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Abstract: Binary neural networks (BNNs) are adequate for energy-constrained embedded systems
thanks to binarized parameters. Several researchers have proposed the compute-in-memory (CiM)
SRAMs for XNOR-and-accumulation computations (XACs) in BNNs by adding additional transistors
to the conventional 6T SRAM, which reduce the latency and energy of the data movements. However,
due to the additional transistors, the CiM SRAMs suffer from larger area and longer wires than
the conventional 6T SRAMs. Meanwhile, monolithic 3D (M3D) integration enables fine-grained
3D integration, reducing the 2D wire length in small functional units. In this paper, we propose a
BNN accelerator (BNN_Accel), composed of a 9T CiM SRAM (CiM_SRAM), input buffer, and global
periphery logic, to execute the computations in the binarized convolution layers of BNNs. We also
propose CiM_SRAM with the subarray-level M3D integration (as well as the transistor-level M3D
integration), which reduces the wire latency and energy compared to the 2D planar CiM_SRAM.
Across the binarized convolution layers, our simulation results show that BNN_Accel with the 4-
layer CiM_SRAM reduces the average execution time and energy by 39.9% and 23.2%, respectively,
compared to BNN_Accel with the 2D planar CiM_SRAM.

Keywords: monolithic 3D integration; compute-in-memory; binary neural network; energy efficiency

1. Introduction

For the deployment of neural networks, the embedded systems (e.g., mobile device)
generally focus on the inference (e.g., face recognition) rather than the training, due to the
limited resources and energy budgets of the systems. Nevertheless, even for the inference,
convolution neural networks (CNNs) still require a huge volume of high precision (e.g.,
32-bit or 64-bit) parameters and time consuming multiply-and-accumulate computations
(MACs). Thus, it poses substantial challenges for the deployment of CNNs in the embedded
systems. In contrast, binary neural networks (BNNs) [1] reduce the precision of the
parameters to a single-bit. In addition, BNNs replace expensive MACs with bitwise XNOR
followed by population count (popcount) computations; XNOR followed by popcount
computation is called as XNOR-and-accumulation (XAC). Thus, BNNs are known to be
suitable for resource- and energy-constrained embedded systems compared to CNNs, by
reducing the computational complexity as well as the memory footprint with minimal
degradation in accuracy (less than 10% [2]).

Due to the simple computational complexity of XAC, the data movements dominate
the latency and energy consumption [3]. When designing BNN hardware with the conven-
tional von Neumann architecture (i.e., processing units and memory subsystems), the BNN
hardware suffers from substantial latency and energy costs due to the data movements (e.g.,
the data movement between CPU and off-chip memory consumes ~100× higher energy
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than a floating-point operation itself [4]). On the other hand, the compute-in-memory (CiM)
technology significantly reduces the latency and energy of the data movements compared
to the von Neumann architecture, by enabling computations in the memory array. Recently,
several researchers implemented XAC on CiM SRAMs by adding additional transistors to
the conventional 6T SRAM for BNN [3,5–7]. However, though such CiM SRAMs reduce the
latency and energy of the data movements, the CiM SRAMs with the 2D planar structure
suffer from the large cell area overhead (e.g., a 12T CiM SRAM has 2.7× larger cell area
than the 6 T SRAM [3]), due to the additional transistors. Furthermore, such CiM SRAM
architecture composes many subarrays together to enable parallel computations [7], which
results in longer wire overhead between subarrays.

Meanwhile, through-silicon-via (TSV) based 3D (TSV-3D) integration has gained huge
attention by reducing overall wire length, which results in latency and energy reductions
compared to 2D integration. However, TSV-3D integration is not feasible for fine-grained
3D integration of small functional units (e.g., L1 caches), since the microscale TSVs incur
non-negligible area overhead [8]. To overcome this drawback, monolithic 3D (M3D) inte-
gration is considered as a promising technology for fine-grained 3D integration, thanks
to extremely small (nanoscale) monolithic inter-tier vias (MIVs) [8]. Thus, several studies
adopted M3D integration to devise 3D integrated small functional units [8–10]. For exam-
ple, a 9T CiM SRAM was implemented with the transistor-level M3D integration, where
additional transistors are vertically integrated with MIVs, resulting in the same footprint as
the conventional 6T SRAM [9]. Furthermore, Gong et al. applied the subarray-level M3D
integration (i.e., bitline partitioning (BLP) or wordline partitioning (WLP)) to L1 caches,
which reduces the length of routing wires between subarrays by replacing 2D wires with
extremely small MIVs [8].

In this paper, to accelerate the computations in the binarized convolution layers of
BNNs, we propose an energy-efficient BNN accelerator (denoted as BNN_Accel) composed
of a 9T CiM SRAM, input buffer, and global periphery logic (the global periphery logic
obtains the binarized result by accumulating the partial popcounts and comparing the
total popcount with a threshold). We propose the 9T CiM SRAM, which performs XACs,
with the subarray-level M3D integration to reduce the length of routing wires between
subarrays; we also adopt the transistor-level M3D integration for each cell of the 9T CiM
SRAM to reduce the cell area [9]. Furthermore, we reveal the potential benefits of our
proposed BNN_Accel with a commonly exploited BNN (i.e., binarized VGG-16), in terms
of the execution time and energy consumption, compared to BNN_Accel with the 2D 9T
CiM SRAM. To our best knowledge, this is the first study to investigate the system-level
impacts of subarray-level M3D integration in the CiM SRAM on a BNN accelerator.

2. Related Work

Several studies proposed the CiM SRAMs which perform XAC or XNOR compu-
tations [5–7,9,10]. Liu et al. and Yin et al. proposed the CiM SRAMs for XAC based
on analog computing, which exploit a multilevel sense amplifier (MLSA) [6] and flash
ADC [7], respectively, to compute the popcount. Though the analog-based CiM SRAMs
achieved high throughput, they degraded the network accuracy due to the nonlinear
quantization of the MLSA and ADC. In contrast, Agrawal et al. exploited a digital bit-tree
adder in their 10T CiM SRAM for the popcount computation, achieving the ideal network
accuracy [5]. However, the 10T CiM SRAM still incurred the cell area overhead due to
the additional transistors. To reduce the cell area overhead, several studies proposed the
M3D CiM SRAMs for the XNOR computation, which placed additional transistors on the
upper layer [9,10]. The M3D 9T CiM SRAM had the same footprint as the conventional 6T
SRAM [9]. However, the M3D 10T CiM SRAM required additional AND gates and global
wires in the bottom layer, causing the subarray area overhead [10]. In addition, the previous
studies on the M3D CiM SRAMs did not provide the system-level analysis but focused
on the cell characteristics (e.g., current-voltage characteristic). In this paper, we propose
a subarray-level M3D integration based 9T CiM SRAM with the digital popcount unit
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by adopting the cell design from [9] and provide the system-level analysis of BNN_Accel,
which is based on the M3D 9T CiM SRAM.

3. CiM_SRAM-Based BNN_Accel
3.1. CiM_SRAM Subarray

Figure 1 shows the design and operation procedure of a CiM_SRAM subarray; in this
paper, CiM_SRAM denotes the 9T CiM SRAM which is able to compute XAC operations
in memory. The CiM_SRAM subarray consists of a decoder, row-wise wire (wordline
(WL) and signal B) driver, column-wise wire (bitline (BL), bitline-bar (BLB) and signal
L/R) driver, 512-by-128 cell array, and Popcount unit. Note we adopt the cell design of
CiM_SRAM from [9]; three transistors (NL, NR, and NB) and three wires (signal L, R, and
B) are added to the conventional 6T SRAM cell. The operation procedure of the CiM_SRAM
subarray is as follows:

1. Based on an input row address, the signal B turns on all the NB transistors in the
selected row.

2. Based on inputs from the outside of the subarray, each signal L/R turns on/off the
transistor NL/NR.

3. As the stored value (Q/QB) in each cell is passed to Cout, the XNOR computation is
performed.

4. The XNOR results of all the cells in the selected row are passed to the Popcount unit
through BLs.

5. XAC is completed as the Popcount unit computes the popcount.
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Figure 1. Design and operation procedure of a CiM_SRAM subarray. Note the design of 
CiM_SRAM subarray is reproduced from [9] and we demonstrate the truth table of XNOR opera-
tion in the CiM_SRAM design. 

Figure 2 presents three different CiM_SRAM designs in this paper. Figure 2a shows 
the 2D planar CiM_SRAM, which is denoted as CiM_SRAM (2D) [9]. CiM_SRAM (2D) 
causes 1.5× cell area overhead compared to the conventional 6T SRAM, due to three ad-
ditional transistors. As shown in Figure 2b, CiM_SRAM (M3D_2L) [9] is the 2-layer 
CiM_SRAM, adopting the transistor-level M3D integration to CiM_SRAM (2D). Since we 
vertically interconnect the additional transistors and the conventional 6T SRAM with 

Figure 1. Design and operation procedure of a CiM_SRAM subarray. Note the design of CiM_SRAM
subarray is reproduced from [9] and we demonstrate the truth table of XNOR operation in the
CiM_SRAM design.

Figure 2 presents three different CiM_SRAM designs in this paper. Figure 2a shows
the 2D planar CiM_SRAM, which is denoted as CiM_SRAM (2D) [9]. CiM_SRAM (2D)
causes 1.5× cell area overhead compared to the conventional 6T SRAM, due to three
additional transistors. As shown in Figure 2b, CiM_SRAM (M3D_2L) [9] is the 2-layer
CiM_SRAM, adopting the transistor-level M3D integration to CiM_SRAM (2D). Since
we vertically interconnect the additional transistors and the conventional 6T SRAM
with three MIVs for each cell, CiM_SRAM (M3D_2L) achieves the same cell area as
the 6T SRAM. Furthermore, by adopting the subarray-level M3D integration (the M3D
BLP) to CiM_SRAM (M3D_2L), we propose the 4-layer CiM_SRAM, which is denoted as
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CiM_SRAM (M3D_4L). To design CiM_SRAM (M3D_4L) with the M3D BLP, we divide
each subarray of CiM_SRAM (M3D_2L) to four layers by partitioning the column-wise
wires. Thus, CiM_SRAM (M3D_4L) has shorter routing wires between subarrays as well as
column-wise wires than CiM_SRAM (M3D_2L). Note we exploit the BLP, since CiM_SRAM
has more column-wise wires than row-wise wires. When the row-wise wires consume
more latency and energy than column-wise wires, the M3D WLP could be a better design
option than the M3D BLP.
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3.2. Overall Structure of BNN_Accel

Figure 3 depicts the overall structure of BNN_Accel, which consists of three blocks: an
input buffer, CiM_SRAM, and global periphery logic. The input buffer stores the input
feature maps (the input data of convolution layers) in 18 kB SRAM and provides the
data to CiM_SRAM for the computation. Note 18 kB SRAM is large enough to store the
input feature maps of each binarized convolution layer in commonly exploited BNNs (e.g.,
binarized VGG-16 [5–7]). CiM_SRAM is composed of 36 subarrays which store the kernel
weights. With the input data provided from the input buffer and kernel weights stored
in CiM_SRAM, all the CiM_SRAM subarrays perform XACs in parallel as explained in
Section 3.1. Note, before the computations, the input feature maps and kernel weights are
prepared in the input buffer and CiM_SRAM, respectively, based on the data mapping
scheme which will be explained in Section 3.3. Then, the global periphery logic obtains the
final output of the computations in the binarized convolution layer. The adder in the global
periphery logic accumulates the partial popcount results from the CiM_SRAM subarrays
to obtain the total popcount. The comparator then compares the total popcount with a
predefined threshold and stores the final output to the buffer (i.e., when the total popount
is less than the threshold, the final output is zero, otherwise, the final output is one). Lastly,
the final output in the buffer is sent to the main memory.
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3.3. Data Mapping for Parallel Computations in BNN_Accel

To efficiently perform parallel computations in BNN_Accel, we exploit a data mapping
scheme for the input buffer and CiM_SRAM to store the input feature maps and kernel
weights, respectively. We map the data for the parallel computation to a single row of a
subarray. When the data size is too large to be stored in the single row, we map the rest of
the data to a single row of another subarray. In other words, we do not map the data for the
parallel computation to multirows of the same subarray. Figure 4 shows the data mapping
example for the kernel weights in the 6th convolution layer of binarized VGG-16; there are
512 kernels with the size of 3 × 3 × 512. Note, for each kernel, we simultaneously perform
XACs. We map the data on each pixel (512 bits) of the nth kernel to the nth row (128 bits)
of four subarrays. For example, we map the data on the pixel (1,1) of the first kernel to
the first row of the 1st~4th subarrays, while we map the data on the pixel (1,2) of the first
kernel to the first row of the 5th~8th subarrays. In this way, we map all the data on the
same kernel to a single row of all the subarrays. Consequently, when all the CiM_SRAM
subarrays operate in parallel, XACs for one kernel are performed at the same time.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 3. Overall structure of BNN_Accel. 

3.3. Data Mapping for Parallel Computations in BNN_Accel 
To efficiently perform parallel computations in BNN_Accel, we exploit a data map-

ping scheme for the input buffer and CiM_SRAM to store the input feature maps and 
kernel weights, respectively. We map the data for the parallel computation to a single 
row of a subarray. When the data size is too large to be stored in the single row, we map 
the rest of the data to a single row of another subarray. In other words, we do not map the 
data for the parallel computation to multirows of the same subarray. Figure 4 shows the 
data mapping example for the kernel weights in the 6th convolution layer of binarized 
VGG-16; there are 512 kernels with the size of 3 × 3 × 512. Note, for each kernel, we sim-
ultaneously perform XACs. We map the data on each pixel (512 bits) of the nth kernel to 
the nth row (128 bits) of four subarrays. For example, we map the data on the pixel (1,1) 
of the first kernel to the first row of the 1st~4th subarrays, while we map the data on the 
pixel (1,2) of the first kernel to the first row of the 5th~8th subarrays. In this way, we map 
all the data on the same kernel to a single row of all the subarrays. Consequently, when 
all the CiM_SRAM subarrays operate in parallel, XACs for one kernel are performed at 
the same time.  

…

# 
ke

rn
el

s 
= 

51
2

CiM_SRAM (36 subarrays)Kernels

1st Kernel

Row
-w

ise w
ire driver

…

…

…

…

… …

…

Column-wise wire driver

D
ecoder

Popcount unit

Row
-w

ise w
ire driver

…

…

…

…

… …

…

Column-wise wire driver

D
ecoder

Popcount unit

Row
-w

ise w
ire driver

…

…

…

…

… …

…

Column-wise wire driver

D
ecoder

Popcount unit

…

1st~4th subarrays 5th~8th subarrays 33rd~36thsubarrays

Pixel (1,1) Pixel (1,2) Pixel (3,3)

 
Figure 4. An example of data mapping scheme for parallel computations. Figure 4. An example of data mapping scheme for parallel computations.



Electronics 2021, 10, 623 6 of 11

4. Evaluation
4.1. Evaluation Methodology

We modeled three different CiM_SRAMs with CACTI [11] to evaluate the latency and
energy consumption. The size of each CiM_SRAM was 288 kB, since each CiM_SRAM
was composed of 36 subarrays with 512-by-128 cell array as explained in Section 3. Note,
the latency and energy of the cell were not shown in [9]. We modify CACTI to reflect the
additional transistors and wires in CiM_SRAM as follows:

1. We modeled the impact of additional transistors and wires on latency and energy in
our modified CACTI, based on the Horowitz equation [11].

2. We modeled the latency and energy of MIVs by adopting the MIV specification
from [8].

3. We modeled the area of CiM_SRAMs reflecting the cell structures; CiM_SRAM
(M3D_2L) and CiM_SRAM (M3D_4L) had the same cell area as the conventional
6T SRAM, while CiM_SRAM (2D) had 1.5× larger cell area than the 6T SRAM.

In addition, we implemented the Popcount unit with Verilog HDL. Then, we synthe-
sized and placed-and-routed the Popcount unit with the Synopsys Design Compiler [12]
and IC Compiler [13]. We exploited the Samsung System LSI 28 nm ASIC library. Mean-
while, since the 28 nm technology node does not exist in CACTI, we modeled CiM_SRAM
based on the 22 nm technology node, which is the only sub-30 nm technology node in
CACTI.

Table 1 shows the obtained latency and energy of the Popcount unit. Finally, we
obtained the latency and energy of CiM_SRAM by adding the results of the Popcount unit
to CACTI.

Table 1. Implementation Results.

Popcount Unit Input Buffer Global Periphery Logic

Latency 0.43 ns 0.28 ns 0.64 ns
Dynamic power 2.77 mW 35.88 mW 3.07 mW
Leakage power 2.21 µW 29.32 µW 2.63 µW

Based on the three CiM_SRAM designs, we evaluated three different BNN_Accels:
BNN_Accel (2D), BNN_Accel (M3D_2L), and BNN_Accel (M3D_4L), which were BNN_Accels
with CiM_SRAM (2D), CiM_SRAM (M3D_2L), and CiM_SRAM (M3D_4L), respectively. We
analyzed the execution time and energy consumption of each BNN_Accel, which executed
the computations of each binarized convolution layer in binarized VGG-16 with Cifar-10
dataset [5]; in BNNs, the first convolution layer was not binarized to achieve high network
accuracy [1]. We obtained the latency and energy of the input buffer and global periphery
logic with the same process as the Popcount unit, as shown in Table 1. Then, we applied
the number of cycles and energy taken by each block to gem5-aladdin [14]; BNN_Accel
operated at 2.0 GHz.

In M3D integration, there was a concern about the thermal problem induced by high
power density and low heat dissipation capability. Thus, we evaluated the peak tempera-
ture of each BNN_Accel with HotSpot 6.0 [15]. For a conservative thermal evaluation, each
BNN_Accel was placed beside the big CPU core cluster consuming 4.0 W, which was the
thermal design power (TDP) of the cluster [16]. Note the big CPU core cluster is the thermal
hotspot in mobile SoCs [17]. To reflect the layer material property of M3D integration, we
also set the thickness and thermal conductivity of the interlayer dielectric (ILD) to 100.0
nm and 1.4 W/m·K, respectively [8].

4.2. Evaluation Results
4.2.1. Latency and Energy of CiM_SRAM

Figures 5 and 6 show the latency and energy consumption of each CiM_SRAM, when
it performs XAC; note we present the access (read) latency of the conventional 6T SRAM in
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Figure 5 for comparison with the XAC latency of CiM_SRAMs. The 6T SRAM has shorter
latency than CiM_SRAM (2D), for the following reasons:

1. A read operation in the 6T SRAM uses a smaller number of transistors than an XAC
operation in CiM_SRAM (2D), which leads to shorter latency.

2. The 6T SRAM is composed of a smaller number of transistors/wires than CiM_SRAM
(2D), which leads to lower parasitic capacitance.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 11 
 

 

SRAM in Figure 5 for comparison with the XAC latency of CiM_SRAMs. The 6T SRAM 
has shorter latency than CiM_SRAM (2D), for the following reasons:  
1. A read operation in the 6T SRAM uses a smaller number of transistors than an XAC 

operation in CiM_SRAM (2D), which leads to shorter latency.  
2. The 6T SRAM is composed of a smaller number of transistors/wires than 

CiM_SRAM (2D), which leads to lower parasitic capacitance.  

 
Figure 5. Latency of different SRAM designs (Note the latency value for 6T SRAM represents read 
latency and those for three different CiM_SRAMs are XAC operation latencies). 

 
Figure 6. Energy consumption for different CiM_SRAM designs. 

Though CiM_SRAM (2D) required much longer latency for an XAC operation than 
the read operation in the 6T SRAM, the latency could be reduced significantly by apply-
ing M3D BLP design to the CiM_SRAM. As shown in Figure 5, CiM_SRAM (M3D_4L) 
had 36.6% shorter latency than CiM_SRAM (2D) [9]. CiM_SRAM (M3D_4L) had shorter 
2D wires (which included the column-wise wires, row-wise wires, and routing wires 
between subarrays) than CiM_SRAM (2D), resulting in shorter latency. The reduction of 
the 2D wire length was due to the following reasons:  
1. Thanks to the transistor-level M3D integration, CiM_SRAM (M3D_4L) had 33.8% 

smaller cell area than CiM_SRAM (2D).  
2. CiM_SRAM (M3D_4L) had shorter column-wise wires by adopting the M3D BLP.  

Figure 5. Latency of different SRAM designs (Note the latency value for 6T SRAM represents read
latency and those for three different CiM_SRAMs are XAC operation latencies).

Electronics 2021, 10, x FOR PEER REVIEW 7 of 11 
 

 

SRAM in Figure 5 for comparison with the XAC latency of CiM_SRAMs. The 6T SRAM 
has shorter latency than CiM_SRAM (2D), for the following reasons:  
1. A read operation in the 6T SRAM uses a smaller number of transistors than an XAC 

operation in CiM_SRAM (2D), which leads to shorter latency.  
2. The 6T SRAM is composed of a smaller number of transistors/wires than 

CiM_SRAM (2D), which leads to lower parasitic capacitance.  

 
Figure 5. Latency of different SRAM designs (Note the latency value for 6T SRAM represents read 
latency and those for three different CiM_SRAMs are XAC operation latencies). 

 
Figure 6. Energy consumption for different CiM_SRAM designs. 

Though CiM_SRAM (2D) required much longer latency for an XAC operation than 
the read operation in the 6T SRAM, the latency could be reduced significantly by apply-
ing M3D BLP design to the CiM_SRAM. As shown in Figure 5, CiM_SRAM (M3D_4L) 
had 36.6% shorter latency than CiM_SRAM (2D) [9]. CiM_SRAM (M3D_4L) had shorter 
2D wires (which included the column-wise wires, row-wise wires, and routing wires 
between subarrays) than CiM_SRAM (2D), resulting in shorter latency. The reduction of 
the 2D wire length was due to the following reasons:  
1. Thanks to the transistor-level M3D integration, CiM_SRAM (M3D_4L) had 33.8% 

smaller cell area than CiM_SRAM (2D).  
2. CiM_SRAM (M3D_4L) had shorter column-wise wires by adopting the M3D BLP.  

Figure 6. Energy consumption for different CiM_SRAM designs.

Though CiM_SRAM (2D) required much longer latency for an XAC operation than
the read operation in the 6T SRAM, the latency could be reduced significantly by applying
M3D BLP design to the CiM_SRAM. As shown in Figure 5, CiM_SRAM (M3D_4L) had
36.6% shorter latency than CiM_SRAM (2D) [9]. CiM_SRAM (M3D_4L) had shorter 2D
wires (which included the column-wise wires, row-wise wires, and routing wires between
subarrays) than CiM_SRAM (2D), resulting in shorter latency. The reduction of the 2D wire
length was due to the following reasons:

1. Thanks to the transistor-level M3D integration, CiM_SRAM (M3D_4L) had 33.8%
smaller cell area than CiM_SRAM (2D).
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2. CiM_SRAM (M3D_4L) had shorter column-wise wires by adopting the M3D BLP.
3. Thanks to both (1) and (2), CiM_SRAM (M3D_4L) had smaller subarrays, which

eventually reduced the length of the routing wires between subarrays.

In addition, CiM_SRAM (M3D_4L) reduced the latency by 10.7% compared to CiM_SRAM
(M3D_2L) [9]. Though CiM_SRAM (M3D_4L) had the same cell area as CiM_SRAM
(M3D_2L), it led to shorter latencies of the routing wires between subarrays and column-
wise wires, due to the M3D BLP; the latencies of CiM_SRAM (2D), CiM_SRAM (M3D_2L),
and CiM_SRAM (M3D_4L) were 5 cycles, 4 cycles, and 3 cycles, respectively, at 2.0 GHz
(the operating clock frequency of BNN_Accels).

As shown in Figure 6, CiM_SRAM (M3D_4L) consumed 14.0% less energy than
CiM_SRAM (2D). The energy reduction also came from shorter 2D wires, thanks to the
transistor-level M3D integration and M3D BLP. Though the energy of MIVs (i.e., 3 × 512
× 128 MIVs in the cell array of each subarray) was non-negligible, the amount of energy
reduction in 2D wires was higher than the additional MIV energy, attributed to shorter
2D wires. Additionally, CiM_SRAM (M3D_4L) reduced the energy by 36.4% compared to
CiM_SRAM (M3D_2L), since it reduced the 2D wire energy thanks to the M3D BLP. Note,
though CiM_SRAM (M3D_2L) reduced the 2D wire energy compared to CiM_SRAM (2D),
CiM_SRAM (M3D_2L) consumed 34.3% more energy due to the MIV energy.

In Table 2, we summarize the results of CiM_SRAMs in terms of latency, energy, and
area, which are normalized to those of CiM_SRAM (2D); note the area indicated 288KB
CiM_SRAM area. As described in Table 2, CiM_SRAM (M3D_4L) showed much better
latency and energy than CiM_SRAM (2D), with much smaller area, while CiM_SRAM
(M3D_2L) showed worse energy efficiency due to its additional MIV energy.

Table 2. Normalized results of CiM_SRAMs in terms of latency, energy, and area.

CiM_SRAM (2D) CiM_SRAM (M3D_2L) CiM_SRAM (M3D_4L)

Latency 1.000 0.893 (10.7% lower) 0.634 (36.6% lower)
Energy 1.000 1.344 (34.4% higher) 0.855 (14.5% lower)

Area 1.000 0.711 (28.9% smaller) 0.375 (62.5% smaller)

4.2.2. Execution Time and Energy of BNN_Accel

Figure 7 shows the execution time and energy consumption of BNN_Accels, across the
binarized convolution layers; note BNN_Accel (2D) is an BNN accelerator based not on 6T
SRAM, but on CiM_SRAM (2D). As shown in Figure 7a, BNN_Accel (M3D_4L) had a 39.9%
shorter execution time than BNN_Accel (2D), on average. BNN_Accel (M3D_4L) reduced the
computation cycles for XAC by 40.0% (2 cycles), compared to BNN_Accel (2D), resulting in
shorter execution time. Additionally, BNN_Accel (M3D_4L) reduced the average execution
time by 36.4%, compared to BNN_Accel (M3D_2L). The reduction of the execution time
also came from the reduced computation cycles for XAC. Note the computations of the
binarized convolution layer consisted of many XACs.

As shown in Figure 7b, BNN_Accel (M3D_4L) consumed 23.2% less energy than
BNN_Accel (2D), on average. Since BNN_Accel (M3D_4L) reduced the energy for XAC
as well as the execution time itself, it reduced the energy compared to BNN_Accel (2D).
Thanks to the same reasons, BNN_Accel (M3D_4L) reduced the average energy by 32.5%,
compared to BNN_Accel (M3D_2L).

In Table 3, we summarize the results of BNN_Accels in terms of execution time,
energy and area, which are normalized to those of BNN_Accel (2D); note the area includes
popcount unit, input buffer, and global periphery logic. As described in Table 3, BNN_Accel
(M3D_4L) outperformed BNN_Accel (2D), in the perspective of execution time, energy, and
area. Since BNN_Accel (M3D_2L) consumed more energy in CiM_SRAM (M3D_2L) (as
shown in Figure 6), it resulted in slightly higher energy consumption then BNN_Accel (2D).
Consequently, combining transistor-level and subarray-level M3D integration improved
performance and energy efficiency, with significant area reduction.
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Table 3. Normalized results of BNN_Accels in terms of execution time, energy and area.

BNN_Accel (2D) BNN_Accel (M3D_2L) BNN_Accel (M3D_4L)

Exec. time 1.000 0.801 (19.9% faster) 0.601 (39.9% faster)
Energy 1.000 1.133 (13.3% higher) 0.768 (23.2% lower)

Area 1.000 0.759 (24.1% smaller) 0.479 (53.1% smaller)

4.2.3. Peak Temperature of BNN_Accel

We analyzed the peak temperature of each BNN_Accel, which was placed beside the
thermal hotspot of the mobile SoC. The peak temperatures of BNN_Accel (2D), BNN_Accel
(M3D_2L), and BNN_Accel (M3D_4L) were 71.8 °C, 76.9 °C, and 79.2 °C, respectively. Due
to the high power density and low heat dissipation capability of M3D integration, the peak
temperature of BNN_Accel (M3D_2L) and BNN_Accel (M3D_4L) was higher than that of
BNN_Accel (2D). However, the peak temperature was still under the thermal threshold
(80.0 °C in [18]), which does not invoke the thermal throttling.

4.3. Discussion on Monolithic 3D Fabrication Cost

According to our analysis, M3D_4L is expected to provide much better performance,
higher energy efficiency, and even significant area reduction, compared to the conventional
2D design. However, M3D integration is not a mature technology, we need to consider
additional fabrication costs compared to the conventional 2D fabrication; for example,
some additional design steps are required for stacking multiple layers such as increasing
the number of masks. In addition, to prevent damage to the bottom layer, M3D requires
low temperature fabrication for each stacked layer, which requires additional equipment
for low temperature fabrication (e.g., laser annealing, etc.). To reduce the design costs of
M3D fabrication, many researchers have studied M3D across various levels. For example,
Or-Bach et al proposed an M3D fabrication method that could be compatible with the
conventional 2D process [19]. Additionally, Jiang et al. presented the use of 2D materials for
M3D integration [20], which would lead to significant cost reduction in M3D integration,
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even comparable to 2D ICs. Based on such studies, M3D is already considered to be more
cost-effective than the conventional TSV-3D for logic fabrication. Consequently, various
studies will enable M3D to be applied to commercial products in the near future.

5. Conclusions

In this paper, we proposed the BNN_Accel for the binarized convolution layers of
BNNs, which consisted of CiM_SRAM, input buffer, and global periphery logic. We
adopted the subarray-level M3D integration (the M3D BLP) to CiM_SRAM (M3D_4L)
for the wire length reduction, which reduced the latency and energy, compared to the
CiM_SRAM (2D). Across the binarized convolution layers in a BNN, our system-level
evaluation shows that the BNN_Accel (M3D_4L) reduces the average execution time and
energy by 39.9% and 23.2%, respectively, compared to BNN_Accel (2D). Though we only
showed the results using the binarized VGG-16, our proposed BNN_Accel could provide
energy efficiency for more complex networks, by adjusting the size of input buffers and
CiM_SRAMs, considering the size of inputs, size of kernels, etc.
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