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Abstract: In this paper, we propose the theoretical framework for a reconfigurable radiation pattern
modulation (RRPM) scheme, which is reminiscent of the index modulation technique. In the proposed
scheme, information is encoded using far-field radiation patterns generated by a set of programmable
radiating elements. A considerable effort has been invested to allow for high transmission of the
reconfigurable radiation pattern symbols; yet, the receiving system has received little attention
and has always been considered ideal. Depending on the number of receivers and their respective
positions, two variables are considered here for data transmission: the sampling resolution and
the fraction of the covered space by the receiving antennas. Hence, we quantitatively investigate
their effect on the bit-error-rate (BER) by making use of a limited number of measurements that
approximate the behavior of the system under real-field conditions.

Keywords: antennas; arrays; digital communications; modulation techniques; wave–matter interac-
tion; radiation patterns

1. Introduction

We are in a time of instant communication. Users require ever-increasing speed,
power, and availability. Communication systems have remained almost unchanged since
the invention of the superheterodyne receiver [1] and the introduction of coding [2]. Arti-
ficial intelligence, remote surgeries, virtual reality, autonomous cars, the increased need
for remote working due in particular to healthcare issues (e.g., the COVID-19 pandemic),
and the internet of things (IoT) are among the avenues that revolutionize the technology of
this century. Techniques such as enhanced multiple-input and multiple-output (MIMO)
systems, millimeter-wave (mmWave), and controllable electromagnetic environments are
proposed to be standardized in the coming years. While MIMO systems have become
essential parts of almost all modern communication systems [3,4], there are scenarios where
the number of used antennas cannot be massive. New modulation methodologies need to
be implemented to minimize the number of components while maximizing the capacity
of the communication system. The index modulation (IM) technique, which maximizes
the amount of information that is extracted from the building blocks of the communica-
tion chain, is a strong candidate for the communication revolution due to its hardware
simplicity [5–7]. IM has been investigated since the beginning of the millennium [8–12],
attracting even more attention in recent years. This technique focuses on the states of the
building blocks rather than the classical parameters from the signal, e.g., amplitude, phase,
and/or frequency. IM schemes can alternate the ON and OFF states of the communica-
tion blocks to encode data; antennas, RF diodes, RF mirrors, signal powers, sub-carriers,
modulation types, and loads are typical examples of communication blocks that can be
used as IM [13–16]. In the same vein, one of the most promising types of IM schemes
is reconfigurable radiation patterns modulation (RRPM) [17,18]; the information bits are
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encoded onto the radiation patterns of reconfigurable antenna arrays, programmable meta-
surfaces [19,20], or reconfigurable antennas [21,22]. Most of the current effort has focused
on the device that emits the radiation patterns rather than measuring the emitted pattern.

In this work, we propose a methodology for characterizing RRPM systems under
realistic conditions. In fact, in the current literature, radiation patterns from multiple
sources (reconfigurable-antennas, metasurfaces) are measured using an anechoic chamber
with a turntable surrounded by a high number of antennas that results in a high-resolution
reconstruction of the transmitted symbols. In this paper, we assume a realistic scenario
instead, with a limited number of receiving antennas that partially reconstruct the radiation
symbols. For instance, one receiving antenna is needed for measuring a point P(θ, φ) in the
far-field; a low density of receiving antennas will result in a sparse symbol reconstruction.
Under these restrictions of direction and receiving antennas, the transmitted symbols must
be optimized in order to reduce the probability of error. A methodology for selecting the
radiation symbols with the minimum probability of error to be transmitted is developed
for a realistic scenario. The symbols are transmitted over a noisy simulated channel with a
minimal number of receiving antennas, positioned at specific fractions of the study domain
(spherical coordinates). Afterward, the bit-error-rate (BER) is calculated and quantified for
each case as the leading figure of merit.

The remainder of this paper is organized as follows: Section 2 gives the theoretical
background of this work. Section 3 introduces the algorithm for smart radiation pattern
symbol selection and details the BER Monte-Carlo simulations for different scenarios of
measured radiation patterns. Section 4 gives a short discussion and some concluding
remarks on the results obtained.

2. Materials and Methods

This section describes the implementation model of the proposed coding/decoding
modulation using a reconfigurable radiation device.

2.1. Radiation Pattern Symbols

An antenna formed by multi-elements is known as an array. Antenna arrays are
mostly used to direct radiated power towards the desired direction with a high gain. The
number of elements, the geometrical configuration, current, amplitude, and phase will
influence the behavior of the whole system. The discrete sources radiate individually, but
the total radiation pattern is built up by the coherent addition of each element. The relative
amplitude and phase of the excitation currents on each element will determine the behavior
of the resulting field [23]. The array factor (AF) is the far-field radiation intensity, and is
obtained for an array of N elements located at the position

→
rn as

AF(r̂) =
N

∑
n=1

an·ejkr̂·→rn+jφn (1)

where r̂ is the direction (normal) unit vector to
→
rn, an is the complex excitation coefficient,

φn is the added phase component, and k is the wavenumber. The AF accounts for the
variation of the power radiated as a function of φ and θ (components of r̂ in a spherical
coordinate system). In the far-field, the radial component of the electric field is zero;
receiving antennas have thus only the requirement of being further than R = 2D2/λ
where D is the largest dimension of the antenna [19]. A reconfigurable antenna array is an
antenna with a tunable AF [24–27]. Without loss of generality, a straightforward model
of reconfigurable antennas is used in this work: a point source isotropic antenna with a
tunable phase. For an isotropic antenna, the radiation intensity is constant in all directions.
The only difference between each antenna element will be their relative position in the
space and the added phase component.

As a first case, four antennas are collocated at a wavelength-normalized (XY− plane)
at the positions [λ/4, 0], [0, λ/4], [− λ/4, 0], and [0, −λ/4] (See Figure 1). Each antenna
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introduces a variable phase shift of φON = 180◦ or φOFF = 0◦. Sixteen different combi-
nations are obtained for this 2× 2 array. Considering the whole space, and measuring
the radiated power gain (in spherical coordinates) at a considerable number of points, the
sixteen combinations are shown in Figure 2. As shown in Figure 2, the radiation patterns
have space symmetry for the upper and lower halves of the space; however, this is not the
case for all radiation systems, which can be the case for complex reconfigurable arrays or
metasurfaces. The purpose of an RRPM is to reconstruct the radiated symbols to decode
information bits. Depending on the configuration of the receiver setup, the reconstruction
of the radiation pattern may be affected. Two variables profoundly alter the measurement
of the radiation symbols, i.e., the resolution used and the fraction of the space measured.
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Figure 2. Radiation patterns for four antennas located at: [λ/4, 0], [0, λ/4], [− λ/4, 0], and [0,−λ/4] with φON = 180◦ and
φOFF = 0 ◦.

Resolution: The resolution ρ takes into account the positions in φ and θ that will be
measured. When ρ = N , N positions are measured in φ, and N positions are measured
in θ, leading to a total of ρ2 measurements. Under realistic circumstances, one static
antenna will measure one point; a total number of ρ2 antennas are thus required. A high
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resolution requires an excessive number of antennas. The degradation of the radiation
pattern symbols due to a low resolution is depicted in Figure 3a.
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Covered region: There are not many useful applications for this modulation scheme if
the entire radiation pattern has to be measured. Under realistic conditions of operation,
only certain parts of the total radiation pattern may be used to encode information. The
radiated symbol will be measured partially in the direction of a user with a limited number
of antennas.

2.2. Symbol Selection

As shown in Figure 2, the full spherical space is considered (0 ≤ φ ≤ 2π & 0 ≤ θ ≤ π)
with a high resolution (ρ = 40) to reconstruct the radiation symbols. By inspection, only
six out of the sixteen states from Figure 2 are unique. The level of uniqueness is quantified
by the degree of linear independence or orthogonality between each pair of symbols. To
quantify this, we consider a procedure to determine the linear independence of radiation
pattern symbols according to the number of elements of the array, their position in the
plane, and the phase shift each element introduces. The linear independence will be
determined using the Euclidean distance between a pair of radiation patterns as a figure of
merit. A higher distance will represent a higher level of independence, reducing the risk of
error in a noisy channel. Each radiation pattern is a point in the Euclidean space, i.e., Lρ×ρ;
the Euclidean distance is then defined as

dE =

√√√√ρ×ρ

∑
i=1

(AF1(θi, φi)− AF2(θi, φi))
2 (2)

where AF1 and AF2 denote the array factors of the two considered radiation patterns.
Communication systems are, in fact, noisy, and in this work, the simplest model accounting
for noise is assumed, i.e., additive white Gaussian noise (AWGN) [28]. Rayleigh models
are not considered in this case, under the assumption that the system is static. Selecting
highly independent symbols reduces thus the probability of the symbol being corrupted
by additive noise. For a set of total RP radiation patterns, we propose Algorithm 1 as a
method for selecting the symbols with a higher level of independence.
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Algorithm 1: Defining orthogonality for reconfigurable radiation patterns.

Result: A set of orthogonal symbols that minimize the BER is defined.
Calculate the total number of possible radiation patterns RP for an NT antennas array.
A matrix M of dimensions RP × RP is defined.

The Euclidean distance Mi,j =

√
∑

ρ×ρ
k=1

(
AFi(θk, φk)− AFj(θk, φk)

)2
between each radiation

pattern pair is calculated.
The mean distance m is calculated for M.
The matrix is normalized by M′ = M× 1

m .
A minimum normalized threshold distance γ between symbols is chosen.
First threshold (γ):
for i = 1: RP do
for j = 1 : RP do
if M′i,j < γ then

M′i,j = 0 else
M′i,j = 1.

end
end

end
end

Second threshold (γ′) definition : γ′ = RP
4 (usually)

for i = 1 : RP do
M′′

i = ∑RP
j=1 Mi,j

if M′′
i > γ′ then

i symbols can be transmitted.
end

end
Remove redundant symbols if required.

Two thresholds are used in Algorithm 1. The first threshold γ refers to the mini-
mum distance between a pair of radiation patterns that can be considered large enough
to avoid symbol corruption when noise is added. The second threshold γ′ refers to the
number of times a symbol satisfies γ when the whole set is considered. The threshold
selection represents the main parameter to determine the vulnerability of the commu-
nication scheme. Using γ = 1.1 and γ′ = 4, the algorithm identifies four symbols like
the ones that satisfy these two conditions. Increasing γ to 1.3 leads to a reduction of the
information bits by half. More stringent thresholds result in fewer numbers of radiation
patterns highly independent and less likely to be corrupted by noise. The most straightfor-
ward way to increase the number of symbols while having high thresholds is to increase
the number of point source antennas. As an example, the system can be expanded to
an eight-antenna configuration positioned in the wavelength-normalized XY-plane at
[λ/4, λ/4], [ − λ/4, λ/4], [ − λ/4, −λ/4], [λ/4, −λ/4], [3λ/4, 3λ/4], [ − 3λ/4, 3λ/4],
[−3λ/4, −3λ/4], and [3λ/4, −3λ/4]. Assuming the same phase conditions as in the pre-
vious case, φON = 180◦ and φOFF = 0◦, the number of possible phase combinations for
the eight antennas assuming that each one can be tuned independently is RP = 28 = 256.
As was the case before, not all the 256 sets of symbols will be unique. Considering a realis-
tic resolution ρ = 4 for measuring the radiation patterns in the whole spherical domain
(0 ≤ φ ≤ 2π & 0 ≤ θ ≤ π), the number of orthogonal symbols is extracted for a
variable γ. The number of orthogonal symbols given when γ and γ′ are swept is depicted
in Figure 3b; from the 256 combinations, 72 are unique. Increasing the threshold reduces
the number of transmitted bits per period; however, the probability of error is diminished
for noisy channels.

3. Results

In any digital communication scheme, the BER is the standard figure of merit for quan-
tifying its performance. Different computational methods are used to calculate the BER,
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and the Monte-Carlo simulation is by far the most popular technique among these [29,30].
The Monte-Carlo simulation uses a deterministic approach to calculate the BER. The usual
approach consists of producing pseudo-arbitrary N bits, simulating the transmission and
detection of these bits, and finally counting the number of mismatches in the output. The
symbols are demodulated using a maximum-likelihood (ML) demodulation, and the num-
ber of mismatches between the input and output will be counted as n errors. The BER
is then

BER =
n
N

. (3)

3.1. BER for AWGN Wireless Channel

Let us consider a communication system that is transmitting radiation pattern symbols
over an AWGN channel. Let xi(θ, φ) be an orthogonal radiation pattern symbol from the
RP number of radiation patterns. During each period log2 RP bits are transmitted. For each
period, η additive noise will be added to the transmitted signal, i.e.,

y(θ, φ) = xi(θ, φ) + η, (4)

where y(θ, φ) is the radiation pattern with the noise added. Afterward, Algorithm 2 is used
to decode the received y(θ, φ) into the x′(θ, φ) demodulated radiation pattern. Whenever
x(θ, φ) 6= x′(θ, φ), an error will be counted.

Algorithm 2: Maximum likelihood detector.

Result: ML demodulator for RRPM symbols.
For a radiation pattern symbols set of length RP,

Y(θ, φ) = [ ];
for j = 1 : RP do

Yj(θ, φ) =
√

y(θ, φ)2 − xj(θ, φ)2.
end

[minimum distance, position] = min(Y(θ, φ))
Finally, the position in the vector with the minimum Euclidean distance will be considered as the
index of the transmitted symbol x′(θ, φ).

In this contribution, RRPM is an analog of the space-shift-keying spatial-modulation [31],
where the only symbols transmitted are the radiation patterns. However, this methodology
can also be applied for composite systems where an M-ary digitally modulated signal is
used. A Monte-Carlo simulation with N = 1 × 106 random binary bits using the four
antennas array from Section 2 is made under different system conditions. A maximum
number of n = 200 errors is chosen, as stated in Ref. [30]. The effect of the resolution ρ and
the fraction of the space considered for the measurement is investigated.

For a realistic characterization, a low resolution is required to simulate scenarios outside
of an anechoic chamber. The resolutions considered for the simulation are ρ = [2, 4, 5, 8, 10].
A resolution of 10 restricts the number of measured points to 100, which is still a relatively
high number of antennas. Realistic approaches will use resolutions equal to 2 or 4. As
a result of the low resolution in comparison to the area of measurement, the radiation
patterns will not be precisely plotted when the considered measured spherical space is
ample. Three different fractions of the space are evaluated: the typical total radiation space
(0 ≤ φ ≤ 2π & 0 ≤ θ ≤ π), the upper part (0 ≤ φ ≤ 2π & 0 ≤ θ ≤ π/2), and a
minimal fraction (0 ≤ φ ≤ π/8 & 0 ≤ θ ≤ π/8). The BER is simulated for a signal
to noise ratio (SNR) sweep between −20 dB to 20 dB. For each resolution and fraction
of the space measured, Algorithm 1 is used to select the symbols; a fixed γ = 1.3 and
γ′ = 4 are used.

As is depicted in Figure 4, the resolution, space, and threshold restrictions in multiple
orthogonal radiated symbols are shown. In Figure 4, the symbols obtained for ρ = 4
and the three considered fractions of the space are shown. The spatial restrictions used
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for the case of Figure 4a resulted in four different radiation symbols (2 bits), while for
the cases considered in Figure 4b,c, only a pair of symbols is obtained for each (1 bit). A
proper selection of the resolution and the space considered can lead to a higher number of
successfully transmitted bits, as is the case in Figure 4b, where measuring half the space is
preferred in terms of the orthogonality between symbols.
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The BER results are shown and contrasted in Figure 5. In the three fractions of the
space considered, ρ > 4 is preferred to operate perfectly under typical SNR values for
wireless channels (10 dB < SNR < 20 dB). Higher resolutions are unnecessary, as can be
seen in Figure 5 for the three cases (their effect is almost negligible for normal noise ranges).
A resolution of four can be appropriately used if the total radiation space measurement
is avoided. Figure 5b shows the best performance when a minimum resolution of two
is considered; this is due to the higher Euclidean distance between symbols obtained
compared to the other cases. When ρ = 2 for Figure 5a,c, the BER results are equivalent.
One may expect better performance when a small section of the space is measured with
the same resolution as a vast section; however, the space limitation reduces the symbol
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diversity, lowering thus the distance between them. The proper selection of the resolution
and the space measured need to be considered to improve the probability of error.
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the models given in [33,34]; assuming a 1.5 dB rain attenuation for a specific distance, 
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tem operates poorly if an obstruction or attenuation is added when only two symbols are 
considered, as in the previous case. The system relies entirely on a static collection of sym-
bols, with a high or low degree of orthogonality between them; an obstacle can quickly 
deteriorate the orthogonality between them. A designer can either increase the symbols' 
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3.2. Channel Considerations

Simple slow fading and attenuation models can be immediately included in the model
using the multiple techniques described in [32]. Figure 6 presents the effect of two channel
effects shown for the case considered in Figure 5b. For an arbitrary shadow fading modeled
as Gaussian normalized variable X3 dB, the BER poorly performs as shown in Figure 5a.
Even more, a rain attenuation factor can be easily included using, for example, the models
given in [33,34]; assuming a 1.5 dB rain attenuation for a specific distance, geographical
location, and rain rate, the BER is further deteriorated (Figure 6b). The system operates
poorly if an obstruction or attenuation is added when only two symbols are considered,
as in the previous case. The system relies entirely on a static collection of symbols, with a
high or low degree of orthogonality between them; an obstacle can quickly deteriorate the
orthogonality between them. A designer can either increase the symbols’ orthogonality or,
preferably, use an adaptable methodology capable of dealing with the sudden changes in
the wireless channel. Once the possible applications for this communication technique are
given, specific models can be created to account for each of the different wireless channels’
particular difficulties.
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4. Conclusions

IM is an elegant approach to maximizing the number of bits transmitted through a
reconfigurable radiation pattern device. An IM-based methodology for selecting suitable
reconfigurable radiation patterns for transmitting binary information is presented in this
paper. Radiation pattern symbols are used directly to encode information bits. The ra-
diation symbols transmitted are selected according to an algorithm that maximizes the
orthogonality between each set of symbols, considering the BER as the leading figure of
merit. The portion of covered space and the number of receiving antennas are considered
as variables with a high impact on the BER. In this work, we evaluate the effect of the
measurement conditions for the first time, giving a reference for the appropriate symbol
selection. The impact of the position and density of Rx receiving antennas has a direct effect
on the BER depending on the number of bits to be transmitted. Increasing the number of
measuring antennas is shown to lead to a lower error probability if a higher density of
symbols is encoded, as can be seen in Figure 5. Depending on the orthogonality require-
ments for a system, the designer can quickly adapt Algorithm 1 to increase or decrease
the number of symbols transmitted. The developed methodology can be applied in any
kind of reconfigurable radiation device; however, further research has to be done in hybrid
systems with reconfigurable antenna arrays and reconfigurable metasurfaces, including
multipath propagation and various channel fading models for static and dynamic systems.
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