, a high-speed

Electronics 2021, 10, 630. https://doi.org/10.3390/electronics10050630 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9412-4773
https://orcid.org/0000-0003-3109-8197
https://doi.org/10.3390/electronics10050630
https://doi.org/10.3390/electronics10050630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10050630
https://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/10/5/630?type=check_update&version=3

Electronics 2021, 10, 630 2 of 20

multiplier may be used or the array multiplier may be pipelined appropriately to increase
its operating speed.

In this work, considering the digital image denoising application, small multiplications
are performed and we consider the array multiplier architecture for approximation. We
illustrate how an accurate array multiplier can be systematically approximated yielding a
compact, high speed, low power, and energy-efficient approximate array multiplier suitable
for a target application. In this context, we describe existing and proposed approaches for
approximating the array multiplier. As approximation is introduced into the accurate array
multiplier, its critical path delay is reduced, its area is reduced and its power dissipation
also reduces, leading to an improvement in the energy efficiency while trading off the
accuracy within an acceptable limit.

The rest of this article is organized as follows. Section 2 portrays the accurate array
multiplier and describes its constituents. Section 3 discusses various ways of approxi-
mating the array multiplier based on existing and proposed approaches. Popular error
parameters such as mean absolute error and root mean square error are calculated for
the approximate array multipliers, and they are given in Section 4. Section 5 showcases
the effect of various approximations on a digital image denoising application. Section 6
presents the implementation results of accurate and approximate array multipliers, which
were synthesized using a 32/28-nm complementary metal-oxide-semiconductor (CMOS)
standard digital cell library. Finally, Section 7 gives the conclusions.

2. Accurate Array Multiplier

In this work, digital image denoising is considered as a practical application. For
this, an 8 × 6 multiplier is sufficient, which will be explained in Section 5. Given this,
we illustrate various approximations on a representative 8 × 6 accurate array multiplier
by introducing different vertical and horizontal cuts. Nevertheless, the approximation
strategy is generic and can be applied to any N × N or M × N binary multiplier. The
architecture of an 8 × 6 accurate array multiplier is shown in Figure 1, which embeds the
carry-save adder.

Electronics 2021, 10, x FOR PEER REVIEW 2 of 20

speed multiplier may be used or the array multiplier may be pipelined appropriately to
increase its operating speed.

In this work, considering the digital image denoising application, small multiplica-
tions are performed and we consider the array multiplier architecture for approximation.
We illustrate how an accurate array multiplier can be systematically approximated yield-
ing a compact, high speed, low power, and energy-efficient approximate array multiplier
suitable for a target application. In this context, we describe existing and proposed ap-
proaches for approximating the array multiplier. As approximation is introduced into the
accurate array multiplier, its critical path delay is reduced, its area is reduced and its
power dissipation also reduces, leading to an improvement in the energy efficiency while
trading off the accuracy within an acceptable limit.

The rest of this article is organized as follows. Section 2 portrays the accurate array
multiplier and describes its constituents. Section 3 discusses various ways of approximat-
ing the array multiplier based on existing and proposed approaches. Popular error pa-
rameters such as mean absolute error and root mean square error are calculated for the
approximate array multipliers, and they are given in Section 4. Section 5 showcases the
effect of various approximations on a digital image denoising application. Section 6 pre-
sents the implementation results of accurate and approximate array multipliers, which
were synthesized using a 32/28-nm complementary metal-oxide-semiconductor (CMOS)
standard digital cell library. Finally, Section 7 gives the conclusions.

2. Accurate Array Multiplier
In this work, digital image denoising is considered as a practical application. For this,

an 8 × 6 multiplier is sufficient, which will be explained in Section 5. Given this, we illus-
trate various approximations on a representative 8 × 6 accurate array multiplier by intro-
ducing different vertical and horizontal cuts. Nevertheless, the approximation strategy is
generic and can be applied to any N × N or M × N binary multiplier. The architecture of
an 8 × 6 accurate array multiplier is shown in Figure 1, which embeds the carry-save adder.

Half
adder

Full
adder

Full
adder

A7B0 A6B1

A4B3

A5B2

Full
adder

Full
adder

A2B5

A3B4

Full
adder

Full
adder

Full
adder

A7B1 A6B2

A4B4

A5B3

Full
adder

A3B5

Half
adder

Full
adder

Full
adder

Full
adder

A7B2 A6B3

A4B5

A5B4

Full
adder

Full
adder

Full
adder

A7B3 A6B4

A5B5

Full
adder

Full
adder

A7B4 A6B5

Full
adder

Full
adder

Full
adder

Full
adder

A7B5

Half
adder

Full
adder

Full
adder

A6B0 A5B1

A3B3

A4B2

Full
adder

Full
adder

A1B5

A2B4

Half
adder

Full
adder

Full
adder

A5B0 A4B1

A2B3

A3B2

Full
adder

Full
adder

A0B5

A1B4

Half
adder

Full
adder

Full
adder

A4B0 A3B1

A1B3

A2B2

Full
adder

A0B4

Half
adder

Full
adder

Full
adder

A3B0 A2B1

A0B3

A1B2

Half
adder

Full
adder

A2B0 A1B1

A0B2

Half
adder

A1B0 A0B1

P1P2P3P4P5P8P9P10P13

A0B0

P0

A7
B0

This is an example realization of a partial product. Other
partial products are realized similarly using AND gates.

Assuming X, Y and Z are the inputs,

Full adder: Sum = X ⊕ Y ⊕ Z
Full adder: Carry output = (X ⊕ Y)Z + XY

Half adder: Sum = X ⊕ Y
Half adder: Carry output = XY

P7 P6P11P12

Figure 1. Architecture of 8 × 6 accurate array multiplier. Figure 1. Architecture of 8 × 6 accurate array multiplier.

Electronics 2021, 10, 630 3 of 20

Forty-eight 2-input AND gates, eight half adders, and thirty-four full adders are used
to construct an 8×6 accurate array multiplier. 2-input AND gates are used to realize the
partial products. In Figure 1, A7 to A0 represents the “multiplicand”, B5 to B0 represents
the “multiplier”, and P13 to P0 represents the “product”. A7, B5, and P13 represent the most
significant bits, and A0, B0, and P0 represent the least significant bits of the multiplicand,
multiplier, and product respectively. The logic expressions for sum and carry output of the
full adder and half adder are given in Figure 1. Typically, a half adder is described using a
2-input XOR gate and a 2-input AND gate, while a full adder is described using two half
adders and a 2-input OR gate.

3. Approximate Array Multipliers

An accurate array multiplier can be transformed into an approximate array multiplier
by introducing vertical or horizontal cuts in the carry-save adder [15]. Figure 2a shows
some example vertical cuts, and Figure 2b shows a few examples of horizontal cuts.

For ease of reference, the vertical cuts are referred to as V0 to V9 in Figure 2a, and the
horizontal cuts are referred to as H1 to H3 in Figure 2b. Subsequent to a vertical cut, the
circuit portion present on the right side of the cut would be eliminated, and some input
and output assignments can be made within the multiplier. On the other hand, subsequent
to a horizontal cut, the circuit portion present above the cut would be eliminated and some
input and output assignments can be incorporated in the multiplier.

In general, when a low-order vertical cut is introduced in an accurate array multiplier,
the less significant partial product(s) would be eliminated first, whereas a low-order
horizontal cut would chop off some significant partial products straightaway. For example,
V1 in Figure 2a would eliminate only three less significant partial products i.e., A1B0,
A0B1, and A0B0 besides a half adder, whereas H1 in Figure 2b would eliminate 15 partial
products including some significant partial products such as A7B1, A6B2, A7B0, A6B1,
etc., and 7 half adders. Therefore, a horizontal cut would have a greater impact than a
vertical cut. Given this, vertical cuts are preferable over horizontal cuts to achieve a graded
approximation. Nevertheless, in Section 5, we shall portray the effects of V0 to V9 and H1
to H3 on an example image corresponding to an image denoising application, which will
validate our preference for vertical cuts over horizontal cuts in an accurate array multiplier
to derive efficient approximate array multiplier(s).

For clarity, we portray the consequence of a vertical cut V7 and a horizontal cut H1
on the accurate array multiplier (shown in Figure 1) through Figure 3a,b respectively.
Subsequent to a vertical cut or a horizontal cut, the dangling internal inputs could be
assigned a 0 or 1, which we refer to as internal input assignments. Likewise, the dangling
(less significant) product bits could also be assigned a 0 or 1, which we refer to as output
assignments. These are depicted in blue in Figure 3a,b.

Reference [15] suggested introducing vertical and horizontal cuts in an accurate array
multiplier to obtain approximate (broken) array multipliers. With reference to Figure 2,
the horizontal cut was suggested to be restricted to H2 and vertical cuts can be made
as required. After making vertical and horizontal cuts, the dangling internal inputs and
dangling product bits are assigned a constant 0. However, based on our experimentation
with the digital image denoising application, horizontal cuts H2 and beyond are not found
to be suitable due to exacerbated errors (discussed in Section 4), and the approximate array
multiplier obtained via H1 and V7 cuts is structurally equivalent to an approximate array
multiplier obtained via the V7 cut.

Yamamoto et al. [16] presented approximate array multipliers which are obtained by
introducing only vertical cuts in an accurate array multiplier. After a vertical cut, binary
0 was given as an input to all the full adders present in a column that is adjacent to the
vertical cut, and binary 0 was assigned to the less significant product bits whose logic have
been eliminated. Henceforth, we refer to the approximate array multiplier (APAM) of [16]
as APAM00_VN in general, wherein the first 0 implies the assignment of a 0 input to all the
full adders present in a column that is adjacent to the vertical cut, and the second 0 implies

Electronics 2021, 10, 630 4 of 20

the assignment of a 0 to those product bits whose logic have been eliminated. V implies a
vertical cut, and N denotes the order of the vertical cut. These definitions of V and N hold
well for all the approximate array multipliers to be discussed in this work.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 20

logic have been eliminated. V implies a vertical cut, and N denotes the order of the vertical
cut. These definitions of V and N hold well for all the approximate array multipliers to be
discussed in this work.

Half
adder

Full
adder

Full
adder

A7B0 A6B1

A4B3

A5B2

Full
adder

Full
adder

A2B5

A3B4

Full
adder

Full
adder

Full
adder

A7B1 A6B2

A4B4

A5B3

Full
adder

A3B5

Half
adder

Full
adder

Full
adder

Full
adder

A7B2 A6B3

A4B5

A5B4

Full
adder

Full
adder

Full
adder

A7B3 A6B4

A5B5

Full
adder

Full
adder

A7B4 A6B5

Full
adder

Full
adder

Full
adder

Full
adder

A7B5

Half
adder

Full
adder

Full
adder

A6B0 A5B1

A3B3

A4B2

Full
adder

Full
adder

A1B5

A2B4

Half
adder

Full
adder

Full
adder

A5B0 A4B1

A2B3

A3B2

Full
adder

Full
adder

A0B5

A1B4

Half
adder

Full
adder

Full
adder

A4B0 A3B1

A1B3

A2B2

Full
adder

A0B4

Half
adder

Full
adder

Full
adder

A3B0 A2B1

A0B3

A1B2

Half
adder

Full
adder

A2B0 A1B1

A0B2

Half
adder

A1B0 A0B1

P1P2P3P4P5P8P9P10P13

A0B0

P0P7 P6P11P12

V1V6V7 V5 V4 V3 V2 V0V8V9

(a)

Half
adder

Full
adder

Full
adder

A7B0 A6B1

A4B3

A5B2

Full
adder

Full
adder

A2B5

A3B4

Full
adder

Full
adder

Full
adder

A7B1 A6B2

A4B4

A5B3

Full
adder

A3B5

Half
adder

Full
adder

Full
adder

Full
adder

A7B2 A6B3

A4B5

A5B4

Full
adder

Full
adder

Full
adder

A7B3 A6B4

A5B5

Full
adder

Full
adder

A7B4 A6B5

Full
adder

Full
adder

Full
adder

Full
adder

A7B5

Half
adder

Full
adder

Full
adder

A6B0 A5B1

A3B3

A4B2

Full
adder

Full
adder

A1B5

A2B4

Half
adder

Full
adder

Full
adder

A5B0 A4B1

A2B3

A3B2

Full
adder

Full
adder

A0B5

A1B4

Half
adder

Full
adder

Full
adder

A4B0 A3B1

A1B3

A2B2

Full
adder

A0B4

Half
adder

Full
adder

Full
adder

A3B0 A2B1

A0B3

A1B2

Half
adder

Full
adder

A2B0 A1B1

A0B2

Half
adder

A1B0 A0B1

P1P2P3P4P5P8P9P10P13

A0B0

P0P7 P6P11P12

H1

H2

(b)

H3

Figure 2. Different vertical and horizontal cuts which can be introduced in an accurate array multiplier to transform it into
approximate array multipliers. (a) Some vertical cuts; (b) some horizontal cuts.

Figure 2. Different vertical and horizontal cuts which can be introduced in an accurate array multiplier to transform it into
approximate array multipliers. (a) Some vertical cuts; (b) some horizontal cuts.

Electronics 2021, 10, 630 5 of 20
Journal Abbr. 2021, x FOR PEER REVIEW 3

Figure 3. Illustrating the effect of example vertical and horizontal cuts on an accurate array multiplier resulting in approximate array
multipliers. (a) Vertical cut V7; (b) horizontal cut H1. The circuit portions eliminated are shown in light gray.

Error in Figure 4
In the original article, there were mistakes in Figures 4a and 4b as published, shown

in the next page. These mistakes were a direct consequence of the mistake made in Figure
3(a), discussed previously, which got carried over to Figures 4(a) and 4(b) as well. This is
because Figures 4(a) and 4(b) are derived from Figure 3(a) by assigning respective internal
inputs of 0 and 1 to the full adders highlighted in pink.

Figure 3. Illustrating the effect of example vertical and horizontal cuts on an accurate array multiplier resulting in
approximate array multipliers. (a) Vertical cut V7; (b) horizontal cut H1. The circuit portions eliminated are shown in
light gray

Subsequent to a vertical cut, it is possible to assign a 0 to the internal inputs and a 1 to
the less significant product bits whose logic have been eliminated. Moreover, it is possible
to assign a 1 to the internal inputs and a 0 to the less significant product bits whose logic
have been eliminated. Further, it is possible to assign a 1 to the internal inputs and a 1
to the less significant product bits whose logic have been eliminated. Furthermore, it is
possible to optimize the logic of some of the full adders or half adders after assigning a
constant 0 or 1 input (post a vertical cut) prior to synthesis. For example, Figure 4a,b show

Electronics 2021, 10, 630 6 of 20

how the full adders adjacent to a vertical cut V7, which are highlighted in pink in Figure 3a,
can be optimized after assigning a constant 0 and 1 input. These possibilities were not
considered in [16], and here we consider these possibilities as our proposition to derive an
efficient approximate array multiplier.

Journal Abbr. 2021, x FOR PEER REVIEW 5

The corrected Figures 4(a) and 4(b) are shown below. The authors confirm that the
results given in Tables 1 and 2 and elsewhere correspond to the correct version of Figures
4(a) and 4(b) given below.

Figure 4. Logic optimization of an approximate array multiplier (obtained through vertical cut V7) based on the assignment of: (a)
A 0 input given to the full adders highlighted in pink in the correct Figure 3(a); (b) A 1 input given to the full adders highlighted in
pink in the correct Figure 3(a).

Figure 4. Logic optimization of an approximate array multiplier (obtained through vertical cut V7) based on the assignment
of: (a) A 0 input given to the full adders highlighted in pink in the correct Figure 3a; (b) A 1 input given to the full adders
highlighted in pink in the correct Figure 3a.

Electronics 2021, 10, 630 7 of 20

We now discuss the acronyms which shall be used to refer to the proposed approximate
array multipliers. Referring to Figure 2b, a proposed approximate array multiplier (PAAM)
architecture featuring a vertical cut with a 0 assigned for the internal inputs and a 1 for
the product bits whose logic have been eliminated shall be referred to as PAAM01_VN. A
PAAM architecture featuring a vertical cut with a 1 assigned to the internal inputs and a 0
for the product bits whose logic have been eliminated shall be referred to as PAAM10_VN.
A PAAM architecture featuring a vertical cut with a 1 assigned for the internal inputs and
a 1 assigned for the product bits whose logic have been eliminated shall be referred to
as PAAM11_VN.

Referring to Figure 2b, which shows the horizontal cuts, a PAAM architecture featuring
a horizontal cut that assigns a 0 for the internal inputs and a 0 for the product bits whose
logic have been eliminated shall be referred to as PAAM00_HN, and a PAAM architecture
featuring a horizontal cut that assigns a 0 for the internal inputs and a 1 for the product
bits whose logic have been eliminated shall be referred to as PAAM01_HN. H signifies a
horizontal cut, and N denotes the order of the cut. Further, a PAAM architecture featuring
a horizontal cut that assigns a 1 for the internal inputs and a 0 for the product bits whose
logic have been eliminated shall be referred to as PAAM10_HN, and a PAAM architecture
featuring a horizontal cut that assigns a 1 for the internal inputs and a 1 for the product
bits whose logic have been eliminated shall be referred to as PAAM11_HN.

4. Error Parameters of Approximate Array Multipliers

Before analyzing the impact of different approximate array multipliers on a practical
application (here, digital image denoising), information about their error parameters shall
be provided to aid with further discussion.

Many error parameters are used in approximate computing such as absolute error
magnitude (also called absolute error distance or simply absolute error), mean absolute
error (also called mean error distance), worst-case error, root mean square error, etc. In this
work, we consider two popular error parameters which are widely used, namely the mean
absolute error (MAE) and the root mean square error (RMSE) for a comparative evaluation
of the error attributes of approximate array multipliers. The RMSE is of particular interest
among the different error parameters as it better captures the signal degradation of a digital
signal processing application [17].

To calculate the error parameters of the approximate array multipliers, we devel-
oped Python models of the accurate multiplier and approximate array multipliers. For an
8 × 6 multiplier, there would be a total of 214 i.e., 16384 distinct inputs, and all these inputs
were considered to accurately estimate the error parameters of approximate array multipli-
ers. For each approximate array multiplier, the modulus of the absolute difference between
its generated product and the corresponding product of the accurate multiplier with respect
to all the applied inputs were calculated. These differences were then averaged to calculate
the MAE, given by Equation (1); the RMSE was calculated using Equation (2) [18]. In Equa-
tions (1) and (2), I represents the multiplicand which is of size 8 bits and J represents the
multiplier which is of size 6 bits. Approx_Product(I,J) denotes the product of I and J com-
puted by an approximate multiplier, and Accu_Product(I,J) denotes the product of I and
J computed by the accurate multiplier. The difference between Approx_Product(I,J) and
Accu_Product(I,J) may be positive, negative, or zero, depending upon the input applied.

MAE =
1

214

28−1

∑
I=0

26−1

∑
J=0
|Approx_Product(I, J)−Accu_Product(I, J)| (1)

RMSE =

√√√√ 1
214

28−1

∑
I=0

26−1

∑
J=0

(Approx_Product(I, J)−Accu_Product(I, J))2 (2)

Table 1 shows the MAE and RMSE of 46 approximate array multipliers. We have
considered V0 to V9 vertical cuts, and H1 to H3 horizontal cuts for the error calculation.

Electronics 2021, 10, 630 8 of 20

V8 affects the quality of image denoising significantly, as will be discussed in the next
section. Hence, with respect to V8 and V9 cuts, only APAM00_V8 and PAAM01_V8, and
APAM00_V9, and PAAM01_V9 were considered for the error calculation since PAAM10_VN
and PAAM11_VN architectures perform poorly even for a V7 cut. Also, since H3 affects
the quality of image denoising considerably, which will be discussed in the next section,
horizontal cuts beyond H3 were not considered for the error calculation. Further, the
accurate (array) multiplier does not have any error and hence it is omitted from Table 1.
Referring to Figure 2a, based on V0, the partial product A0B0 alone would be eliminated
and there is no need for any internal input assignment. The least significant product bit P0
can alone be assigned a constant 0 or 1 after the V0 cut, which are referred to as APAM_V0
and PAAM_V0 respectively in Table 1.

Table 1. Error parameters of various approximate array multipliers obtained via different vertical
and horizontal cuts.

Approximate Array Multiplier MAE RMSE

With Vertical Cuts

APAM_V0 0.25 0.50
PAAM_V0 0.75 0.87

APAM00_V1 1.25 1.94
PAAM01_V1 2.00 2.29
PAAM10_V1 2.88 3.12
PAAM11_V1 5.75 5.94

APAM00_V2 4.25 5.85
PAAM01_V2 4.19 4.87
PAAM10_V2 11.78 12.42
PAAM11_V2 18.75 19.18

APAM00_V3 12.25 15.76
PAAM01_V3 8.58 10.28
PAAM10_V3 35.76 37.10
PAAM11_V3 50.75 51.71

APAM00_V4 32.25 39.68
PAAM01_V4 18.53 23.15
PAAM10_V4 95.75 98.50
PAAM11_V4 126.75 128.84

APAM00_V5 80.25 95.70
PAAM01_V5 42.56 54.92
PAAM10_V5 175.85 183.32
PAAM11_V5 238.75 244.38

APAM00_V6 176.25 207.42
PAAM01_V6 92.01 119.93
PAAM10_V6 336.22 353.11
PAAM11_V6 462.77 475.50

APAM00_V7 368.25 430.74
PAAM01_V7 191.65 250.50
PAAM10_V7 657.04 692.77
PAAM11_V7 910.81 937.76

APAM00_V8 688.25 810.59
PAAM01_V8 355.34 463.45

APAM00_V9 1200.25 1436.50
PAAM01_V9 630.61 808.91

Electronics 2021, 10, 630 9 of 20

Table 1. Cont.

Approximate Array Multiplier MAE RMSE

With Horizontal Cuts

PAAM00_H1 127.25 176.40
PAAM01_H1 125.78 174.24
PAAM10_H1 632.75 644.43
PAAM11_H1 635.75 647.38

PAAM00_H2 318.25 419.48
PAAM01_H2 313.10 414.19
PAAM10_H2 1201.75 1232.43
PAAM11_H2 1208.75 1239.26

PAAM00_H3 700.25 904.27
PAAM01_H3 687.38 892.70
PAAM10_H3 2339.75 2408.69
PAAM11_H3 2354.75 2423.26

Three general observations can be made from Table 1. First, as the order of a vertical
cut or a horizontal cut increases, the error parameters increase owing to an increase in the
approximation. Second, the approximate array multipliers obtained through horizontal
cuts have greater MAE and RMSE compared to the approximate array multipliers obtained
through vertical cuts. For example, approximate array multipliers obtained through the H3
cut have greater MAE and RMSE compared to the approximate array multipliers obtained
through the V7 cut. Third, the PAAM01_VN architecture features lesser MAE and RMSE
compared to APAM00_VN, PAAM10_VN, and PAAM11_VN architectures. For example,
PAAM01_V7 reports reductions in MAE by 48%, 70.8%, and 79% compared to APAM00_V7,
PAAM10_V7, and PAAM11_V7 respectively, and respective reductions in RMSE by 41.8%,
63.8%, and 73.3%.

Among the approximate array multiplier architectures obtained through vertical cuts,
the error parameters of PAAM11_VN are relatively greater compared to its counterparts. In
PAAM11_VN, constant 1 inputs are given internally and a constant 1 is assigned to those
product bits whose logic were eliminated. Therefore, the PAAM11_VN architecture may
likely cause an over-approximation for many inputs by exceeding the accurate product,
and so PAAM11_VN has greater MAE and RMSE compared to its counterparts.

Overall, from Table 1, the PAAM01_VN architecture looks promising compared to the
other architectures. Nevertheless, to confirm its utility, we consider digital image denoising
as a practical application and analyze the impact of various approximate array multipliers
in the next section.

5. Digital Image Denoising Application

In this work, digital image denoising is considered as a practical application to eval-
uate and compare the performance of accurate and approximate array multipliers. The
addition of noise to an original digital image and the subsequent image denoising process
is illustrated through a block diagram in Figure 5. A random Gaussian noise with zero
mean and a constant variance of 0.003 is added to an original image to create a noisy
image. A 5 × 5 Gaussian low-pass filtering is then performed on the noisy image that is
input by using accurate and approximate array multipliers individually to retrieve the
corresponding denoised images.

Electronics 2021, 10, 630 10 of 20

Electronics 2021, 10, x FOR PEER REVIEW 10 of 20

by using accurate and approximate array multipliers individually to retrieve the corre-
sponding denoised images.

A 5 × 5 Gaussian kernel [19], shown in Figure 5, is convolved with the noisy image
for the denoising application, resulting in Equation (3). The filtering operation is per-
formed as follows. Considering a pixel corresponding to the coordinate (x, y), the denoised
pixel value at location (x, y) can be represented using Equation (3). In Equation (3), the ×
operator signifies approximate multiplication when using an approximate multiplier, and
accurate multiplication when using the accurate multiplier. For edge pixels, the neighbors
outside the scope of the image are used in the calculation through zero padding. All the
addition operations and the division by 273 in equation (3) are performed accurately. A
division by 273 is required for normalization since the sum of all the integer kernel coef-
ficient values shown in Figure 5 is 273.

Adding Gaussian noise
with zero mean and
variance of 0.003

Original digital image Noisy input image
Convolution

(involving Accurate or Approximate
Multiplication* and Accurate Addition)

Denoised output image

Calculate PSNR and SSIM

* Accurate/Approximate multiplication by using
Accurate/Approximate multiplier respectively

Figure 5. Block diagram of digital image denoising.

The gray values of the pixels correspond to a “multiplicand” which can be repre-
sented by 8 bits since the gray values vary from 0 to 255. The “multiplier” is used to rep-
resent the positive integer coefficients corresponding to the kernel shown in Figure 5. The
maximum possible value of this coefficient being 41, it can be represented in binary using
6 bits as 101001. Given these, an 8×6 multiplier is sufficient for the digital image denoising
application. 𝐷𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑥, 𝑦) = 1273 (𝑁𝑜𝑖𝑠𝑦(𝑥 − 2, 𝑦 − 2) × 1 + 𝑁𝑜𝑖𝑠𝑦(𝑥 − 1, 𝑦 − 2) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥, 𝑦 − 2) × 7 + 𝑁𝑜𝑖𝑠𝑦(𝑥 + 1, 𝑦 − 2) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 + 2, 𝑦 − 2) × 1 + 𝑁𝑜𝑖𝑠𝑦(𝑥 − 2, 𝑦 − 1) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 − 1, 𝑦 − 1) × 16 + 𝑁𝑜𝑖𝑠𝑦(𝑥, 𝑦 − 1) × 26+ 𝑁𝑜𝑖𝑠𝑦(𝑥 + 1, 𝑦 − 1) × 16 + 𝑁𝑜𝑖𝑠𝑦(𝑥 + 2, 𝑦 − 1) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 − 2, 𝑦) × 7 + 𝑁𝑜𝑖𝑠𝑦(𝑥 − 1, 𝑦) × 26+ 𝑁𝑜𝑖𝑠𝑦(𝑥, 𝑦) × 41 + 𝑁𝑜𝑖𝑠𝑦(𝑥 + 1, 𝑦) × 26+ 𝑁𝑜𝑖𝑠𝑦(𝑥 + 2, 𝑦) × 7 + 𝑁𝑜𝑖𝑠𝑦(𝑥 − 2, 𝑦 + 1) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 − 1, 𝑦 + 1) × 16 + 𝑁𝑜𝑖𝑠𝑦(𝑥, 𝑦 + 1) × 26+ 𝑁𝑜𝑖𝑠𝑦(𝑥 + 1, 𝑦 + 1) × 16 + 𝑁𝑜𝑖𝑠𝑦(𝑥 + 2, 𝑦 + 1) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 − 2, 𝑦 + 2) × 1 + 𝑁𝑜𝑖𝑠𝑦(𝑥 − 1, 𝑦 + 2) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥, 𝑦 + 2) × 7 + 𝑁𝑜𝑖𝑠𝑦(𝑥 + 1, 𝑦 + 2) × 4+ 𝑁𝑜𝑖𝑠𝑦(𝑥 + 2, 𝑦 + 2) × 1)

(3)

Figure 5. Block diagram of digital image denoising.

A 5× 5 Gaussian kernel [19], shown in Figure 5, is convolved with the noisy image for
the denoising application, resulting in Equation (3). The filtering operation is performed as
follows. Considering a pixel corresponding to the coordinate (x, y), the denoised pixel value
at location (x, y) can be represented using Equation (3). In Equation (3), the × operator
signifies approximate multiplication when using an approximate multiplier, and accurate
multiplication when using the accurate multiplier. For edge pixels, the neighbors outside
the scope of the image are used in the calculation through zero padding. All the addition
operations and the division by 273 in equation (3) are performed accurately. A division by
273 is required for normalization since the sum of all the integer kernel coefficient values
shown in Figure 5 is 273.

The gray values of the pixels correspond to a “multiplicand” which can be repre-
sented by 8 bits since the gray values vary from 0 to 255. The “multiplier” is used to
represent the positive integer coefficients corresponding to the kernel shown in Figure 5.
The maximum possible value of this coefficient being 41, it can be represented in binary
using 6 bits as 101001. Given these, an 8×6 multiplier is sufficient for the digital image
denoising application.

Denoised(x, y) =
1

273
(Noisy(x− 2, y− 2)× 1 + Noisy(x− 1, y− 2)× 4

+Noisy(x, y− 2)× 7 + Noisy(x + 1, y− 2)× 4

+Noisy(x + 2, y− 2)× 1 + Noisy(x− 2, y− 1)× 4

+Noisy(x− 1, y− 1)× 16 + Noisy(x, y− 1)× 26

+Noisy(x + 1, y− 1)× 16 + Noisy(x + 2, y− 1)× 4

+Noisy(x− 2, y)× 7 + Noisy(x− 1, y)× 26

+Noisy(x, y)× 41 + Noisy(x + 1, y)× 26

+Noisy(x + 2, y)× 7 + Noisy(x− 2, y + 1)× 4

+Noisy(x− 1, y + 1)× 16 + Noisy(x, y + 1)× 26

+Noisy(x + 1, y + 1)× 16 + Noisy(x + 2, y + 1)× 4

+Noisy(x− 2, y + 2)× 1 + Noisy(x− 1, y + 2)× 4

+Noisy(x, y + 2)× 7 + Noisy(x + 1, y + 2)× 4

+Noisy(x + 2, y + 2)× 1)

(3)

Electronics 2021, 10, 630 11 of 20

An original digital image (cameraman) with a grayscale resolution of 8 bits and a
spatial resolution of 512 × 512 was considered for experimentation. The original noise, a
noisy image resulting from the addition of the Gaussian noise, and the denoised image
obtained through low-pass filtering by involving accurate multiplication are shown in
Figure 6a–c respectively. Figure 6d shows the denoised images obtained through low-
pass filtering by performing approximate multiplications by using approximate array
multipliers APAM_V0 and PAAM_V0, which result from the V0 vertical cut.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 20

An original digital image (cameraman) with a grayscale resolution of 8 bits and a
spatial resolution of 512×512 was considered for experimentation. The original noise, a
noisy image resulting from the addition of the Gaussian noise, and the denoised image
obtained through low-pass filtering by involving accurate multiplication are shown in
Figure 6a–c respectively. Figure 6d shows the denoised images obtained through low-pass
filtering by performing approximate multiplications by using approximate array multi-
pliers APAM_V0 and PAAM_V0, which result from the V0 vertical cut.

Figure 6. (a) Original image; (b) noisy image; (c) denoised image obtained using accurate multiplier; (d) denoised images
obtained using approximate array multiplier APAM_V0 and the proposed approximate array multiplier PAAM_V0.

Figure 7 shows the denoised images obtained using approximate array multipliers
resulting from vertical cuts V1 to V4, and Figure 8 shows the denoised images obtained
using approximate array multipliers resulting from vertical cuts V5 to V9. Figure 9 shows
the denoised images obtained using approximate array multipliers resulting from hori-
zontal cuts H1 to H3.

The peak signal-to-noise ratio (PSNR) is a widely used qualitative figure-of-merit in
digital signal processing [20]. The lesser the noise, the better the PSNR. Thus, a high value
of PSNR, which is indicative of less noise/distortion, is preferable.

Besides PSNR, the structural similarity index metric (SSIM), is also used as a qualita-
tive metric in digital image processing [20]. While PSNR quantifies the absolute error,
SSIM quantifies the quality of a digital image in terms of the perceived change in struc-
tural information compared to an original (reference) image on a pixel-by-pixel basis. The
value of SSIM ranges from 0 to 1, with 1 being the highest preferred value. Thus, similar
to the PSNR, a high value of SSIM is preferable. We consider PSNR and SSIM as qualita-
tive metrics for digital image processing in this work. We estimated PSNR and SSIM of

Figure 6. (a) Original image; (b) noisy image; (c) denoised image obtained using accurate multiplier; (d) denoised images
obtained using approximate array multiplier APAM_V0 and the proposed approximate array multiplier PAAM_V0.

Figure 7 shows the denoised images obtained using approximate array multipliers
resulting from vertical cuts V1 to V4, and Figure 8 shows the denoised images obtained us-
ing approximate array multipliers resulting from vertical cuts V5 to V9. Figure 9 shows the
denoised images obtained using approximate array multipliers resulting from horizontal
cuts H1 to H3.

Electronics 2021, 10, 630 12 of 20

Electronics 2021, 10, x FOR PEER REVIEW 12 of 20

the noisy image and the denoised images obtained using accurate and approximate array
multipliers, and they are given in Figures 6–9.

Figure 7. Denoised images obtained using approximate array multipliers resulting from: (a) V1 cut; (b) V2 cut; (c) V3 cut;
and (d) V4 cut.

Electronics 2021, 10, 630 13 of 20

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20

Figure 7. Denoised images obtained using approximate array multipliers resulting from: (a) V1 cut; (b) V2 cut; (c) V3 cut;
and (d) V4 cut.

Figure 8. Denoised images obtained using approximate array multipliers resulting from: (a) V5 cut; (b) V6 cut; (c) V7 cut;
(d) V8 cut; and (e) V9 cut.

Electronics 2021, 10, 630 14 of 20

Electronics 2021, 10, x FOR PEER REVIEW 14 of 20

Figure 8. Denoised images obtained using approximate array multipliers resulting from: (a) V5 cut; (b) V6 cut; (c) V7 cut;
(d) V8 cut; and (e) V9 cut.

Figure 9. (a) Original image, noisy image, and denoised image obtained using the accurate multiplier; and denoised images
obtained by making the following horizontal cuts to the accurate array multiplier: (b) H1 cut; (c) H2 cut; and (d) H3 cut.

Electronics 2021, 10, 630 15 of 20

The peak signal-to-noise ratio (PSNR) is a widely used qualitative figure-of-merit in
digital signal processing [20]. The lesser the noise, the better the PSNR. Thus, a high value
of PSNR, which is indicative of less noise/distortion, is preferable.

Besides PSNR, the structural similarity index metric (SSIM), is also used as a qualitative
metric in digital image processing [20]. While PSNR quantifies the absolute error, SSIM
quantifies the quality of a digital image in terms of the perceived change in structural
information compared to an original (reference) image on a pixel-by-pixel basis. The value
of SSIM ranges from 0 to 1, with 1 being the highest preferred value. Thus, similar to the
PSNR, a high value of SSIM is preferable. We consider PSNR and SSIM as qualitative
metrics for digital image processing in this work. We estimated PSNR and SSIM of the
noisy image and the denoised images obtained using accurate and approximate array
multipliers, and they are given in Figures 6–9.

It may be noted that the lesser the approximation is introduced in a circuit, the lesser
would be the savings in design metrics achievable compared to the accurate circuit [21].
Hence, it is important to strike a trade-off between the maximum approximation that can
be incorporated in a circuit which would lead to maximum savings in the design metrics
and the output quality (here, image quality) acceptable for a practical application.

From Figure 6, it is seen that APAM_V0 and PAAM_V0 yield nearly similar quality
of denoised images as the accurate multiplier. However, APAM_V0 and PAAM_V0 are
small approximations which would not help to significantly optimize the design metrics
compared to the accurate multiplier, as will be seen in Section 6. Therefore, APAM_V0 and
PAAM_V0 are not preferred approximations.

Referring to Figures 7 and 8, among the various images shown, based on different
vertical cuts, overall, the PAAM01_VN architecture yields better quality denoised images
compared to its counterparts, which is evident from the corresponding PSNR and SSIM
values. Up to the V3 cut, PAAM01_VN and APAM00_VN architectures yield nearly similar
results but starting from the V4 cut, PAAM01_VN architecture is found to be preferable.
This is mainly because APAM00_VN assigns a 0 to the less significant product bits and so
any information contained in these product bits is completely lost. On the other hand, since
PAAM01_VN assigns a 1 to the less significant product bits, the information contained in
these bits is more than compensated for.

From Figure 6c, we note that the qualitative metrics of the image denoised using the
accurate multiplier are: PSNR = 30.2144 dB; SSIM = 0.45166. From Figure 8c, we note that
the qualitative metrics of the image denoised using PAAM01_V7 are: PSNR = 27.1359 dB;
SSIM = 0.41832. Compared to Figure 6c, Figure 8c reports a 10.2% reduction in PSNR and a
7.4% reduction in SSIM. Nevertheless, visually, Figures 6c and 8c look similar. Although
PAAM_V0 and PAAM01_V1 up to PAAM01_V6 also yield good quality images (based on
a comparison between Figure 6a,c, Figures 7a–d and 8a,b), the maximum approximation
is preferred in an approximate circuit that would help to significantly reduce the design
metrics compared to an accurate circuit and simultaneously achieve an acceptable com-
promise on the output quality of a practical application. Given this, here, PAAM01_V7
represents a maximum approximation of the array multiplier that leads to a near similar
output quality as the accurate array multiplier with considerably fewer logic gates, and
hence PAAM01_V7 is preferable.

A further increase in the order of the vertical cut beyond V7 is not advisable since
PAAM01_V8 and PAAM01_V9 result in a degradation of the image quality, as seen from
Figure 8d,e, reporting much reduced PSNR and SSIM compared to the PSNR and SSIM of
the accurately denoised image shown in Figure 6c. Since PAAM11_V7 and PAAM10_V7
result in poor quality images with relatively smaller PSNR and SSIM, PAAM11_VN
and PAAM10_VN are not considered for analysis corresponding to V8 and V9 cuts
in Figure 8d,e.

With respect to the images denoised using approximate array multipliers, derived from
horizontal cuts, as shown in Figure 9, the H3 cut leads to a complete loss of the image as
seen from Figure 9d. The drawback with horizontal cuts is that even a low order horizontal

Electronics 2021, 10, 630 16 of 20

cut would eliminate some significant partial products straightaway whereas vertical cuts
would progressively eliminate partial products starting from the least significant ones.
From Figure 9b, it can be seen that even the H1 cut may not be acceptable since PAAM00_H1
and PAAM01_H1 based images appear darker than the accurately denoised image shown in
Figure 9a. Moreover, H1 eliminates 7 half adders and 15 2-input AND gates and optimizes
the logic of 7 full adders of the accurate array multiplier, as seen from Figure 3b, whereas
V7 would eliminate more components i.e., 20 full adders and 8 half adders and optimize
the logic of 5 full adders as seen from Figure 4a. Therefore, based on the error parameters
given in Table 1 and the image processing results given in Figures 6–9, approximate array
multipliers obtained via vertical cuts are preferable, and here, in particular, PAAM01_V7
is preferable.

6. Implementation Results

An accurate array multiplier and 30 approximate array multipliers obtained via
vertical cuts from V0 to V7 were described in Verilog hardware description language (HDL)
at the gate-level and synthesized using a 32/28-nm CMOS standard digital cell library [22].
Since vertical cuts V8 and beyond were not found to be beneficial, as evident from the error
parameters given in Table 1 and the denoised images shown in Figure 8d,e, these were
omitted from the implementation. Also, since horizontal cuts were not found to be more
beneficial than the vertical cuts, as evident from Table 1 and Figure 9, approximate array
multipliers with horizontal cuts were also omitted from the implementation.

Synopsys tools were used for functional simulation, synthesis, and estimation of the
design metrics such as critical path delay, total area (i.e., cells area plus interconnect area),
and average total power dissipation. Synopsys Design Compiler was used for synthesis,
VCS was used to perform functional simulation, and PrimeTime and PrimePower were
used to estimate critical path delay and total power dissipation respectively. About a
thousand random inputs were supplied to the multipliers through a common test bench at
time intervals of 2.5 ns (400 MHz) to verify the functionalities, and the switching activity
data gathered was used to estimate the average total power. A typical case process, voltage
and temperature specification with a recommended supply voltage of 1.05 V and an
operating junction temperature of 25 ◦C was used for the simulations. Wire loads were
considered as a part of the simulations, and a fan-out of 4 drive strength was assigned to all
the output ports (i.e., the product bits). The design metrics estimated are given in Table 2.

It can be seen from Table 2 that as the approximation is increased from V0 to V7,
the areas of the approximate array multipliers decrease, and consequently their power
dissipation decreases. Depending upon the critical path exercised, the maximum delay
of an approximate array multiplier remains the same as the accurate array multiplier or
is reduced.

In Table 2, APAM00_VN and PAAM01_VN architectures have the same design metrics,
and PAAM10_VN and PAAM11_VN architectures also have the same design metrics. This
is because, between these two architectural pairs, the only difference is the assignment of a
constant 0 or 1 to some less significant product bits while the rest of the multiplier logic
remains the same. The assignment of a constant 0 or 1 to a product bit is physically realized
using a TIEL (tie-to-low) standard cell or a TIEH (tie-to-high) standard cell and both
these cells have the same physical characteristics [22]. Hence, APAM_V0 and PAAM_V0,
APAM00_VN and PAAM01_VN, and PAAM10_VN and PAAM11_VN architectures yield
the same design metrics.

Electronics 2021, 10, 630 17 of 20

Table 2. Design metrics of accurate and approximate array multipliers, estimated using a 32/28-nm
complementary metal-oxide-semiconductor (CMOS) process.

Array Multiplier Area (µm2) Delay (ns) Power (µW)

Accurate 383.07 1.75 135.7

APAM_V0 and PAAM_V0 architectures

APAM_V0 378.89 1.77 130.2
PAAM_V0 378.89 1.77 130.2

APAM00_VN architecture

APAM00_V1 367.47 1.76 127.6
APAM00_V2 349.94 1.75 121.8
APAM00_V3 323.09 1.71 108.4
APAM00_V4 297.04 1.71 94.6
APAM00_V5 245.40 1.59 74.9
APAM00_V6 184.40 1.58 56.2
APAM00_V7 135.77 1.26 32.8

PAAM01_VN architecture

PAAM01_V1 367.47 1.76 127.6
PAAM01_V2 349.94 1.75 121.8
PAAM01_V3 323.09 1.71 108.4
PAAM01_V4 297.04 1.71 94.6
PAAM01_V5 245.40 1.59 74.9
PAAM01_V6 184.40 1.58 56.2
PAAM01_V7 135.77 1.26 32.8

PAAM10_VN architecture

PAAM10_V1 368.88 1.77 126.8
PAAM10_V2 357.16 1.72 127.0
PAAM10_V3 349.02 1.78 121.2
PAAM10_V4 302.48 1.73 105.5
PAAM10_V5 253.17 1.63 80.6
PAAM10_V6 187.57 1.47 68.4
PAAM10_V7 135.60 1.19 44.3

PAAM11_VN architecture

PAAM11_V1 368.88 1.77 126.8
PAAM11_V2 357.16 1.72 127.0
PAAM11_V3 349.02 1.78 121.2
PAAM11_V4 302.48 1.73 105.5
PAAM11_V5 253.17 1.63 80.6
PAAM11_V6 187.57 1.47 68.4
PAAM11_V7 135.60 1.19 44.3

The design metrics of PAAM10_VN and PAAM11_VN are shown in Table 2 just for a
comparison, given that Sections 4 and 5 have already made clear that the PAAM01_VN
architecture is preferable to its counterparts, based on the error metrics and the image
denoising results. In Table 2, APAM00_VN and PAAM01_VN architectures exhibit reduced
critical path delay compared to the accurate array multiplier starting from the V3 cut.
However, it is important to choose a maximum approximation to gain maximum savings
in the design metrics whilst ensuring an acceptable output quality. Based on the error
parameters provided in Section 4 and the digital image denoising results presented in
Section 5, it was inferred that PAAM01_V7 is preferable. Given this, from Table 2, it is
noted that PAAM01_V7 achieves significant reductions in design metrics compared to the
accurate array multiplier viz. 64.6% reduction in area, 28% reduction in critical path delay,
and 75.8% reduction in power. The trade-off being that the denoised image obtained using
PAAM01_V7 (Figure 8c) has moderately lesser PSNR and SSIM compared to the denoised
image obtained using the accurate multiplier (Figure 6c). However, there is no significant

Electronics 2021, 10, 630 18 of 20

visual difference between Figure 6c (image denoised using the accurate multiplier) and
Figure 8c (image denoised using PAAM01_V7).

For analysis, we also implemented PAAM01_H1 since the digital image denoised
using PAAM01_H1 shown in Figure 9b has almost the same PSNR as the digital image
denoised using PAAM01_V7, which is shown in Figure 8c, and their error parameters are
also somewhat comparable. In the case of PAAM01_H1 shown in Figure 3b, two constant
0 inputs are given to the full adders present in the second row, except for the left-most
full adder, and these would get eliminated leaving just the corresponding partial products
which are directly given as inputs to the full adders. As a consequence, in the third row,
except for the two left-most full adders, the remaining full adders would reduce to half
adders. After implementation, the area, delay, and power of PAAM01_H1 are estimated to
be 269.68 µm2, 1.41ns, and 82.8 µW respectively. Compared to PAAM01_H1, PAAM01_V7
has 10.6% less critical path delay, requires 49.7% less area, and dissipates 51.8% less power.

Further, we described an 8×6 multiplication accurately using the multiplication
operator in Verilog HDL and auto-synthesized a high-speed accurate multiplier using
Synopsys Design Compiler and estimated its design metrics which are as follows: critical
path delay, 1.52 ns; area, 349.81 µm2; and power, 107 µW. In comparison with the high-
speed accurate multiplier, PAAM01_V7 reports a 17.1% reduction in critical path delay,
61.2% reduction in area, and 69.3% reduction in power.

We also calculated the power-delay product (PDP), that is representative of energy,
which is a popular figure-of-merit for low power in VLSI designs. Since power and
(maximum propagation) delay are desirable to be less, the PDP is also desired to be less.
Hence, the lesser the PDP, the better is the energy efficiency of a digital logic design. The
absolute PDP values of accurate and approximate array multipliers were calculated and
then normalized, which are plotted in Figure 10. To perform the normalization, the highest
PDP value is considered as the baseline and this was used to divide the PDP values of all
the array multipliers.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 20

adders. After implementation, the area, delay, and power of PAAM01_H1 are estimated
to be 269.68µm2, 1.41ns, and 82.8µW respectively. Compared to PAAM01_H1,
PAAM01_V7 has 10.6% less critical path delay, requires 49.7% less area, and dissipates
51.8% less power.

Further, we described an 8×6 multiplication accurately using the multiplication op-
erator in Verilog HDL and auto-synthesized a high-speed accurate multiplier using Syn-
opsys Design Compiler and estimated its design metrics which are as follows: critical path
delay, 1.52ns; area, 349.81µm2; and power, 107µW. In comparison with the high-speed
accurate multiplier, PAAM01_V7 reports a 17.1% reduction in critical path delay, 61.2%
reduction in area, and 69.3% reduction in power.

We also calculated the power-delay product (PDP), that is representative of energy,
which is a popular figure-of-merit for low power in VLSI designs. Since power and (max-
imum propagation) delay are desirable to be less, the PDP is also desired to be less. Hence,
the lesser the PDP, the better is the energy efficiency of a digital logic design. The absolute
PDP values of accurate and approximate array multipliers were calculated and then nor-
malized, which are plotted in Figure 10. To perform the normalization, the highest PDP
value is considered as the baseline and this was used to divide the PDP values of all the
array multipliers.

Figure 10. Normalized power-delay product (PDP) of accurate and approximate array multipliers.

It was mentioned previously that APAM_V0 and PAAM_V0, APAM00_VN and
PAAM01_VN, and PAAM10_VN and PAAM11_VN architectural pairs have the same de-
sign metrics. Given this, in Figure 10, the normalized PDP of the accurate array multiplier
is shown by the blue bar, the normalized PDP of APAM_V0 and PAAM_V0 are shown in
green, the normalized PDP of APAM00_VN and PAAM01_VN architectures are shown
in red, and the normalized PDP of PAAM10_VN and PAAM11_VN architectures are
shown in violet. It is seen from Figure 10 that, among the lot, APAM00_V7 and
PAAM01_V7 have relatively lesser PDP since their power and delay metrics are better
optimized, as evident from Table 2. However, PAAM01_V7 has less MAE and RMSE com-
pared to APAM00_V7, as noted from Table 1, and the former enables a better image qual-
ity compared to the latter which is substantiated by the PSNR and SSIM values given in
Figure 8c. Hence, PAAM01_V7 is preferable. In terms of the PDP, PAAM01_V7 is 82.6%
better optimized compared to the accurate array multiplier, and 74.6% better optimized
compared to the auto-synthesized high-speed accurate multiplier.

1

0.174

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PD
P

(N
or

m
al

ize
d)

Figure 10. Normalized power-delay product (PDP) of accurate and approximate array multipliers.

It was mentioned previously that APAM_V0 and PAAM_V0, APAM00_VN and
PAAM01_VN, and PAAM10_VN and PAAM11_VN architectural pairs have the same
design metrics. Given this, in Figure 10, the normalized PDP of the accurate array multi-
plier is shown by the blue bar, the normalized PDP of APAM_V0 and PAAM_V0 are shown
in green, the normalized PDP of APAM00_VN and PAAM01_VN architectures are shown
in red, and the normalized PDP of PAAM10_VN and PAAM11_VN architectures are shown
in violet. It is seen from Figure 10 that, among the lot, APAM00_V7 and PAAM01_V7 have
relatively lesser PDP since their power and delay metrics are better optimized, as evident

Electronics 2021, 10, 630 19 of 20

from Table 2. However, PAAM01_V7 has less MAE and RMSE compared to APAM00_V7,
as noted from Table 1, and the former enables a better image quality compared to the
latter which is substantiated by the PSNR and SSIM values given in Figure 8c. Hence,
PAAM01_V7 is preferable. In terms of the PDP, PAAM01_V7 is 82.6% better optimized
compared to the accurate array multiplier, and 74.6% better optimized compared to the
auto-synthesized high-speed accurate multiplier.

7. Conclusions

We explored ways of systematically approximating an accurate array multiplier by
progressively introducing vertical or horizontal cuts and assigned new combinations of
constant 0 and/or 1 to the dangling internal inputs and dangling product bits. Subsequent
to a vertical or a horizontal cut in an accurate array multiplier, and after assigning some
constant internal inputs and outputs, we also suggest optimizing the logic prior to synthesis.
In general, vertical cuts are preferable to horizontal cuts to achieve a graded approximation
and to derive an efficient approximate array multiplier. The proposed approximation
techniques are generic and can be applied to a multiplier of any size commensurate with a
target application.

Besides an existing approximate array multiplier architecture (APAM00_VN), many ap-
proximate array multiplier architectures were proposed and presented, namely PAAM01_VN,
PAAM10_VN, PAAM11_VN, PAAM00_HN, PAAM01_HN, PAAM10_HN, and PAAM11_HN,
and their efficacy were analyzed. Among these, PAAM01_VN, which is obtained by mak-
ing a vertical cut in an accurate array multiplier and assigning a constant 0 for the dangling
internal inputs and a constant 1 for the dangling product bits, is found to be efficient, which
is substantiated by the error parameters estimated.

The utility of existing and proposed approximate array multipliers for a practical
digital image denoising application was also analyzed. Based on the error parameters
and the denoised digital images obtained, PAAM01_V7, which corresponds to a proposed
approximate multiplier architecture viz. PAAM01_VN is found to be preferable. For an
8×6 multiplication, PAAM01_V7 achieves a 64.6% reduction in area, 28% reduction in
critical path delay, 75.8% reduction in power, and 82.6% reduction in PDP compared to the
accurate array multiplier whilst ensuring an acceptable image quality.

Author Contributions: Conceptualization, P.B. and R.N.; methodology, P.B. and R.N.; software,
P.B. and R.N.; validation, P.B., R.N., and D.L.M.; formal analysis, P.B. and R.N.; investigation, P.B.,
R.N., and D.L.M.; resources, P.B. and D.L.M.; data curation, P.B. and R.N.; writing—original draft
preparation, P.B.; visualization, P.B. and R.N.; supervision, P.B. and D.L.M.; project administration,
P.B. and D.L.M.; funding acquisition, D.L.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Education, Singapore under grant num-
ber MOE2018-T2-2-024.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Roy, K.; Raghunathan, A. Approximate computing: An energy-efficient computing technique for error resilient applications. In

Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015.
2. Breuer, M.A. Multi-media applications and imprecise computation. In Proceedings of the 8th Euromicro Conference on Digital

System Design, Porto, Portugal, 30 August–3 September 2005.
3. Sarwar, S.S.; Srinivasan, G.; Han, B.; Wijesinghe, P.; Jaiswal, A.; Panda, P.; Raghunathan, A.; Roy, K. Energy efficient neural

computing: A study of cross-layer approximations. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 796–809. [CrossRef]
4. Panda, P.; Sengupta, A.; Sarwar, S.S.; Srinivasan, G.; Venkataramani, S.; Raghunathan, A.; Roy, K. Cross-layer approximations

for neuromorphic computing: From devices to circuits and systems. In Proceedings of the 53rd Annual Design Automation
Conference, Austin, TX, USA, 5–9 June 2016.

5. Nair, R. Big data needs approximate computing: Technical Perspective. Commun. ACM 2015, 58, 104. [CrossRef]

http://doi.org/10.1109/JETCAS.2018.2835809
http://doi.org/10.1145/2688072

Electronics 2021, 10, 630 20 of 20

6. Sampson, A.; Deitl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate data types for safe and
general low-power computation. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, San Jose, CA, USA, 4–8 June 2011.

7. Shoushtari, M.; Rahmani, A.M.; Dutt, N. Quality-configurable memory hierarchy through approximation. In Proceedings of the
14th International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Taipei, Taiwan, 9–14 October
2011.

8. Zhang, H.; Putic, M.; Lach, J. Low power GPGPU computation with imprecise hardware. In Proceedings of the 51st Annual
Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014.

9. Jiang, H.; Liu, C.; Liu, L.; Lombardi, F.; Han, J. A review, classification, and comparative evaluation of approximate arithmetic
circuits. ACM J. Emerg. Technol. Comput. Syst. 2017, 13, 1–37. [CrossRef]

10. Venkataramani, S.; Kozhikkottu, V.J.; Sabne, A.; Roy, K.; Raghunathan, A. Logic synthesis of approximate circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 2503–2515. [CrossRef]

11. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 5th ed.; Morgan Kaufmann: Burlington, MA, USA,
2003; ISBN 9780123838735.

12. Ercegovac, M.D.; Lang, T. Digital Arithmetic; Morgan Kaufmann: Burlington, MA, USA, 2003; ISBN 978-1558607989.
13. Chang, C.-H.; Gu, J.; Zhang, M. Ultra low-voltage low-power CMOS 4-2 and 5-2 compressors for fast arithmetic circuits. IEEE

Trans. Circuits Syst. I Regul. Pap. 2004, 51, 1985–1997. [CrossRef]
14. Vai, M.M. VLSI Design; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0849318764.
15. Mahdiani, H.R.; Ahmadi, A.; Fakhraie, S.M.; Lucas, C. Bio-inspired computational blocks for efficient VLSI implementation of

soft-computing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 850–862. [CrossRef]
16. Yamamoto, T.; Taniguchi, I.; Tomiyama, H.; Yamashita, S.; Hara-Azumi, Y. A systematic methodology for design and analysis of

approximate array multipliers. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Jeju, Korea, 25–28
October 2016.

17. Chan, W.-T.J.; Kahng, A.B.; Kang, S.; Kumar, R.; Sartori, J. Statistical analysis and modeling for error composition in approximate
computation circuits. In Proceedings of the 31st IEEE International Conference on Computer Design, Asheville, NC, USA, 6–9
October 2013.

18. Balasubramanian, P.; Nayar, R.; Maskell, D.L.; Mastorakis, N.E. An approximate adder with a near-normal error distribution:
Design, error analysis and practical application. IEEE Access 2021, 9, 4518–4530. [CrossRef]

19. Shipitko, O.S.; Grigoryev, A.S. Gaussian filtering for FPGA based image processing with high-level synthesis tools. In Proceedings
of the IV International Conference on Information Technology and Nanotechnology, Sarma, Russia, 24–27 April 2018.

20. Gibson, J.D. Handbook of Image and Video Processing; Gibson, J.D., Bovik, A., Eds.; Academic Press: Orlando, FL, USA, 2000; ISBN
978-0121197902.

21. Balasubramanian, P.; Maskell, D.L. Hardware optimized and error reduced approximate adder. Electronics 2019, 8, 1212. [CrossRef]
22. Synopsys SAED_EDK32/28_CORE Databook. Revision 1.0.0, January 2012. Available online: https://www.synopsys.com/

community/university-program/teaching-resources.html (accessed on 31 August 2020).

http://doi.org/10.1145/3094124
http://doi.org/10.1109/TCAD.2019.2940680
http://doi.org/10.1109/TCSI.2004.835683
http://doi.org/10.1109/TCSI.2009.2027626
http://doi.org/10.1109/ACCESS.2020.3047651
http://doi.org/10.3390/electronics8111212
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html

	Introduction
	Accurate Array Multiplier
	Approximate Array Multipliers
	Error Parameters of Approximate Array Multipliers
	Digital Image Denoising Application
	Implementation Results
	Conclusions
	References

