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Abstract: In this paper, we present area-time efficient reconfigurable architectures for the implemen-
tation of the integer discrete cosine transform (DCT), which supports all the transform lengths to be
used in High Efficiency Video Coding (HEVC). We propose three 1D reconfigurable architectures
that can be configured for the computation of the DCT of any of the prescribed lengths such as 4, 8,
16, and 32. It is shown that matrix multiplication schemes involving fewer adders can be used to
derive parallel architectures for 1D integer DCT of different lengths. A novel transposition buffer
is designed to be used for the proposed 2D DCT architecture, which offers double the throughput
without increasing the size of the transposition buffer. We determine the optimal pipeline locations
in the proposed design through the precise estimation of propagation delays and the critical path so
that the area-delay-product is optimized and all the output samples are obtained in the same cycle
in spite of the recursive nature of the structure. Implementation results show that the proposed 2D
integer DCT architectures provide significantly higher throughput per unit area than the existing
designs for HEVC.

Keywords: discrete cosine transform (DCT); High Efficiency Video Coding (HEVC); H.265; integer
DCT; video coding

1. Introduction

The discrete cosine transform (DCT) is a core operation in video compression due to
its near-optimal de-correlation efficiency [1,2]. The Joint Collaborative Team-Video Coding
(JCT-VC) has defined the integer DCTs for transform lengths, N = 4, 8, 16, and 32 for
the video coding standard H.265/HEVC (High Efficiency Video Coding) [3,4]. Low-cost
hardware implementations of the integer DCTs for HEVC were proposed in [5–13].

Ahmed et al. [8] proposed a multiplier-less lifting-based approach applied to a sparse
decomposition of the DCT matrices. Shen et al. [14] proposed another multiplier-less
implementation using a multiple constant multiplication (MCM) approach for the integer
DCT of lengths four and eight. For the DCT of lengths 16 and 32, however, they used
conventional multipliers. Park et al. [9] used Chen’s factorization of the DCT where the
butterfly operation of the DCT computation was implemented by the processing element
(PE) with only shifters, adders, and multiplexors. Budagavi and Sze [10] proposed a unified
hardware structure that can be used for forward, as well as inverse DCTs. Efficient MCM-
based architectures and transposition buffers for integer DCT for HEVC were proposed
in [12,13]. However, the transposition unit has a significant overhead of complexity in
this design.

As a major deviation from the earlier video coding standards, HEVC allows DCTs of
four different lengths. The DCT unit for HEVC is therefore required to be configurable to
support different transform lengths, N = 4, 8, 16, and 32. Based on this requirement, in
this paper, we propose efficient reconfigurable structures of the DCT unit that can be used
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for integer DCTs of different lengths. Specifically, three reconfigurable DCT architectures
based on a constant matrix multiplication (CMM) and the MCM are proposed. 2D integer
DCT architectures having novel transposition buffers are also proposed. The innovations
of the proposed architectures are summarized as follows.

• A hardware-oriented algorithm for integer DCT computation for HEVC is proposed.
• Three different flexible hardware architectures for the integer DCT are proposed, each

with advantages in terms of area, delay, or power.
• A novel matrix-vector-product unit that involves fewer adders than the existing

method [12,13] is proposed.
• A novel 2D integer DCT architecture having double the throughput and less latency

(without increasing the size of the transposition buffer) is proposed.
• A novel low-cost pipeline strategy is proposed to reduce the critical path of the

proposed 1D integer DCT.
• Comparisons with existing methods are provided in terms of various metrics such as

gate counts, maximum usable frequency, throughput, latency, etc.

The rest of the paper is organized as follows. In the next section, we discuss the
key features of the integer DCT for HEVC. We describe three proposed reconfigurable
architectures of 1D integer DCT in Section 3. In Section 4, we discuss the implementation of
2D DCT. In Section 5, we compare the area and time complexities of the proposed designs
with those of the existing designs. Section 6 presents the conclusions.

2. Key Features of Integer DCT for HEVC

The N-point integer DCT of an input vector x = [x(0), x(1), . . . , x(N − 1)] is given by:

y(0)
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·
·
·

y(N − 2)
y(N − 1)


= CN
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·
·
·
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(1)

where the integer DCT kernel CN is an N × N matrix of integers and y = [y(0), y(1), . . . , y(N −
1)] is an output vector. The kernel matrices CN for N = 4, 8, 16, and 32 for HEVC were defined
by JCT-VC [3]. The N-point integer DCT for HEVC can be computed by a partial butterfly
approach using an (N/2)-point DCT and a product of the (N/2) × (N/2) matrix by an
(N/2)-point vector as: 
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where:

a(i) = x(i) + x(N − i − 1) (3a)

b(i) = x(i)− x(N − i − 1), (3b)

for i = 0, 1, · · ·, N/2− 1. CN/2 is an (N/2)-point integer DCT kernel of size (N/2)× (N/2).
SN/2 is also an integer matrix of size (N/2)× (N/2) derived from the first N/2 columns
of the odd-indexed rows of CN , such that the (i, j)th entry of SN/2 can be defined as:

si,j
N/2 = c2i+1,j

N for 0 ≤ i, j ≤ N/2 − 1 (4)

where c2i+1,j
N is the (2i + 1, j)th entry of CN . Note that all even DCT outputs are given by

Equation (2a), while odd DCT outputs are given by Equation (2b). An (N/2)-point DCT
given by Equation (2a) is again decomposed into an (N/4)-point DCT and a product of the
integer matrix SN/4 of size (N/4)× (N/4) with an (N/4)-point vector. This decomposition
can continue recursively till the N-point DCT is expressed in terms of the four-point DCT
and a product of the 4 × 4 matrix and four-point vector.

3. Proposed Reconfigurable Architectures for 1D Integer DCT

In this section, we propose three reconfigurable architectures for the computation of
the 1D integer DCT of different lengths for HEVC.

3.1. Proposed 1D DCT Architecture-1

Figure 1 shows the proposed 1D DCT Architecture-1. The architecture in Figure 1a is
for the integer DCTs of lengths N = 8, 16, and 32, whereas the architecture in Figure 1b is
for the computation of the four-point integer DCT. Figure 1c describes the structure of the
shift-add unit in Figure 1b. Sixteen- or eight- or four-point integer DCTs can be computed
by the 32-point DCT structure by setting the sel control signal to the MUX unit appropriately.
The input adder unit (IAU) in Figure 1a computes a(i) and b(i) for i = 0, 1, · · ·, N/2 − 1 by
Equation (3). The MUX unit, which consists of N/2 2:1 MUXes, selects either a(i) or x(i)
for i = 0, 1, · · ·, N/2 − 1, depending on whether it is used to compute Equation (2a) or the
DCT of a lower size, respectively. Odd-indexed coefficients of y(i) for i = 1, 3, · · ·, N − 1
are computed by the matrix-vector-product unit (MVPU) according to Equation (2b). The
computation of Equation (2b) could be realized as a CMM problem [15–18]. We find that the
algorithm of Boullis and Tisserand [18] is very efficient when it is used for the computation
of the MVPU. We generated the MVPU algorithm for S4 · b4, S8 · b8, and S16 · b16 and list
these in Table 1, where bN/2 = [b(0), b(1), · · ·b(N/2 − 1)]. The complexity of the proposed
1D DCT Architecture-1 is compared to that in [12] in Table 2 since the DCT computation
in [12] also uses a partial butterfly approach based on Equations (2a) and (2b). Table 1
of [12] shows the algorithm of the reference DCT architecture to be compared. Specifically,
the IAUs of the two structures are the same, and the MVPU of the proposed structure
corresponds to the MCM of [12]. The total number of adders listed in the seventh column
of Table 2 can be referred to Table 2 of [12]. The proposed Architecture-1 uses 14.6% fewer
adders compared with [12] for N = 32. Note that pipeline registers are not used for the
implementation of the MVPU. The structure requires only input registers after the IAU to
hold the incoming data.
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Table 1. Computation of SN/2 · bN/2 in the matrix-vector-product unit (bi = b(i) and y2×i+1 = y(2 × i + 1) for
i = 0, 1, 2, ..., N/2 − 1).

Computation of S4 · b4 in the matrix-vector-product unit (MVPU) for 8-point DCT computation

t9 = b0 + 4b0; t8 = b1 − 8b3; t7 = 4b2 − b2; t6 = 2b0 − b3; t5 = 2b1 − b3; t4 = b1 − 2b2 − 16b3; t3 = b0 − 2t5; t2 = 4t7 + 8b3 − b2; t1 = 8b0 + b1 + 4b1 − 2b0;

y1 = 16t1 + t3 + 16t7 − t4 − 8b0; y3 = 16t9 − 8t2 − 2t8 − t9 − 16b1 − b2 − 2b3; y5 = 8t1 + t6 + 16b2 − t4 − 64t5 − 4b3; y7 = t2 + 16t3 + t6 + 16t8 + 64b2 − 2b1;

Computation of S8 · b8 in the MVPU for 16-point DCT computation

t21 = b3 − b6; t20 = b2 + b7; t19 = b0 − b5; t18 = b0 + b1; t17 = b2 − b4; t16 = 4b0 + 2b5 − b6; t15 = b0 − 4b2 − 2b4; t14 = 2b3 + 4b5 − b7; t13 = 2b1 − 4b4 + b5;

t12 = 2b0 − 4b1 − b3; t11 = b4 + 4b6 + 2b7; t10 = b1 + 2b2 − 4b7; t9 = b2 + 4b3 + 2b6; t8 = 16t12 + b0 + 64b4 + 8b6 − 8t20; t7 = 16t11 + 8t18 + 64b3 + b7 − 8b5;

t6 = 8t18 + 8b4 − 16t9 − 64b5 − b6; t5 = 16t13 + b1 − 8t21 − 64b2 − 8b7; t4 = 16t16 + 8t20 + b5 − 64b1 − 8b4; t3 = 16t10 + 8t19 + b2 + 8b3 − 64b6;

t2 = 16t14 + 64b0 + 8b1 + b3 − 8t17; t1 = 16t15 + 8t21 + 64b7 − b4 − 8b5; y1 = 128t18 + 2b0 + b4 − t5 − t6 − t14 − 32b0 − b5;

y3 = t9 + 128t19 + b1 + b3 + 32b5 − t7 − t8 − 2b5; y5 = t1 + t2 + t10 + b5 + 2b6 − 128t21 − 32b6 − b7; y7 = t3 + t4 + b1 + 2b4 − t12 − 128t17 − 32b4 − b7;

y9 = t4 + b0 + 2b3 + 128b3 − t3 − t11 − 32b3 − 128b5 − b6; y11 = t2 + 32b1 + b2 − t1 − t16 − b0 − 2b1 − 128b1 − 128b4;

y13 = t8 + t13 + 128t20 + 2b2 − t7 − 32b2 − b4 − b6; y15 = t6 + t15 + 128b6 + 32b7 − t5 − b2 − b3 − 2b7 − 128b7;

Computation of S16 · b16 in the MVPU for 32-point DCT computation

t108 = b8 + b14; t107 = b0 − b10; t106 = b12 − 8b15; t105 = b8 − b13; t104 = b9 − b15; t103 = b2 − 16b8; t102 = 2b0 + b5; t101 = b0 − 2b14; t100 = b5 − b7;

t99 = 8b7 + b11; t98 = 2b7 − b10; t97 = 32b5 − b13; t96 = b8 − 2b9; t95 = b3 − 8b9; t94 = b10 + 32b13; t93 = b6 + 8b11; t92 = 2b8 − b14; t91 = b8 + b9;

t90 = b4 + 2b12; t89 = b4 − 32b8; t88 = 4b4 − b10; t87 = b1 + 2b3; t86 = b13 + b15; t85 = b1 − 2b4; t84 = 2b1 − b8; t83 = 4b5 − b8; t82 = b5 − 8b14;

t81 = 2b11 + b12; t80 = 8b6 − b13; t79 = b1 + b7; t78 = b2 + 2b10; t77 = b8 − 16b9; t76 = b14 + 2b15; t75 = b6 − b8; t74 = b1 + b15; t73 = b11 − 8b14;

t72 = 16b6 + b7; t71 = 2b6 − b15; t70 = 2b1 − b11; t69 = b3 + 2b4; t68 = b0 − b6; t67 = b6 − 2b7; t66 = b2 + b7; t65 = b7 − 8b9; t64 = b0 − b12;

t63 = b4 − 2b12; t62 = 16b2 − b5; t61 = b6 − b7; t60 = 2b11 − b12; t59 = 4b1 − b3; t58 = 8b3 − b7; t57 = b0 + b14; t56 = b0 + 4b13; t55 = 2b0 + b14;

t54 = t57 − 2b9; t53 = t91 + 2b2; t52 = t55 + 2b12; t51 = 2t70 + b9; t50 = t87 + 4b6; t49 = t61 − 2b13; t48 = b6 − 2b11 − b13; t47 = b2 + 2b4 + b9;

t46 = 4b4 − t90; t45 = t74 + 2b10; t44 = 2b3 + b14 − b5; t43 = b1 + b10 − 2b12; t42 = t99 + 4b11; t41 = t103 − 8b6; t40 = 4b3 − t69 − 2b11;

t39 = 2b3 + b11 − 2t81; t38 = 16b3 + 2b4 − t67; t37 = 2t63 − t60; t36 = 2b2 + 4b5 + 2b13 − b5; t35 = 4b2 + 2b5 + 2b10 − b2; t34 = 2t78 − b10 − 2b13;

t33 = 2b5 + 4b13 − 2b10 − b13; t32 = 8b2 + 64b9 − b10 − 16b13; t31 = t62 − 8t80; t30 = b3 + 4b9 + 2b15 − b14; t29 = 16b7 + 64b12 + b15 − 8b8;

t28 = t56 + 4t84 − 8b6; t27 = 4t66 + 8b9 + 8b14 − b15; t26 = 4t75 + b1 + 8b4 + 8b12; t25 = t58 + 4b4 + 4b9 − 4b7; t24 = 4t85 + 4b0 + b9 − 8b3;

t23 = 4t107 − t65 − 8b1; t22 = t93 + 4b14 − 8b12 − 4b15; t21 = 4t71 + t83 − 8b14; t20 = t77 + 32t85 + 8b0 − 8t76; t19 = t72 + 16t101 + 8b15 − 8b1 − 64b11;

t18 = 8t98 + 16t102 + 8b15 − 64b1 − b13; t17 = 8t82 + 8b0 + 16b10 − t103 − 32b15; t16 = 4t46 + 2t86 + 64b0 − t94 − b3 − 8b3 − 32b7;

t15 = 4t40 + t78 + 32t98 − 2b8 − b11 − 32b15; t14 = 4t37 + 2t100 + 32b0 + b4 − t97 − 64b8; t13 = 4t36 + 32t74 + 2t104 + 64b6 − t105;

t12 = 4t39 + t102 + 2t103 − 32b2 − b12 − 64b15; t11 = 4t33 + 32t91 + t107 + 64b1 − 2t108; t10 = 4t34 + 32t54 + t66 − 2t68;

t9 = 4t35 + 32t61 + 2t79 + b5 + 64b14 − b15; t8 = 2t52 + 2t88 + t95 + 8b13 − 32t33 − 16t85 − 2t89; t7 = 2t38 + t73 + 64b0 + 2b2 + 8b3 + 8b10 − 32t34 − 2t95;

t6 = 32t36 + 2t51 + t63 + 2t80 + 8t106 + 4b8 + 32b12 − 8b5; t5 = 32t35 + 8t42 + 2t50 + 4b15 − t81 − 2t82 − 8b2;

t4 = 32t37 + 2t49 + 4t52 + 16t83 + t85 − 8b6 − 32b6; t3 = 2t45 + 32t46 + 16t56 + b9 − 4t38 − 2t59 − 32b1;

t2 = 32t39 + 2t54 + 4t62 + t93 + 2t106 − 8t108 − 32b14; t1 = 2t53 + 4t87 − 32t40 − 2t99 − 8t104 − 32b9 − 64b10 − b14;

y1 = t5 + 2t11 + t49 + t69 + 4t72 + t108 + 128b0 + 32b12 − 8t24 − 2t24; y3 = t2 + 2t16 + 4t41 + t84 − 2t23 − 8t23 − t47 − t86 − 128b10;

y5 = 2t31 + 64t55 + 4b1 + 2b12 − t4 − t15 − t18 − t30 − 64t105; y7 = t8 + 2t20 + 2t48 + 64t64 + t64 + 128b9 − t9 − t41 − 8t58 − 4b3;

y9 = t7 + t13 + t19 + t102 + 128b14 − 16t25 − 2t43 − t89 − 4b11; y11 = t16 + 2t17 + 8t65 + b4 + 64b5 + 4b6 + 2b7 − t2 − t31 − t51 − 128b8;

y13 = t4 + 8t27 + 2t27 + t44 + b0 + 64b0 + 4b5 + b10 − 2t15 − t96 − 32b1 − 128b2; y15 = t7 + 2t26 + 8t26 + t90 + 64t92 + 2t102 + t104 − 2t13 − t57 − 32b11;

y17 = 2t10 + 8t25 + 2t30 + 16t42 + t68 + t73 − t6 − t45 − 16t59; y19 = 2t14 + t71 + 4t94 − t1 − 8t28 − 2t28 − t43 − 32t76 − t100;

y21 = 2t18 + t32 + 64t67 + b6 + b11 − t3 − t12 − 4t92 − 2t96 − 2b4 − 64b10; y23 = t6 + t10 + t20 + b11 − 2t29 − 2t44 − 64t70 − 64t75 − t88;

y25 = t5 + 2t19 + t29 + 2t47 + 4b12 − t11 − 64t71 − t95 − 64b3 − b13; y27 = t1 + t14 + 2t32 + 64t66 − t17 − t50 − 2t101 − 64b1 − b12 − 128b15;

y29 = t3 + 8t21 + 2t21 + t48 + t101 + b2 − 2t12 − 4t97 − b7 − 64b7 − 32b9; y31 = t8 + 2t9 + 4t77 − 2t22 − 8t22 − t53 − t60 − t79 − 32b3 − 128b15;

Adding pipeline registers in the critical path is the general practice in VLSI design.
However, in the recursive design as in the proposed DCT, the locations of pipeline registers
need to be carefully decided. Furthermore, the pipelining in the MVPU may significantly
increase the silicon area. We could find optimal pipeline locations through precise estima-
tion of propagation delays in the critical path so that area-delay-product can be optimized
and all the output samples can be obtained in the same cycle even in the recursive structure.
Architecture-1 for the eight-point DCT involves four pipeline registers before the MVPU
to reduce the propagation delay, as shown in Figure 1a. In order to obtain all eight DCT
coefficients in the same cycle, four more registers are inserted after the first four adders in
the four-point integer DCT unit, as shown in Figure 1b. Similarly, eight and 16 registers are
located before the MVPU for 16- and 32-point DCTs, respectively. Note that Architecture-1
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involves two pipeline stages for any of the DCT sizes, N = 4, 8, 16, and 32. The array of
AND gates is used to disable the IAU, pipeline registers, and MVPU in the computation of
the DCT of a lower size in order to reduce the power consumption.
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Figure 1. (a) Proposed Architecture-1 for N = 8, 16, and 32. (b) Four-point integer DCT architecture.
(c) Shift-add unit used in (b).

Table 2. Complexity comparison in terms of the number of adders. IAU, input adder unit.

N IAU
MVPU N/2-DCT Total

[12] Figure 1 [12] Figure 1 [12] Figure 1

4 4 10 14

8 8 28 33 14 50 55

16 16 120 112 50 55 186 183

32 32 464 367 186 183 682 582

3.2. Proposed 1D DCT Architecture-2

The proposed Architecture-2 is an extension of Architecture-1, as shown in Figure 2,
which incorporates coarse-grained reconfiguration with additional hardware units to
maintain the same throughput rate for all the transform lengths. It uses an extra (N/2)-
point architecture over the structure of Figure 1a, which takes the input [x(N/2),...,x(N −
1)]. The output of this additional (N/2)-point architecture is multiplexed with the output
of the MVPU by MUX Unit-2. The 32-point architecture can compute one 32-point DCT, two
16-point DCTs, four 8-point DCTs, and eight 4-point DCTs, while the throughput remains
the same as the 32 DCT coefficients per cycle irrespective of the desired transform size.
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AND-Gates 
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Figure 2. Proposed Architecture-2 for N = 8, 16, and 32. The four-point integer DCT architecture is
same as the one shown in Figure 1b.

3.3. Proposed 1D DCT Architecture-3

Figure 3 shows the proposed Architecture-3 for 1D DCT. It incorporates a fine-grained
reconfiguration for different transform lengths. For the computation of the N-point DCT,
the (N/2)-point integer DCT unit computes Equation (2a), whereas the configurable
shift-add units (CSAU) and the output adder unit (OAU) perform the computation of
(2b). In order to reuse this architecture for the computation of the (N/2)-point DCT,
the (N/2)-point integer DCT unit computes an (N/2)-point DCT, and the CSAU and
OAU compute the other (N/2)-point DCT providing two (N/2)-point DCTs. Similarly,
for the computation of the (N/4)-point DCT, the (N/2)-point DCT unit computes two
(N/4)-point DCTs, and the CSAU and OAU compute the other two (N/4)-point DCTs,
producing four (N/4)-point DCTs. Figure 4a shows the structure of CSAU-1, which is
one out of four CSAUs used for the eight-point DCT structure. For the computation of
the four-point DCT, CSAU-1 multiplies x(5) with [64, 36, 64, 83] in the second column of
C4 (ignoring the signs of the coefficients). This is part of the four-point DCT computation
of [x(4),x(5),x(6),x(7)]. For the computation of the eight-point DCT, CSAU-1 multiplies
b(1) with [75, 18, 89, 50], which is the second column of S4. As shown in Figure 4a, the
CSAU can be designed based on the SAU with several MUXes; however, it does not need
any additional adder. Each CSAU is designed differently so that the last four MUXes
have different combinations of coefficients corresponding to the desired configuration.
Since the signs of the coefficients in each configuration may also be different, the OAU is
implemented using add/subunits instead of adders or subtractors, as shown in Figure 4b.
When the 16-point DCT structure is to be used for the computation of the four-point DCT,
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the intermediate results of Stage-2 in the three-stage adder-tree in the OAU are directed
to the output y(i), unlike the computation for eight- and 16-point DCTs. Therefore, the
MUX Unit-3, which involves an array of 2:1 MUXes, is used to select the desired outputs of
Stage-2 or outputs of Stage-3. Similarly, a MUX Unit-3 consisting of 3:1 MUXes is used to
select the desired outputs of Stages-2, 3, and 4 for the 32-point DCT structure. Since MUX
Unit-3 is not required for the eight-point DCT structure, it is indicated by dashed lines as
shown in Figure 3.
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Figure 3. Proposed Architecture-3 for N = 8, 16, and 32. The number of output samples of the output
adder unit (OAU) is N/2, N, and 3N/2 for N = 8, 16, and 32, respectively. The four-point integer
DCT architecture is the same as the one shown in Figure 1b.
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Figure 4. (a) Configurable Shift-Add Unit (CSAU)-1 for the eight-point DCT structure. (b) The OAU for the eight-point
DCT structure. Input of the OAU (a, b, c) means the output of CSAU-a where b and c are used for the four- or eight-point
DCT computations according to sel, respectively.

4. High-Throughput 2D Integer DCT Architecture

Figure 5 shows the proposed architecture for 2D integer DCT using N-point recon-
figurable 1D integer DCTs. It consists of two sections corresponding to two stages of
2D DCT computation by row-column decomposition based on the separable property of
2D DCT. The input section of the proposed structure consists of two N-point 1D integer
DCTs, to compute the 1D DCT of all the N columns of the N × N input matrix. The first
N-point DCT unit (S1-A) computes the DCTs of the first (N/2) columns of the N × N
input matrix, while the second N-point DCT unit (S1-B) computes the DCTs of the last
(N/2) columns of the input matrix. A transposition unit consisting of four (N/2)× (N/2)
buffers is employed to reorder the DCT coefficients of different columns to be fed to the
output section row-wise. The output section consists of two 1D parallel N-point DCT
units, to compute the 1D DCT of all the N rows of the N × N intermediate output matrix.
The first N-point DCT unit (S2-A) computes the DCT of even rows of the intermediate
matrix (available from SR_Even_A and SR_Even_B). The second N-point DCT unit (S2-B)
computes the DCT of the odd rows in the intermediate matrix (available from SR_Odd_A
and SR_Odd_B).

In each cycle, two columns of the N × N input matrix x are fed to the input section of
the proposed 2D DCT architecture as inputs. For example, if Column-0 and column-(N/2)
of the input matrix are fed, respectively, to the DCT units S1-A and S1-B in the input section
in the current clock cycle, then Column-1 and column-(N/2 + 1) are fed concurrently to
S1-A and S1-B, respectively, in the next clock cycle. Hence, the entire N × N input matrix is
fed to the proposed architecture in N/2 consecutive clock cycles. The first two rows of 2D
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DCT from the output section are available after (N/2 + 2) clock cycles where N/2 clock
cycles are for transposition and two clock cycles for the input and output sections.
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Figure 5. Proposed architecture for the 2D integer DCT of size N × N.

In every N/2 cycle, the proposed 2D DCT architecture can process a new N × N input
matrix, resulting in a throughput rate of 2N DCT coefficients per clock cycle. Therefore,
the 2D DCT architecture using 32-point Architecture-1 has 8, 16, 32, and 64 coefficients per
clock cycle for the 4-, 8-, 16-, and 32-point DCT computations, respectively. Furthermore,
the 2D DCT architecture employing 32-point Architecture-2 or 3 can produce 64 DCT
coefficients per clock cycle irrespective of the transform size.

The conventional way to obtain double the throughput is to use double the hardware
comprised of two DCT units and the transposition buffers. However, the proposed 2D
DCT transposition technique does not increase the transposition buffer size to increase
the throughput. The 32 × 32 transposition buffer occupies a 2.1 times larger area than the
32-point integer DCT unit; therefore, the savings of the transposition buffer result in the
significant savings in the total silicon area.

5. Implementation Results

The proposed 2D architectures using 32-point 1D Architectures-1, -2, and -3 are coded
in VHDL and synthesized by Synopsys Design Compiler using the TSMC 90nm CMOS
library. Table 3 lists the gate count, maximum usable frequency (MUF), samples/cycle,
throughput (TPT), latency, power consumption, and energy per sample (EPS) of the pro-
posed 2D architectures and existing architectures [6,7,11–13]. Throughput per second per
gate (TSG) (Ksamples/s/gate) is also listed in the last column in Table 3. Architecture-
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n in Table 3 means 2D architectures based on conventional transposition by a 32 × 32
transposition buffer and two proposed 1D architectures-n. The architecture-n† means 2D
architectures using four 1D architectures-n and four (N/2)× (N/2) transposition buffers
as proposed in Section 4. Existing designs [6,7,13] and proposed Architectures-1 and -1†

have different throughputs depending on the transform length. In Table 3, note that the
TPT and TSG values of these designs were calculated based on the maximum throughput in
the case of the 32-point DCT computation, and we specifically indicated ∗ with the values.
Architectures-1 and 2 can have a 400 MHz MUF, whereas the MUF of Architecture-3 is
found to be 380 MHz. Architecture-2† offers the smallest EPS among the proposed and
existing architectures, which have a constant throughput. The throughput of Architecture-1
varies with the DCT size; however, Architectures-2 and -3 yield 32 samples in every cycle,
resulting in 12.80 and 12.16 giga samples per second (GSPS) for all different DCT sizes.
The 32-point architecture-n† uses four 16 × 16 transposition buffers, which involves the
same area as 32 × 32 transposition buffers used in 32-point architecture-n, but has dou-
ble the throughput of 64 samples per cycle and half the transposition latency. Therefore,
Architectures-2† and -3† have 25.60 and 24.33 GSPS for all the transform sizes. The TSGs of
the 2D architectures using the proposed Architecture-1 are the best for the computation
of the 32-point DCT, but decrease for DCTs of lower sizes. The 2D architectures using
1D Architecture-3 offer better TSGs than those using 1D Architecture-2, but have a lower
throughput. Architecture-n† provides 1.32 times better TSG than architecture-n on average
for 32-point DCT computations of Architectures 1, 2, and 3. The proposed 2D architectures
offer higher throughput, as well as lower latencies and, accordingly, higher TSGs than the
existing 2D architectures.

Table 3. Comparison of different 2D integer DCT architectures.

Design Tech. Gates MUF Samples/ TPT Latency Power EPS TSG
(nm) (K) (MHz) Cycle (GSPS) (mW) (mW×ns) (KSPSPG)

Zhao et al. [6] 45 205 333 32 4.54 * 38 − − 22.09 *

Zhu et al. [7] 90 412 311 4/8/16/32 9.95 * 10/14/22/38 30.50 3.06 24.13 *

Meher et al. [12] 90 463 310 32 9.92 32 86.27 8.69 21.41

Sun et al. [11] 90 155 312 4 1.24 − − − 8.04

Park et al. [13] 90 402 336 4/8/16/32 10.77 * 4/8/16/32 69.05 6.40 26.77 *

Architecture-1 90 310 400 4/8/16/32 12.80 * 6/10/18/34 39.15 3.05 41.20 *

Architecture-2 90 423 400 32 12.80 6/10/18/34 68.07 5.31 30.26

Architecture-3 90 367 380 32 12.16 6/10/18/34 71.65 5.88 33.08

Architecture-1† 90 453 400 8/16/32/64 25.60 * 4/6/10/18 74.82 2.92 56.43 *

Architecture-2† 90 662 400 64 25.60 4/6/10/18 127.62 4.98 38.66

Architecture-3† 90 561 380 64 24.33 4/6/10/18 138.23 5.68 43.34
MUF: maximum usable frequency. TPT: throughput. EPS: energy per sample. TSG: TPT per second per gate. KSPSPG: Ksamples/s/gate.
For designs where the throughput varies with the transform length, the maximum throughput is shown in the TPT and TSG columns, with
an * next to the value.

6. Summary and Conclusions

In this paper, we propose area-time efficient architectures for 2D integer DCT to
be used in HEVC. Three reconfigurable architectures that support the computation of
integer DCT of different sizes are proposed. We propose a novel transposition buffer and a
2D DCT architecture, which provides double the throughput and half the transposition
latency without increasing the size of the transposition buffer. Implementation results show
that the proposed architectures provide more throughput per unit area than the existing
integer DCT architectures for HEVC. The DCT is a basic transform that can be used for the
implementation of other widely used transforms such as discrete Fourier transform (DFT),
discrete Hartley transform (DHT), and discrete sine transform (DST).
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