
electronics

Article

Scalable, High-Performance, and Generalized Subtree Data
Anonymization Approach for Apache Spark

Sibghat Ullah Bazai , Julian Jang-Jaccard * and Hooman Alavizadeh

����������
�������

Citation: Bazai, S.U.; Jang-Jaccard, J.;

Alavizadeh, H. Scalable,

High-Performance and Generalized

Subtree Data Anonymization

Approach for Apache Spark.

Electronics 2021, 10, 589.

http://doi.org/10.3390/

electronics10050589

Academic Editor: Jordi Guitart

Received: 5 December 2020

Accepted: 25 February 2021

Published: 3 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Cybersecurity Lab, Computer Science/Information Technology, Massey University,
Auckland 0632, New Zealand; s.bazai@massey.ac.nz (S.U.B.); h.alavizadeh@massey.ac.nz (H.A.)
* Correspondence: j.jang-jaccard@massey.ac.nz

Abstract: Data anonymization strategies such as subtree generalization have been hailed as tech-
niques that provide a more efficient generalization strategy compared to full-tree generalization
counterparts. Many subtree-based generalizations strategies (e.g., top-down, bottom-up, and hybrid)
have been implemented on the MapReduce platform to take advantage of scalability and parallelism.
However, MapReduce inherent lack support for iteration intensive algorithm implementation such as
subtree generalization. This paper proposes Distributed Dataset (RDD)-based implementation for a
subtree-based data anonymization technique for Apache Spark to address the issues associated with
MapReduce-based counterparts. We describe our RDDs-based approach that offers effective partition
management, improved memory usage that uses cache for frequently referenced intermediate values,
and enhanced iteration support. Our experimental results provide high performance compared to
the existing state-of-the-art privacy preserving approaches and ensure data utility and privacy levels
required for any competitive data anonymization techniques.

Keywords: Spark; subtree generalization; privacy; data anonymization; Resilient Distributed
Dataset (RDD)

1. Introduction

Privacy preservation is an ongoing and challenging issue that impacts people’s lives
on a daily basis. This has inspired and motivated many computer science researchers to
provide information privacy preservation approaches such as access restriction, encryption,
noise induction, and data anonymization [1–3]. The access restriction approach only allows
authorized entities to access data, while the encryption approach uses ciphers to protect
data privacy. The noise induction approach modifies the original data with additional
noise to protect privacy. However, Anonymization approaches such as k-Anonymization
generalized or suppresses the sensitive information from the data to provide high utility
and more privacy.

k-anonymization-based subtree generalization provides high data utility and better pri-
vacy strategies for single dimensional data when compared to full-tree generalization [4–6].
The iterative nature of subtree generalization is well suited to find a more efficient at-
tribute generalization strategy. However, the complexity of execution time grows on each
additional iteration increase for finding the optimal generalization level. The cost of compu-
tation will increase more when other aspects of anonymization are involved, for example,
a k-group size, the number of attributes, and generalization hierarchy’s tree.

Many solutions have been proposed for scalable big data anonymization [7–10]. Exist-
ing approaches of subtree data anonymization are mostly based on MapReduce platforms
to take advantage of the scalability and cost-efficiency [11–13]. The MapReduce paradigm
typically relies on the processing of two primary functions map and reduces where the
former works as a sub-unit of data processing while the latter accumulates and produces
the final data analytic results. Without appropriate support for algorithms that runs an
extensive iteration such as subtree, the maps and reducers require to communicate many

Electronics 2021, 10, 589. https://doi.org/10.3390/electronics10050589 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3042-5977
https://orcid.org/0000-0002-1002-057X
https://orcid.org/0000-0002-0033-6706
https://doi.org/10.3390/electronics10050589
https://doi.org/10.3390/electronics10050589
https://doi.org/10.3390/electronics10050589
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10050589
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/5/589?type=check_update&version=2

Electronics 2021, 10, 589 2 of 28

times over, often sequentially and also fetching data from disk, which creates tremendous
performance overheads [14,15].

An alternative approach, Spark [16] is used for addressing the overheads associated
with MapReduce counterparts have been proposed, often comparing the performance
results on both platforms [14,15,17,18]. In-memory-based Spark’s performance has well
been documented and proven effective for many iteration intensive algorithms such as seen
in [19] where it demonstrated 10 times faster performance gain. Other approaches [14,15]
also demonstrate the competitive performance advantage of Spark.

Close to our work, several proposals have emerged to illustrate the use of Spark
for data anonymization techniques. For example, Ref [20] proposed a distributed Top-
Down Specialization (TDS) algorithm that can work on Spark, and [21,22] proposed several
sensitively-based multi-dimension data anonymization strategies to use Spark platform Sub
tree anonymization. Anonylitics [23] used Spark’s default iteration support to implement
data anonymization and PRIMA [24] proposes a Spark anonymization strategy to define
the utility and generalization level rules for limiting data loss. Although these existing
proposals offer interesting aspects of the k-anonymity-based anonymization strategy, they
neither provide any guidelines and strategies as to how different types of subtree data
anonymization approaches can be best implemented using Spark as a generic framework
nor provide any implications of privacy and utility measure.

In this paper, we propose a generic framework for implementing subtree-based data
anonymization techniques on Apache Spark. The main contributions of this paper are
as follows:

• We propose a Resilient Distributed Dataset (RDD)-based subtree generalization imple-
mentation strategy for Apache Spark. Our novel approach resolves the existing issues
and can provide data anonymization outcomes regardless of any specific subtree
implementation approaches (e.g., top-down, bottom-up, or hybrid);

• We clearly demonstrate how our proposal can reduce the complexity of operations
and improve performance by the use of effective partition, improved memory and
cache management for different types of intermediate values, and enhanced itera-
tion support;

• We show that the proposed approach offers high scalability and performance through
a better selection of subtree generalization process and data partitioning compared
to the state-of-the-art similar approaches. We achieve high privacy and appropriate
data utility by taking into account the data distribution and data processing using
in-memory computation.

• Our intensive experiments results demonstrate the compatibility and application of
our proposal on various datasets for privacy protection and high data utility. Our
approach also outperforms the existing Spark-based approaches by providing the
same privacy with minimum privacy loss.

The rest of this paper is organized as follows. Section 2 provides the related work and
highlights the pros and cons of each similar work. Section 3 provides the background and
definition used throughout the paper and discusses the details of the issues involved in
existing subtree generalizations implemented in MapReduce. Section 4 describes the details
of our proposal and clearly illustrates how our proposal can resolve the issues associated
with the MapReduce-based approaches. In Section 5, we provide our experimental results
including setup, configuration, and discuss the observations of the results. Finally, we
conclude the paper in Section 6 and provide some potential future directions.

2. Related Work

Distributed anonymization methods are used to address the anonymization scalability.
Most distributed algorithms presented so far aimed at meeting k-anonymity-based privacy
models using distributed programming frameworks such as MapReduce. This motivated
the authors of the present paper to develop a distributed method for satisfaction of privacy

Electronics 2021, 10, 589 3 of 28

and provide high data utility using subtree-based generalization that provides scalability
and high-performance anonymization.

Subtree-based generalization can be broadly categorized into two kinds: Top-Down
Specialization (TDS) [11] and Bottom-Up Generalization (BUG) [12]. In the TDS approach,
the generalization typically starts from the topmost domain values in the taxonomy trees of
attributes towards the bottom as an iterative process. In contrast, the techniques based on
BUG generalize data from the bottom of the taxonomy tree towards its top, also iteratively.
A hybrid approach that combines both TDS and BUG has been proposed [13]. The majority
of these approaches so far have been implemented as sequential MapReduce jobs where
the output of each MapReduce job is used as an input for subsequent steps until the
anonymization constraints met. Such sequential execution of jobs can attribute significant
performance overheads.

Several Spark-based approaches were proposed to address the concerns associated
with MapReduce-based data anonymization strategies. Zaharia et al. [16] illustrated a
competitive performance advantage of in-memory-based Spark operations compared to
disk-based MapReduce execution. Their results demonstrated that Spark’s implementation
of iterative operations was 100 times faster than it was implemented under the MapReduce
platform as Spark provides better parallelism by allowing many iterative tasks running
at the same time often accessing memory instead of disks [14,15]. The authors in [14]
provided benchmarking results using Word Count, k-means, and PageRank where Spark
outperformed over MapReduce especially on iterative tasks. Their work stated that the
performance gain of Spark was due to Resilient Distributed Dataset (RDD) caching that
reduced the overheads associated with disk and CPU. Maillo et al. [15] demonstrated the
performance advantage of Apache Spark on iterative tasks based on K-nearest Neighbour
(KNN) using the datasets which contained 10 million instances.

Sopaoglu and Abul [20] developed a distributed TDS algorithm to provide k-anonymity
that works for Apache Spark. The main focus of their study was to improve the scalability
aspect of the original TDS algorithm [11] by offering improved partition management.
Using the adult dataset, they evaluated that the scalability and run-time were significantly
improved. Al-zobbi et al. [21,22] proposed several sensitivity-based multi-dimension
anonymization strategies that could produce different levels of information obscurity
depends on the different access privilege levels of the users (i.e., more customized data
generalization result suitable for each user). To understand the roles and responsibility of
the user accessing the system, the proposal used a User Defined Function (UDF) of Spark
which allows the developer of Spark to be able to extend the vocabulary of default Spark
SQL. Their proposal also illustrated that it was possible to reduce the data transmission
time between memory and disks by serializing data with Spark RDD.

To address the overheads associated with MapReduce, several Spark-based approaches
have been proposed in recent years [18,25–28]. In [29], the authors proposed the INCOG-
NITO framework for full-domain generalization using Spark RDDs. Although their ex-
periential results illustrate the improvement in both scalability and execution efficiency,
they did not provide any insights into privacy and utility trade-offs. Anonylitics [23] pro-
vides Spark’s default iteration-based data anonymization implementation. The approach
provides large-scale data anonymization; however, their approach does not address the
potential memory exhaustion unable to accommodate an increasing number of interme-
diate data produced as the number of iterations increases. PRIMA [24] proposes a data
anonymization strategy for Apache Spark with Optimal Lattice Anonymization (OLA).
OLA provides data utility and generalization level rules in order to limit the data utility
loss. However, the proposed approach does not provide performance comparison and
privacy validation with existing approaches.

Somewhat similar but in a different realm of data anonymization technique using
differential privacy [30] for Apache Spark, Gao et al. [26,31] proposed several techniques to
anonymize k-means clustering algorithm on Spark platform. In their approaches, a new
optimal partition mechanism is used to determine the dynamic allocation of datasets for

Electronics 2021, 10, 589 4 of 28

fast processing on the Spark platform. Different partitions containing different classes of
datasets then are applied with noises based on Laplace calculation in the reduce phase. A
formal privacy proof meeting ε-differential privacy requirement is described. Yin et al. [32]
also proposed another approach for data anonymization that uses the Map-Reduce model
to control the parallel distribution of k-means clustering and at the same time uses Laplace
to implement differential privacy protection. In [33], the authors proposed a more holistic
approach to produce differentially private datasets using a synthesizing program that can
run on data-parallel analytics frameworks such as Apache Spark. Unlike these existing
differential privacy-based approaches where the main focus of proposals is with providing
a more solid theoretical foundation for privacy guarantee, our work focus on a mechanism
to provide privacy protection of a published data.

3. Subtree Generalization

In this section, we describe the basic symbols and their descriptions used in this paper
(see Table 1) together with the general algorithm involved in a subtree generalization.

Table 1. Symbols and Descriptions.

Symbol Description Reference

D Dataset Algorithm 1
D∗ Anonymized Dataset Algorithm 1
r Record Algorithms 1–4

SA Sensitive Attributes Algorithm 1
RDD_in Input_RDD Algorithm 2
RDD∗ Anonymized_RDD Algorithm 4
|D| Total number of Record Algorithm 4
n nth Record Algorithms 1–4
r∗ Anonymized Record Algorithm 4
AL Anonymization Level Algorithms 3 and 4
Cr Record count Algorithms 2 and 3
C∗r Anonymized record count Algorithm 4
Av Attribute Value Section 4.2
TT Taxonomy Tree Algorithm 3
k Anonymity Parameter Algorithm 4

QID Quasi-identifiers set Algorithm 4
qid Quasi-identifier Section 4.2
CA Child attribute Algorithm 3
PA Parent attribute Algorithm 3

DOM Domain value in TT Algorithm 3

3.1. Preliminaries

Let define a dataset D = {r0, r1, ..., rn−1} as a set of data records ri where 0 ≤ i <
n and |D|=n denotes the total number of records in a dataset. Then, a record r ∈ D
can be constructed by a set of attributes A={a1, a2, ..., am} and each record consists of
multiple attribute values r=(av1, av2, ..., avm) where aj and avj denote the jth attribute and
the attribute values of a record respectively, where 0 < j ≤ m, and m denotes the number
of attributes in the dataset D.

3.2. Subtree Generalization Algorithm

In this section, we describe a generic subtree generalization algorithm using a sam-
ple dataset.

As mentioned, Figure 1 represents the example of Taxonomy Trees (TT) based on
Gender, Age, Job, and Education of the census dataset [34]. Each TT includes roots (parent
nodes), middle nodes (in between the parent and child nodes but most often act the same
as the parent nodes), and leaves (which are mostly child nodes). In a subtree scheme,
generalizations are applied for the parent nodes if any child nodes are generalized. For
example, in Figure 1b, if the ‘Dancer’ child node is generalized to its parent node ‘Artist’,

Electronics 2021, 10, 589 5 of 28

then another child node ‘Writer’ also needs to be generalized to ’Artist’. Please note that
‘Engineer’ and ‘Lawyer’ child nodes retain their values as the dimension of their parent
node “Professional” is not affected. The root (parent) node of all taxonomy trees is often
called ‘Any’.

Figure 1. Examples of Taxonomy Trees.

Subtree generalizes data by applying one level of generalization at a time on an
attribute by converting child node to parent node. The Subtree generalization steps are
presented in Algorithm 1. The iteration starts from the child level. Then, at each step, a
specific value (i.e., child) is generalized to a general value (i.e., parent) for an attribute
within a QID. This process is repeated until the highest level of generalization violates
k-anonymity rule [35]. Table 2 shows the original dataset along with the count of each
record (i.e., the frequency of the same record appeared) in the database. Table 3 is produced
from Table 2 as a result of a generalization level applied based on Taxonomy Trees depicted
in Figure 1. After the first level of generalization, we observe that the attribute of Education
for the child nodes “9th” and “10th” are generalized to “Junior-Secondary”. Similarly,
“Masters” and “Doctorate” child nodes are generalized to “Post-grad”, and other child
nodes remain the same in this round. Finally, this iteration process is repeated until all
QID meet the final required anonymization level, as represented in Table 4.

Algorithm 1: Subtree Generalization Algorithm
Input: D
Output: D∗

1 begin
2 QID, SA← r for i = 1 to n in D
3 Compare k with count of r
4 Compare Cuti score for each QIDi select highest
5 Replace QIDi child to QIDi parent in TT for Cuti score
6 Count the r with updated value
7 Repeat step 3 to 6 until k is greater than the number of anonymized records
8 return (D∗)
9 end

Electronics 2021, 10, 589 6 of 28

Table 2. A sample dataset.

Education Gender Age Income Count

9th M 30 ≤50 k 3
10th M 32 ≤50 k 4
11th M 35 >50 k 2
11th M 35 ≤50 k 3
12th F 37 >50 k 3
12th F 37 ≤50 k 1

Bachelors F 42 >50 k 4
Bachelors F 42 ≤50 k 2
Bachelors F 44 >50 k 4
Masters M 44 >50 k 4
Masters F 44 >50 k 3

Doctorate F 44 >50 k 1

Table 3. The result of the first generalization applied to the original dataset.

Education Gender Age Income Count

Junior-Secondary M 30 ≤50 k 3
Junior-Secondary M 32 ≤50 k 4

11th M 35 >50 k 2
11th M 35 ≤50 k 3
12th F 37 >50 k 3
12th F 37 ≤50 k 1

Bachelors F 42 >50 k 4
Bachelors F 42 ≤50 k 2
Bachelors F 44 >50 k 4
Post-grad M 44 >50 k 4
Post-grad F 44 >50 k 3
Post-grad F 44 >50 k 1

Table 4. Fully anonymized dataset applied to the original dataset.

Education Gender Age Income Count

Junior-Secondary M 30–33 ≤50 k 7
11th M 35 >50 k 5
12th F 37 >50 k 4

Bachelors F 40–45 >50 k 10
Post-grad Any 44 >5 0k 8

The overall subtree generalization algorithm is described in Algorithm 1. Each round
of iteration includes four major steps: (i) Comparing the k-anonymity level with the number
of records generalized, (ii) Calculating the data utility and privacy scores based on [6] for
all QIDs, (iii) Finding the best generalization level by comparing the score values for all
QIDs and decide the next generalization level based on the highest score of a QID, and
(iv) Applying the highest score of the QID and apply the generalization to all QIDs in the
same Equivalence Class.

3.3. Review of Subtree Implementation in MapReduce

In this section, we review the subtree implementation based on the MapReduce
platform and extensively discuss the main limitations involved. There are four main phases
in a typical subtree implementation that use MapReduce platform [12] (shown in Figure 1).
MapReduce jobs contained in these four phases are coordinated together to accomplish the
subtree anonymization. The description for each of the four main phases is as follows:

Electronics 2021, 10, 589 7 of 28

(1) Partition MapReduce Job: this phase involves dividing the original datasets into mul-
tiple chunks (i.e., partitions) in which each chunk contains a smaller portion of the
original datasets.

(2) MapReduce Job Intermediate Subtree: This phase applies data anonymization to each
chunk in parallel resulting in producing intermediate anonymized results.

(3) MapReduce Job Combiner Subtree Result: In this phase, MapReduce jobs combine all
intermediate anonymized results to form an intermediate anonymized dataset.

(4) MapReduce Job Final Subtree: In this phase, the k-anonymity for the complete dataset is vali-
dated using the execution of two MapReduce jobs on the intermediate anonymized datas-
ets.

The bold solid arrow lines represented in Figure 2 indicate how parallelism works in
the MapReduce platform. It shows the timeline of the parallel processing for multiple
MapReduce jobs which are executed in parallel on each node to process the intermediate
data. The gray solid arrow lines show the MapReduce platform execution flow from map-
ping intermediate data to reducing phase while the dashed arrow lines describe the data
flow from dispatching Anonymization Level into a cache for updating k at each iteration
MapReduce round.

MapReduce Job Final Subtree

MapReduce Job Combiner Subtree results

MapReduce Job Intermediate Subtree

Partition MapReduce Job

Intermediate Data

P
ar

ti
ti

o
n

 M
ap

Input Data

P
ar

ti
ti

o
n

R
e

d
u

ce
r

Intermediate
Data

A
n

o
n

ym
it

y
M

ap

Partition 1

A
n

o
n

ym
it

y
R

e
d

u
ce

r

Intermediate
Data

A
n

o
n

ym
it

y
M

ap

Partition 2

A
n

o
n

ym
it

y
R

e
d

u
ce

r

Intermediate
Data

A
n

o
n

ym
it

y
M

apPartition n
A

n
o

n
ym

it
y

R
e

d
u

ce
r

Partial Anonymized
Data 1

Partial Anonymized
Data 2

Partial Anonymized
Data n

P
artitio

n
 re

su
lts

co
m

b
in

e
r M

ap

P
artitio

n
 re

su
lts

co
m

b
in

e
r R

e
d

u
ce

r

Intermediate
DataPartial

Anonymized
Data

A
n

o
n

ym
ity

M
ap

A
n

o
n

ym
ity

R
e

d
u

ce
r

Intermediate
Data

Anonymized
Data

Figure 2. Subtree data-flow diagram in the MapReduce platform.

However, we identify the following architectural limitations of the MapReduce plat-
form for implementing the subtree anonymization algorithm. These include the issues
associated with a partition, memory, and iteration management. We argue that these
limitations create execution complexity and performance degradation in various stages.
We discuss these problems in detail in the following sections.

3.3.1. Partition

Processing data in MapReduce requires a map task to process a portion of the input
data by assigning key-value pairs followed by generating intermediate data. The interme-
diate data is stored in a local disk of each executor node after applying the hash function.
The hash applied to each partition ensures that the output of a map task is arranged using

Electronics 2021, 10, 589 8 of 28

the sort and shuffle process. This hash order ensures reducers can access their respective
key-value pairs based on intermediate data locality [36].

An uneven hash partitioning of intermediate values may create skew data in multiple
places. For instance, a node that contains a proportionally larger number of records than
other nodes would result in tuple skewness [11]. As a consequence, a reducer coordinating
these multiple nodes to process the outcomes now will have to wait for a significant
time until the node containing the larger number of records completes. Similarly, key
skewness [37] may happen when there is a big difference in the generalization levels being
applied to different groups of attributes e.g., applying a single generalization level versus
multiple generalization levels. This phenomenon would most likely happen more often
when the k-group size is larger (e.g., there are more attributes).

To put more formally, let n be the number of tuples and m be the number of attributes
in a dataset D, and let s and t represent the number of mapper and reducers, respectively.
Then, mapper produces m + 1 key-value pairs which yields O(1) space and O(m ∗ n/s)
time complexity [38]. However, the reducer yields O(1) and O(m/k ∗ n/t) for space and
time complexities respectively, where k denotes a k group size. The increase in s causes
fewer n, which reduces the computing time for the mapper process, and by increasing the
number of mappers (s), we get better big O complexity because m ∗ n is divided by the
number of mappers [12,39].

3.3.2. Memory

As a mapper loads the input data from disk to memory (of the execution node), the
results (i.e., intermediate data) are transferred and stored from the memory to the disk (of
the same node). The reducer loads the intermediate data into the memory again (from
the disk) of the execution node where the reducer runs on to process and subsequently
store the results back to the disk [36]. Without the support of cache, any values that are
produced in different stages (i.e., input, intermediate, or output) are stored in the disk and
accessed each time the read/write of these values are required. This architectural design of
MapReduce adds an excess overhead for I/O operations as well as demands for a larger
storage capacity. We will put this more formally. Let subtree uses NIt for non-iterative jobs,
and It for iterative jobs to convert dataset to anonymized data. J represents a MapReduce
job, every J reads R times from the disk and W times writes on disk. I represents the
number of iterations needed for each J. Then, I depends on multiple factors including
the number of attributes, k group size, and generalization hierarchy. We use the following
equation to calculate the total number of R and W operations in MapReduce subtree (ST).

ST(R, W) =

[
N

∑
J=1

J · (W + R)

]
︸ ︷︷ ︸

NIt

+

[
M

∑
J=1

J · I · (W + R)

]
︸ ︷︷ ︸

It

(1)

The anonymization process causes both more execution time and complexity especially
in the reducer phase while processing intermediate anonymized datasets. The worst case
of complexity in the reducer phase can be calculated as:

O
((

m
k ∗ GL

)2

.log
(

m
k ∗ GL

))

In the meantime, the space complexity of the reducer phase can be formulated as:

O
(

n
k ∗ GL

)2

,

where GL denotes generalization level in k-group.

Electronics 2021, 10, 589 9 of 28

3.3.3. Iteration

We argue that there are two architectural design principles of the MapReduce platform
that create significant overheads for any iteration tasks. The first one is related to the I/O
principle where any intermediate results have to be written to disk and subsequently read
by the executor memory as we discussed in Section 3.3.2. The second one is related to the
data locality principle where any data processing must be done on the same cluster node
which holds the data to be processed. As a consequence, the result of the computation
process also has to be saved in the same cluster node. The problem arises when the data
read is required by other cluster nodes. In this case, the message exchange is required
over the network which could cause noticeable delay and will be multiplied by each
iteration process.

With the disk I/O-based operation and data locality principles, we argue that any
algorithm that involves intensive iterations such as the subtree generalization can cause
significant overheads at multiple places such as at Disk I/O, Network, and Scheduling [40].

Disk I/O overhead: Significant I/O overheads may occur at many different stages of
subtree generalization where the stage involves an intensive iteration such as applying
generalization levels for attributes, calculating privacy and utility scores, finding the most
optimal generalization level, and re-applying the generalization based on the optimal
generalization level.

Network Overhead: The anonymization steps in MapReduce require to use of the
network to exchange the intermediate data among the cluster nodes. In this case, the
network overhead may be created, as the various intermediate data generated by the
iterative tasks may need to be transferred to the other cluster nodes multiple times. This
problem may get worse by any network delay and consequently is considered an expensive
task causing a significant delay in the iteration process.

Scheduling Synchronization Overhead: Assume a situation in which there are two map-
pers with different workloads and one mapper takes a significantly longer time to complete.
In this case, the reducer processing the results of these two mappers needs to wait until both
mappers complete their jobs. This is referred to as scheduling synchronization. However,
if there are many mappers in iterations where the difference in the workloads are observed,
the scheduling synchronization overhead can be increased as the number of imbalances
across mappers happens.

4. Our Proposal

In this section, we provide a detailed description of our proposed approach for Spark-
based subtree anonymization. Our proposal consists of three phases, where each phase
output is required as an input for the next phase. We inherit the application of Spark Re-
silient Distributed Dataset (RDD) design and data partitioning mechanism for our approach
and describe the step by step data flow to address the concerns discussed in Section 3.3. We
robust our approach by segregating the computation of data anonymization using Figure 3
illustration. We discuss the details of each phase and the specific improvements we have
made to resolve MapReduce-based issues in the following three phases:

Electronics 2021, 10, 589 10 of 28

Figure 3. Proposed Spark subtree model.

4.1. Phase 1—Initialization

This phase ensures that each RDD partition contains the optimal number of records
without duplication to provide a balanced workload of each partition. The original data
records are counted and then assigned with a frequency value based on the times of
appearance of that specific record in the whole dataset. we increase the stability by using
the total record count approach to address both tuple and key skewness problems discussed
in Section 3.3.1. In this phase, we provide new partition management that can avoid both
tuple skewness and key skewness. The following steps detail our partition strategy. With
roughly the equal number of records contained in each RDD partition, each partition
executes in parallel by taking approximately a similar processing time.

• To avoid the tuple skewness, we first count the total number of records from the
input data then divide the records according to the number of partitions so that each
partition contains roughly a similar number of records.

• To avoid the key skewness, we count the duplicate records that appear in multiple
partitions. Their frequency is recorded in one partition and the duplicated records
from other partitions are removed.

• After key skewness is addressed by the above step, we count the number of records
from each partition again (as some duplicate records removed) and move the records
across partitions so that each partition contains a similar number of records.

Electronics 2021, 10, 589 11 of 28

We present this initialization step involving efficient partition in Algorithm 2. In
Step 2, the “partition factor” indicates the variable that contains the number of records and
the capability of the node. Step 3 uses Map_RDD to transform the input RDD_in as a key,
and the value showing the key-value pairs used to process the data such as (r,Cr), where
r represents records and Cr denoted the count in each Map. At this phase, the key-value
pair is used, the key represents a single record while the value represents the number
of times a key (a record) has appeared in the dataset. The ReduceByKey_RDD in Step
4 reads the Map_RDD key-value pairs (r,Cr) and aggregates the value for the same key.
Then, the count of the same r is summed up together to find the ∑ Cr which represents the
total number of record counts across all partitions. Please note that this process requires
shuffling the data from different partitions in the executor nodes to exchange the values for
the same key over the network.

Algorithm 2: Phase 1—Initialization Phase of Spark subtree.
Input: D
Output: (r, ∑ Cr)

1 begin
2 RDD_in← RDD (D, Partition factor)
3 Map_RDD (r,Cr)←Map (RDD_in)
4 ReduceByKey(r, ∑ Cr)← ReduceByKey (Map_RDD, Partition factor)
5 return (r, ∑ Cr)
6 end

4.2. Phase 2—Generalization

This phase calculates the privacy and utility scores for each attribute. The privacy and
utility scores are used to find the most optimal generalization level to be applied for a certain
attribute. Frequently referenced intermediate values (e.g., the privacy and utility scores and
the results of the generalization level being applied) are stored first in memory and then
moved to a cache to reduce any potential I/O overhead discussed in Sections 3.3.2 and 3.3.3.
The purpose of this phase is to apply the most optimal generalization level according to the
privacy and utility scores. The frequent use of memory and cache increases the robustness
of our proposal. The memory holds the intermediate results for the computation of the
privacy and utility scores of each attribute, the results of the generalization level are cached
to avoid expensive disk access.

The generalization phases (Section 4.1) results as an input to compute the score value.
We describe the details of this phase in Algorithm 3. Step 2 assigns Av as child CA in r for
the generalization level for QID while PA is assigned to all QID based on its CA in TT.
This process applies one level of generalization for one attribute (i.e., one iteration) and
holds the results in memory so that the results can be used in the subsequent step. Steps 4–7
are used to compute the privacy and utility scores which are denoted as ScoreILPG (QID)
as following, based on [41,42].

ScoreILPG(QID)=
IL(QID)

PG(QID)+1
, (2)

where IL(QID) contains the result of information loss for QID while PG(QID) contains
the result of privacy gain for QID. The details of the calculation for IL(QID) and PG(QID)
are depicted in Equations (3) and (4), as follows, respectively.

IL(QID)=En(PA)− ∑
CA∈PA

(
|CA|
|PA|

)
En(CA), (3)

Electronics 2021, 10, 589 12 of 28

where |CA| represents the child attribute and |PA| represents the parent attribute for the
given QID. En(CA) and En(PA) denote the entropy value of child and parent attributes re-
spectively.

PG(QID)=APA(QID) − ACA(QID), (4)

where APA(QID) and ACA(QID) contain the Anonymization Level (AL) of the parent and
child QIDs. Steps 7–10 are used to identify and update the best generalization level based
on the privacy and utility score calculated in the earlier steps. The process goes through
each r iterating over each Av, where any Av belonging to QID is considered to be qid. The
Av is considered to be CA when the value is compared in TT. The CA is compared with the
same QID attributes in DOM. Once the CA is found in TT, the CA value is replaced by its
PA parent nodes. Then, the Av values are replaced from CA to PA for each r to obtain r∗.
Finally, the RDD returns anonymized key-value pairs (r∗,∑ Cr).

It must be noted that most of the data is stored and fetched from memory rather than
disk during any iteration processes which avoids unnecessary disk I/O overhead. We also
use the capability of cache in this generalization phase to avoid the re-computation of the
intermediate values (i.e., the privacy and utility score and the results of generalization
level) during the iterations.

Algorithm 3: Phase 2—Generalization Phase of Spark subtree.
Input: (r,∑ Cr), TT
Output: (r∗,∑ Cr)

1 begin
2 CA ← Av in r
3 PA ← CA (DOM) in TT

/* For all child attribute assign parent attribute */
4 for CA and PA of r in TT do
5 score(QID)← IL(QID), PG(QID)
6 RDD_score← score(r), Cr
7 end
8 if score QID is Max(QID) then

/* Max(QID) decide which child qid need to replace with
parents qid */

9 update r for QID of PC ← PA (DOM) in TT
10 Update(score)← update r update AL← Update(score)
11 RDD_update (r∗, ∑ Cr)← Update(score)
12 return (r∗, ∑ Cr)
13 end

4.3. Phase 3—Validation

This phase validates if the generalized dataset meets the k-anonymization require-
ments, we provide a mechanism to deal with frequently referenced intermediate val-
ues (e.g., semi-anonymized dataset) by caching it to reduce the overheads discussed in
Sections 3.3.2 and 3.3.3. In this phase, we validate if the full anonymization has been
achieved i.e., the optimal generalization levels for all attributes have been applied up until
they do not violate the k-anonymization constraint. This phase improves the intermediate
results access time by storing semi-anonymized attributes into a memory cache to avoid
expensive disk access and improve memory management.

Electronics 2021, 10, 589 13 of 28

Algorithm 4: Phase 3—Validation Phase of Spark subtree.
Input: (r∗,∑ Cr),k
Output: (RDD∗)

1 begin
2 ReduceByKey (r∗,∑ C∗r)← RDD_update

(
(r, ∑ Cr), Partition f actor)

)
3 if (AL ≤ k) then
4 (∑ Cr ← ∑ C∗r)
5 (r← r∗)

/* return to Map_RDD in phase 1 if need more generalization */
6 return (r, ∑ Cr)
7 else if (AL > k) then
8 for C∗r in ∑ Cr∗ do
9 r∗ ← (r∗, C∗r)

10 return (r∗)
11 end

/* completely anonymized */
12 Update RDD∗ ← r∗

13 return RDD∗

14 end

This phase use the results of Section 4.3 as input for the final computation of the
anonymization process. The detail of this phase is depicted in Algorithm 4. Step 2 is used
to update the partition based on the Phase 1 strategy. Steps 3–6 are used to check whether
∑ C∗r that contains the total number of generalized records (represented as AL) meets the k-
anonymization constraint or not. If AL has fewer records than k-anonymization constraint,
the semi-anonymized records ∑ C∗r are required to be copied to a new partition of a map
∑ Cr and returns to Phase 1. Steps 7–11 are used in the case where the full generalization is
achieved—that is, the number of generalized records meets k-anonymization constraint.
Then, a key is assigned for each (distinct) fully generalized record where the value of a
fully generalized record is used as a value. Finally, Step 12 saves all fully anonymized
records to memory.

Based on the proposed algorithm described in this phase, we mitigate the disk I/O,
network I/O, and synchronization overheads during the iteration involved in this phase. For
instance, by saving a semi-anonymized dataset in memory, we reduce the disk I/O overhead.
Moreover, we minimize any chances for a potential network transfer by reducing the size of
the dataset by removing duplicate records while still preserving the count and performing
RDD operations that share the cached intermediate values without expensive message
exchanges across multiple network nodes. This significantly reduces network I/O overhead.
Because the optimal number of datasets operated in this level (as the result of partition
management described in Phase 1) reduces synchronization overhead significantly as the
number of iterations increases.

5. Experimental Results

In this section, we first describe our experimental setup including the details of the
datasets and the system environment configurations. Subsequently, We compare our
proposal with existing approaches based on record volume and number of records. We
then provide the experimental results for our model on Adult and Irish datasets. we further
investigate the impact of our proposal on memory and iteration performance. Finally, we
discuss the results of the privacy and utility scores obtained through several privacy and
utility measurement metrics.

5.1. Datasets

The experiments are carry out using two datasets: US Census dataset (i.e., Adult
dataset) [34] and Irish Census dataset [43], larger datasets are created using the similar

Electronics 2021, 10, 589 14 of 28

proposed approach proposed [25] for the experiments. Tables 5 and 6 illustrates each
quasi-identifiable attribute (QID) we used in our experiments and generalization level
(GL) of each QID obtained from the taxonomy trees for Adult and Irish datasets. The
sensitive attributes are set to the “Salary” in the Adult dataset and the “Industrial Group”
in the Irish dataset.

Table 5. Adult dataset.

QID Distinct Qid Value GL

Age 74 3
Work Class 8 4
Education 16 4

Race 5 2
Gender 2 1

Native Country 41 3

Table 6. Irish dataset.

QID Distinct Qid Value GL

Age 70 4
Economic Status 9 2

Education 10 4
Marital Status 7 3

Gender 2 1
Field of Study 72 2

5.2. System Environment Configurations

We configured Yarn and Hadoop Distributed File System (HDFS) using Apache
Ambari. The HDFS was used to distribute data in a NameNode (worked as a master node),
a secondary NameNode, and six DataNodes (worked as worker nodes). We allocated 3
GB memory to Yarn NodeManager, and 1 GB memory to ResourceManager, Driver, and
Executor memories each. We used Spark version 2.1 [44] along with Yarn as a cluster
manager. The details of the experimental setup for both Spark platform and datasets are
illustrated in Table 7.

Table 7. Spark and dataset setup parameters.

Spark Setups Dataset Setups

Driver
Memory

Executor
Memory

No of
Executors

Executor
Cores

No of
Partitions

k Group
Size

Dataset
Sizes/Records

Number of
QIDs Datasets

Figure 4 6.5 GB 2 GB 10 2 18–242 100 2 GB–30 GB 6 Adult
Figure 5 15 GB 3.5 GB 8 3 40 100 1.2 B 6 Adult
Figure 6 6.5 GB 4 GB 12 3 24 1000 0.1 B–1 B 6 Adult- Irish
Figure 7 6.5 GB 4 GB 12 3 24 50–1000 0.1 B–1 B 6 Adult
Figure 8 6.5 GB 4 GB 12 3 24 1000 0.1 B–1 B 2–6 Adult
Figure 9 6.5 GB 4 GB 12 3 24 1000 0.1 B 6 Adult

Figure 10 6.5 GB 4 GB 12 3 24 10,000 0.6 B 6 Adult
Figure 11 6.5 GB 4 GB 2–16 3 2–64 1000 0.8B 6 Adult

Figures 12–15 6.5 GB 4 GB 12 3 24 2–100 31062 6 Adult-Irish
Figure 16 6.5 GB 4 GB 12 3 24 100 31,062 6 Adult

Electronics 2021, 10, 589 15 of 28

0 5 10 15 20 25 30
0

100

200

300

400

500

Data Size (GB)

Ti
m

e
(M

in
ut

es
)

Spark MDSBA MapReduce MDSBA
Spark TDS MapReduce TDS

Our Proposal

Figure 4. Performance comparison with existing subtree approaches based on increasing data size.

Our Proposal Prima Anonylitics

40

42

44

46

Ti
m

e
(M

in
ut

es
)

Figure 5. Performance comparison with existing spark based k-anonymity approaches.

Electronics 2021, 10, 589 16 of 28

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Number o f Records (Billions)

Ti
m

e
(M

in
ut

es
)

Adult Irish

Figure 6. Scalability comparison for Adult and Irish dataset.

0 200 400 600 800 1,000
0

20

40

60

k group size

Ti
m

e
(M

in
ut

es
)

0.1B 0.2B 0.4B
0.6B 0.8B 1B

Figure 7. Performance against the # of records.

Electronics 2021, 10, 589 17 of 28

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Number o f Records (Billions)

Ti
m

e
(M

in
ut

es
)

Q6 Q5 Q4 Q3 Q2

Figure 8. Scalability against the # of QID.

0 5 10 15
0

20

40

60

Iteration

Ti
m

e
(M

in
ut

es
)

0.1B 0.2B 0.4B
0.6B 0.8B 1B

Figure 9. Performance of iteration against the # of records.

Electronics 2021, 10, 589 18 of 28

0 5 10 15

50

100

150

200

250

Iteration

Ti
m

e
(M

in
ut

es
)

NC D M DM

Figure 10. Performance of different cache management on iteration.

0 5 10 15

46

48

50

52

54

Number o f Executors

Ti
m

e
(M

in
ut

es
)

P2 P4 P8
P16 P32 P64

Figure 11. Performance against the # of partitions.

Electronics 2021, 10, 589 19 of 28

0 20 40 60 80 100
0

2

4

6

k− value

K
LD

Adult Irish

Figure 12. KLD Performance of privacy.

0 20 40 60 80 100
1.8

2

2.2

2.4

k− value

I E

Adult Irish

Figure 13. IE Performance of privacy.

Electronics 2021, 10, 589 20 of 28

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1
·109

k− value

D
M

sc
or

e
−

10
9

Adult Irish

Figure 14. DM Performance of Utility.

0 20 40 60 80 100

0

0.5

1

1.5

2

k− value

C
A

V
G
−

sc
or

e

Adult Irish

Figure 15. CAVG Performance of Utility.

Our Proposal Prima Anonylitics

0.22

0.24

0.26

IL

Figure 16. Information loss comparison between the existing approaches.

Electronics 2021, 10, 589 21 of 28

5.3. Performance and Scalability

We ran experiments to understand performance and scalability in terms of memory
and iteration management. We ran our experiments 10 times and used the average value
to ensure the reliability and consistency of the results. We ensured that the experiments
for each dataset use a constant number of partition sizes (i.e., 24) instead of the default
partition size. Fixing the partition size ensures that the data can be processed with an equal
number of executors.

5.3.1. Performance Comparison with Existing Subtree Approaches

In this section, we discuss the results of our proposal in comparison with existing
subtree MapReduce and Spark-based methods. We compare all the approaches based on
the volume(size) of data. The increasing volume of data validates the requirements of big
data, while the anonymity parameters validate the k-anonymity requirements [45].

We conduct the experiments to compare our approach with Spark and MapReduce
multi-dimensional sensitivity-based anonymization for data (MDSBA) [21,22] against the
growing size of data. Figure 4 compares the execution times of Spark MDSBA [22], MapRe-
duce MDSBA [21], Spark Top-Down Specialization(TDS) [20], MapReduce TDS [11] with
our proposal. The results show that our approach has the least amount of execution time
in comparison with the other approaches. Moreover, we observed that the execution time
increases linearly along with the increase in data size in all three approaches. Spark-based
approaches such as our proposal and Spark MDSBA have almost the same performance
when the data size is less than 10 GB, while when it comes to the bigger data size such as
bigger than 10 GB, the execution time is much higher in other approaches in comparison
with our approach.

5.3.2. Performance Comparison with Existing Spark-Based k-Anonymity Approaches

In the second set of results compare the performance of our approach with state-
of-the-art Spark-based k-anonymity approaches with constant k group size, number of
records size, and generalization level as shown in Table 7. Figure 5 compares the execution
time across different Spark-based approaches such as Prima [24], Anonylitics [23]. The
results indicate that our proposal yields the lowest execution time compared to the other
platforms, while Anonylitics shows the highest execution time. We also identified that our
approach uses a smaller number of RDDs and parallelism during the execution of each
partition in its respective executors. Our approach measures the score and updates the
anonymity in its prospective RDDs for all generalization levels of each QID. However, the
Prima approach measures and updates the score of each leaf as a single RDD. Thus, the
increments in the generalization level increased the number of leaves which caused more
execution time for k-group size.

5.3.3. Performance Comparison on Adult and Irish Datasets

In this section, we perform an experiment to identify the impact and execution behav-
ior of various datasets on our proposed model. We use Adult and Irish datasets for our
performance experiment to understand the impact of execution time against the growing
number of records on the fixed size of 5 QID attributes and 1000 k group size. As seen
in Figure 6, the execution time changes as soon as the number of records is increased.
The execution time linearly increases as the number of records increase in both datasets. We
observe that our approach computes various datasets with different generalization levels
and k group size; however, the increase in distance qid value and generalization level may
increase the execution time i.e., that is the case with the Irish dataset for “Field of Study”
QID. Although both adult and Irish datasets are used for the same number of records, k
group size, and number of QIDs but the execution time increase in the Irish dataset with
the increase in distance qid value and generalization level.

Electronics 2021, 10, 589 22 of 28

5.3.4. Memory Effects on Performance and Scalability

In this section, we discuss our results based on three aspects, including (i) perfor-
mance in terms of the growing size of records, (ii) performance compared to other similar
approaches, and finally (ii) scalability in terms of the increasing the number of attributes.

We first analyzed the performance implication of our approach by increasing the
number of record sizes against different k-group size. The results in Figure 7 show the
execution time based on the increasing record size starting from 0.1 billion (108 records)
to 1 billion (109 records). We observed that the execution time has a linear growth with
respect to increasing dataset size. We also did not observe any distortion caused by k-group
size as the execution times remain almost constant even though k-group size increases. We
identified that this effect is because of two reasons: (i) The records are required for the
measurement of privacy and utility score from RDD rather than the complete data records;
thus, after each generalization step, the same records are aggregated and represented with
the key-value pairs. The key-value pairs contain enough information and do not require
additional calculation, (ii) Our anonymization process uses a broadcast mechanism that
works as a data-sharing mechanism across executors which effectively reduces network I/O
and memory, and disk I/O. Consequently, it reduces the computation time significantly.

The scalability of the distributed anonymization is benchmarked against the increas-
ing QID size and is represented in Figure 8. We increased the adult dataset QID size
with respect to increasing the number of record sizes. We discovered that the execution
time is dependent on the size of QID and the variety of each qid value (i.e., the level of
generalization applied). Thus, the higher size of QID set and diverse qid value cause the
higher execution time. We observed that for the higher size of QID, the larger size of
equivalence classes was needed to satisfy the k-anonymity requirements as it allowed a
greater number of attributes grouped/partitioned together, thus it reduced the number of
required iterations.

5.3.5. Iteration Effects on Scalability

We analyzed the effects of iterative operation for our proposed approach with respect
to increasing the number of records. In the next set of results, we identify the importance of
cache for iterative intensive operations. We compared the execution time for both cached
and none cached operations during the execution of the anonymization process.

Figure 9 compares the number of iterations against the execution time for various
dataset sizes. We can observe that having more iteration leads to more execution time.
When we increased the record size from 0.1 B and 0.2 B, we observed that the executor
memory had enough space to accommodate the records while processing the anonymiza-
tion. Thus, it does not invoke evacuation of memory due to overload. While as we increase
the size of the record, the executor memory starts the evacuation process. It is noticeable
that although each RDD is allocated with the same or a smaller number of input data, the
anonymization process adds more data to the memory for execution. Thus, the larger the
record size, the more records need to be evacuated to make enough space for execution.

Figure 10 compares the cache and Non-Cache (NC) effects on increasing generalization
level on each iteration. We observed that the execution time for NC RDD has a higher
execution time in comparison with cached RDD regardless of the storage levels such as
DISK_ONLY (D) MEMORY_ONLY (M), or MEMORY_AND_DISK (DM). For the smaller
dataset, it has more space to hold the cached RDD in memory. However, by increasing the
dataset size, the RDD partitions need to be deleted from the memory and calculated again
for the next transformation. In each iteration, RDD data needs to be scanned for finding
the optimal generalization. To achieve this, more frequent visits to RDD data in memory
were necessary thus increasing the execution time.

While we observed that DISK, MEMORY, and their combination provide a similar ex-
ecution time, all these three storage options have different approaches for accommodating
cache results. As described by [14,46], the combination of memory and storage is the most
cost-effective operation for iteration by ensuring faster computation. We also observed that

Electronics 2021, 10, 589 23 of 28

after each iteration execution, the read and write time taken by memory and disk is slightly
increased without recomputing the space and size for the next iteration.

Furthermore, we investigated the impact of RDD partition on the number of executors
to identify a balance between high parallelism and using the available resources to the
maximum capacity. A partition against the executor trade-off has been discussed in [20,47].
Having considered the results demonstrated in Figure 11, we can observe that the increase
in the number of partitions improves the execution time as 64 partitions (denoted as P64)
has more execution time in comparison with when only two partitions are used (P2). This
means that the partition size and the executor number needs to be in balance to avoid any
potential latency.

5.4. Privacy & Utility Trade-Off

We used the privacy and utility metrics for the measurement and validation of our
proposed method. The data anonymization technique uses trade-offs between privacy and
utility to quantify the success of an anonymization algorithm. A privacy level is estimated
by recognizing the uniqueness of information, a low privacy normally implies that it is
anything but difficult to distinguish an individual (a tuple or record) from a group (e.g.,
numerous records). We used two privacy metrics Kullback-Leibler−divergence (KLD) and
Information Entropy (IE) to evaluate the impact of the privacy level of our proposal.

In contrast, a utility level is estimated by computing the degree of degradation in the
accuracy of significant value between the baseline (i.e., original) value and the anonymized
value (i.e., sanitized). We use two utility metrics Discernibility Metric (DM) and Average
Equivalence Class Size Metric (CAVE).

5.4.1. Kullback-Leibler-Divergence (KLD)

KLD measures the likelihood of the presence of the original attribute in the anonymized
attribute for each record [48]. For example, let the original attribute of the Job is ”Writer”
and is anonymized into ”Artist”. The KLD measures the possibility of guessing the original
data of ”Writer” from ”Artist”.

In our approach, we calculate KLD on the final anonymized dataset by measuring the
likelihood of the presence of each attribute and sums all the value for each attribute within
a record and repeat this for all records.

KLD can be computed based on the formula represented in Equation (5).

KLD =
n

∑
r=1

PRDD∗(r) log
PRDD∗(r)

PRDD_in(r)
(5)

The KLD value increases from 0 which indicates both records between the original
record and the anonymized record are the same. The increase of KLD value indicates the
level of privacy assurance. With the lower value of KLD, it is easy to identify the original
value from the matching anonymized value (i.e., low privacy).

Figure 12 presents the KLD values of our proposed subtree generalization implemen-
tation on Adult and Irish datasets. The KLD values increase with the increase of k-group
size and are very close to the comparative approaches discussed [25,49].

The results of KLD metric on the Adult and Irish datasets are shown in Figure 12.
The KLD values only increased from around k group size 2 to 5. After k-value (i.e., group
size) = 5 the KLD values remain the same for the rest of the k group size. The visible
increase of KLD from k-value 2 to 5 (and slight changes from 5 onward) is due to the active
generalization level being applied. At approximately k-value 10, all generalization has
been applied and there are no more changes to the rest of the k-value thus KLD value
remains identical. The overall observation of the changes in KLD values is similar to that
of the Adult dataset. However, we observe that the average KLD values are much higher
in the Irish dataset than in the Adult dataset. This is due that the Irish dataset has more
generalization levels for each QID which increases the chances of more number of QIDs
sharing the same value.

Electronics 2021, 10, 589 24 of 28

5.4.2. Information Entropy (IE)

IE is used to measure the degree of how uncertain it is to identify the original value
from the anonymized value within a QID set [50]. The entropy value of IE is 1 if all the qid
attributes are identical in the anonymized dataset for the same QID. To compute IE(QID),
(1) the likelihood of the presence of the original attribute in a record is calculated, (2) sums
up the value of (1) for each attribute in a record (denoted as PRDD∗(qid)), (3) continues (1)
and (2) for each QID, (4) sums up the value of (3) for all records. Please note that if all
attributes are changed between the original record and the anonymized record, the value
of PRDD∗ is 1.

IE = −
n

∑
qid=1

PRDD∗(qid) log PRDD∗(qid) (6)

Based on Equation (6), we computed IE(QID) for single QID. To obtain the IE for the
entire anonymized dataset (denoted as RDD∗), we calculated the IE for RDD∗ by taking
the average of all QID. The entropy value of IE is 0 if the records are identical between the
original dataset and the anonymized dataset within the matching equivalent class. The
maximum value of IE is achieved when the original record sets are very different from the
anonymized record sets for a given QID. A higher value of IE represents more uncertainty
(i.e., higher privacy).

Figure 13 shows the privacy level in terms of the entropy of our proposed approach.
Generally, the entropy increases with k size. Though the IE score is highest at (log2k)
in [51], the IE score of our proposal works better than the scheme proposed by [29]. The
performance of our approach is close to the higher end of standard and achieves much
higher privacy levels achieved by the scheme proposed by [25]. As the entropy represents
the information content of data change, the entropy after data anonymization should be
higher than the entropy before the anonymization which is the phenomenon observed in
our results.

The results of IE metric on Adult and Irish dataset are shown in Figure 13. Again,
the values between the Adult and Irish remain in the study parallel which ensures that
the implementation of our data anonymization technique in Spark did not destroy the
privacy level. The average of IE values in the Adult dataset is lower compared to the Irish
dataset. Our investigation reveals that the Adult dataset contains a relatively small number
of different QIDs that share the same value as the result of anonymization. The smaller k
value affects the IE value more compared to the greater k value due to the number of the
same values in QID attributes. This affects the higher IE value as it is easier to identify a
unique record within the same equivalent class compared to the Irish dataset which has a
larger number of different QIDs that share the same value.

5.4.3. Discernibility Metric (DM)

DM reports the data quality resulting from the degree of data degradation due to
data anonymization based on a tuple within an equivalent class (EC). Let EC be the set of
equivalence classes of a k-anonymized dataset RDD∗. ECi is one of the equivalence classes
of | EC |. The DM metric can be expressed more formally as Equation (7).

DMscore = ∑
ECi∈RDD∗

| ECi |2, (7)

where i represents a qidtuple within an equivalent class. The data utility is associated with
the DM score. If DM score is high, it means the data utility is low (i.e., the original qidtuple
has lost its original values) while the lower the DM score represents the data utility is high.

Discernability Metrics (DM) [52] measure the cardinality (i.e., distinctness) of the
equivalence class. For a low group size of k, the cardinality of equivalence is too small. If
the privacy level is high (e.g., a higher group size of k), the discernability metric increases
sharply which increases the cardinality of an equivalence class. Equivalence classes with a

Electronics 2021, 10, 589 25 of 28

large cardinality tend to group datasets in a large range leading to large information loss.
Figure 14 presents the discernability penalty of 30,162 records for adult dataset.

We observed that the overall trends for the DM to the DM values observed in other
similar approaches in [25,51]. As the k-group size increases, more records are part of an
EC, and thus records are less distinguishable from each other. The Irish dataset shows
higher DM scores compared to the Adult dataset because there are more chances to make
on tuples on the Irish dataset as it contains more distinct qid values. For both datasets, the
DM score stays steady which shows low sensitivity to the growth of k-group size (e.g., no
more changes in EC).

5.4.4. Average Equivalence Class Size Metric (CAVG)

CAVG is used to measure data utility based on attributes of the average size of the
equivalence class. The increase in the number of equivalence sizes results in a higher data
utility as it is more difficult to identify an attribute among many identical attributes. In the
k-anonymized dataset, the size of the equivalence classes is greater than or equal to k. As
a result, the quality of the data is lower if the size of all or part of the equivalence classes
greatly exceeds the value of k. The score of CAVG is sensitive to the k-group size [53]. CAVG
for RDD∗ is calculated as Equation (8).

CAVG =
|RDD∗|
|EC| /k (8)

The total number of records of RDD∗ is donated as |RDD∗|, whereas |EC| represents
the total number of equivalence classes.

Figure 15 represents the results of CAVE for increasing group size of k. The decreasing
score value against the increasing size of k is observed indicating that the size of the created
ECs is equal to the given k, that is the ECs contain the number of generalized records that
satisfy the k-anonymity. As the value of k increases, the EC has more records than the k
requirement due to higher generalization level, this keeps increasing the CAVE score value.

The trend of CAVG scores was similar to DM as both metrics were based on the
calculation according to the size of equivalence classes on the number of records in the
dataset. The comparison of CAVG and DM scores are very hard to compare the values for
Adult and Irish different datasets. At the time of CAVG consider the number of records,
however, the DM score does not take into account the records of the dataset [54]. As
defined earlier the equivalent class EC contains the identical number of QID attributes in a
table, the increase in k will increase the qid for each EC class. In Figure 14 score for the Irish
dataset is significantly different from the Adult dataset, this is because the Adult dataset
applies generalization on “Race” QID, whereas Irish use “Field of Study” for the highest
generalization. We observe the number of distance qid values for “Race” and “Field of
Study” QID are large in the margin as shown in Tables 5 and 6 respectively. The increase
in k increase the GL accordingly, with the “Field of Study” QID in Irish dataset changes a
large number of the attribute that increases the EC which impact the CAVG and DM score
compared to Adult dataset “Race”. In addition to that, there are 16 GL in Irish data and 17
in Adult data, once all the GL are applied for k > 20 we observe both datasets returns the
same utility as observed for the CAVG and DM scores for k > 15 in Figures 14 and 15.

5.4.5. Information Loss (IL)

The Information Loss in Equation (9) is calculated with method used in [18] that
computes the amount of information loss of information after generalizing a particular
value to a general value in the anonymization process. Let the record r and qid be the
number of attributes, the Un.m and Ln.m are the upper and lower bounds of the nth qid

Electronics 2021, 10, 589 26 of 28

in the mth r for anonymized data while the maximum and minimum for m attributes is
denoted as MAXm and MINm in the original dataset.

IL =
1

r.qid

r

∑
n=1

qid

∑
m=1

|Un.m| − |Ln.m|
|MAXm −MINm|

(9)

Anonymization via generalization and/or suppression is able to protect the privacy
of individuals, but at the cost of information loss especially for high-dimensional data. We
compare the results of our approach with the existing state-of-the-art approaches for IL
such as Prima [24], and Anonylitics [23].

The results in Figure 16 shows that our approach provides less information loss
compared to Prima and Anonylitics. We use a constant k size with a fixed number of
records. We identify the using Score and update and semi anonymized RDD (Section 4),
our approach reduces the duplication of records and anonymizing the duplicate records
by replacing qid as single records. The equivalence anonymization for the same records
normalized the information loss thus providing minimum information loss.

6. Conclusions and Future Work

This study proposes a generic framework for implementing subtree-based generations
on Apache Spark. Our proposal is implemented using a series of RDDs that support more
efficient partition management, improves memory usage that also uses cache to store
frequently referenced values, and support a better iteration process which is much more
suited for an iteration-intensive algorithm such as subtree generalization. Our proposed
approach outperforms the existing similar approaches on various data sizes and k group
sizes. Our proposal not only reduces the complexity of the operation and improves the
performance but also shows high data utility scores while maintaining a competitive level
of data privacy required for any data anonymization techniques. We plan to extend our
study by further exploring the suitability of other data anonymization approaches for the
Apache Spark platform. For instance, we plan to investigate one of the multi-dimensional
data anonymization strategies such as Mondrian [53] to examine the support for recursive
operations in Apache Spark.

Author Contributions: Conceptualization, S.U.B. and J.J.-J.; methodology, S.U.B.; software, S.U.B.;
validation, S.U.B. and J.J.-J.; formal analysis, S.U.B. and H.A.; investigation, S.U.B.; resources, S.U.B.
and J.J.-J.; writing—original draft preparation, S.U.B.; writing—review and editing, J.J.-J. and H.A.;
visualization, S.U.B. and H.A.; supervision, J.J.-J.; project administration, S.U.B. and J.J.-J. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was made possible by the support of the grant (MAUX1912) from the Ministry
of Business, Innovation, and Employment (MBIE) of the New Zealand Government.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yu, S. Big privacy: Challenges and opportunities of privacy study in the age of big data. IEEE Access 2016, 4, 2751–2763.

[CrossRef]
2. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
3. Baryalai, M.; Jang-Jaccard, J.; Liu, D. Towards privacy-preserving classification in neural networks. In Proceedings of the 2016

14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 392–399.

4. Fung, B.C.; Wang, K.; Wang, L.; Hung, P.C. Privacy-preserving data publishing for cluster analysis. Data Knowl. Eng. 2009,
68, 552–575. [CrossRef]

5. Fung, B.C.; Wang, K.; Wang, L.; Debbabi, M. A framework for privacy-preserving cluster analysis. In Proceedings of the 2008
IEEE International Conference on Intelligence and Security Informatics, Taipei, Taiwan, 17–20 June 2008; IEEE: Piscataway, NJ,
USA, 2008; pp. 46–51.

http://doi.org/10.1109/ACCESS.2016.2577036
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.1016/j.datak.2008.12.001

Electronics 2021, 10, 589 27 of 28

6. Fung, B.C.; Wang, K.; Yu, P.S. Top-down specialization for information and privacy preservation. In Proceedings of the
21st International Conference on Data Engineering (ICDE’05), Tokyo, Japan, 5–8 April 2005; IEEE: Piscataway, NJ, USA, 2005;
pp. 205–216.

7. Zhang, X.; Liu, C.; Nepal, S.; Yang, C.; Dou, W.; Chen, J. SaC-FRAPP: A scalable and cost-effective framework for privacy
preservation over big data on cloud. Concurr. Comput. Pract. Exp. 2013, 25, 2561–2576. [CrossRef]

8. Jain, P.; Gyanchandani, M.; Khare, N. Big data privacy: A technological perspective and review. J. Big Data 2016, 3, 25. [CrossRef]
9. Bazai, S.U.; Jang-Jaccard, J.; Zhang, X. A privacy preserving platform for mapreduce. In Proceedings of the International

Conference on Applications and Techniques in Information Security, Auckland, New Zealand, 6–7 July 2017; Springer: Berlin,
Germany, 2017; pp. 88–99.

10. Bazai, S.U.; Jang-Jaccard, J.; Wang, R. Anonymizing k-NN classification on MapReduce. In Proceedings of the International
Conference on Mobile Networks and Management, Melbourne, Australia, 13–15 December 2017; Springer: Berlin, Germany, 2017;
pp. 364–377.

11. Zhang, X.; Yang, L.T.; Liu, C.; Chen, J. A scalable two-phase top-down specialization approach for data anonymization using
MapReduce on cloud. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 363–373. [CrossRef]

12. Zhang, X.; Liu, C.; Nepal, S.; Yang, C.; Dou, W.; Chen, J. Combining top-down and bottom-up: Scalable sub-tree anonymization
over big data using MapReduce on cloud. In Proceedings of the 2013 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, Melbourne, Australia, 16–18 July 2013; IEEE: Piscataway, NJ, USA, 2013;
pp. 501–508.

13. Zhang, X.; Nepal, S.; Yang, C.; Dou, W.; Chen, J. A hybrid approach for scalable sub-tree anonymization over big data using
MapReduce on cloud. J. Comput. Syst. Sci. 2014, 80, 1008–1020. [CrossRef]

14. Shi, J.; Qiu, Y.; Minhas, U.F.; Jiao, L.; Wang, C.; Reinwald, B.; Özcan, F. Clash of the titans: MapReduce vs. spark for large scale
data analytics. Proc. Vldb Endow. 2015, 8, 2110–2121. [CrossRef]

15. Maillo, J.; Ramírez, S.; Triguero, I.; Herrera, F. kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for
big data. Knowl.-Based Syst. 2017, 117, 3–15. [CrossRef]

16. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, San Jose, CA, USA, 25–27 April 2012; USENIX Association: Berkeley, CA, USA,
2012; p. 2.

17. Bazai, S.U.; Jang-Jaccard, J. SparkDA: RDD-Based High-Performance Data Anonymization Technique for Spark Platform.
In Proceedings of the International Conference on Network and System Security, Sapporo, Japan, 15–18 December 2019; Springer:
Berlin, Germany, 2019; pp. 646–662.

18. Ashkouti, F.; Sheikhahmadi, A. DI-Mondrian: Distributed improved Mondrian for satisfaction of the L-diversity privacy model
using Apache Spark. Inf. Sci. 2021, 546, 1–24. [CrossRef]

19. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.
Apache spark: A unified engine for big data processing. Commun. Acm 2016, 59, 56–65. [CrossRef]

20. Sopaoglu, U.; Abul, O. A top-down k-anonymization implementation for apache spark. In Proceedings of the 2017 IEEE
International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 4513–4521.

21. Al-Zobbi, M.; Shahrestani, S.; Ruan, C. Improving MapReduce privacy by implementing multi-dimensional sensitivity-based
anonymization. J. Big Data 2017, 4, 45. [CrossRef]

22. Al-Zobbi, M.; Shahrestani, S.; Ruan, C. Experimenting sensitivity-based anonymization framework in apache spark. J. Big Data
2018, 5, 38. [CrossRef]

23. Pomares-Quimbaya, A.; Sierra-Múnera, A.; Mendoza-Mendoza, J.; Malaver-Moreno, J.; Carvajal, H.; Moncayo, V. Anonylitics:
From a Small Data to a Big Data Anonymization System for Analytical Projects. In Proceedings of the 21st International
Conference on Enterprise Information Systems, Crete, Greece, 3–5 May 2019; pp. 61–71.

24. Antonatos, S.; Braghin, S.; Holohan, N.; Gkoufas, Y.; Mac Aonghusa, P. PRIMA: An End-to-End Framework for Privacy at Scale.
In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 1531–1542.

25. Bazai, S.U.; Jang-Jaccard, J. In-Memory Data Anonymization Using Scalable and High Performance RDD Design. Electronics
2020, 9, 1732. [CrossRef]

26. Gao, Z.Q.; Zhang, L.J. DPHKMS: An efficient hybrid clustering preserving differential privacy in spark. In Proceedings of the
International Conference on Emerging Internetworking, Data & Web Technologies; Springer: Berlin, Germany, 2017; pp. 367–377.

27. Peethambaran, G.; Naikodi, C.; Suresh, L. An Ensemble Learning Approach for Privacy–Quality–Efficiency Trade-Off in Data
Analytics. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Tamilnadu,
India, 10–12 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 228–235.

28. Jebali, A.; Sassi, S.; Jemai, A. Secure data outsourcing in presence of the inference problem: Issues and directions. J. Inf.
Telecommun. 2020, 5, 16–34. [CrossRef]

29. Chakravorty, A.; Rong, C.; Jayaram, K.; Tao, S. Scalable, Efficient Anonymization with INCOGNITO-Framework & Algorithm.
In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Honolulu, HI, USA, 25–30 June 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 39–48.

http://dx.doi.org/10.1002/cpe.3083
http://dx.doi.org/10.1186/s40537-016-0059-y
http://dx.doi.org/10.1109/TPDS.2013.48
http://dx.doi.org/10.1016/j.jcss.2014.02.007
http://dx.doi.org/10.14778/2831360.2831365
http://dx.doi.org/10.1016/j.knosys.2016.06.012
http://dx.doi.org/10.1016/j.ins.2020.07.066
http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1186/s40537-017-0104-5
http://dx.doi.org/10.1186/s40537-018-0149-0
http://dx.doi.org/10.3390/electronics9101732
http://dx.doi.org/10.1080/24751839.2020.1819633

Electronics 2021, 10, 589 28 of 28

30. Dwork, C. Differential Privacy. In ICALP LNCS; Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Springer: Berlin, Germany,
2006; pp. 1–12.

31. Gao, Z.; Sun, Y.; Cui, X.; Wang, Y.; Duan, Y.; Wang, X.A. Privacy-preserving hybrid K-means. Int. J. Data Warehous. Min. (IJDWM)
2018, 14, 1–17. [CrossRef]

32. Yin, S.L.; Liu, J. A k-means approach for mapreduce model and social network privacy protection. J. Inf. Hiding Multimed. Signal
Process. 2016, 7, 1215–1221.

33. Smith, C.; Albarghouthi, A. Synthesizing differentially private programs. Proc. ACM Program. Lang. 2019, 3, 1–29. [CrossRef]
34. Asuncion, A.; Newman, D. UCI Machine Learning Repository. 2007. Available online: https://archive.ics.uci.edu/ml/about.html

(accessed on 2 March 2021)..
35. Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2002, 10, 557–570.

[CrossRef]
36. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. Acm 2008, 51, 107–113. [CrossRef]
37. Gufler, B.; Augsten, N.; Reiser, A.; Kemper, A. Handling Data Skew in MapReduce. Closer 2011, 11, 574–583.
38. Tao, Y.; Lin, W.; Xiao, X. Minimal mapreduce algorithms. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, New York, NY, USA, 22–27 June 2013; pp. 529–540.
39. Zhang, X.; Dou, W.; Pei, J.; Nepal, S.; Yang, C.; Liu, C.; Chen, J. Proximity-aware local-recoding anonymization with mapreduce

for scalable big data privacy preservation in cloud. IEEE Trans. Comput. 2014, 64, 2293–2307. [CrossRef]
40. Kang, M.; Lee, J.G. An experimental analysis of limitations of MapReduce for iterative algorithms on Spark. Clust. Comput. 2017,

20, 3593–3604. [CrossRef]
41. Fung, B.C.; Wang, K.; Philip, S.Y. Anonymizing classification data for privacy preservation. IEEE Trans. Knowl. Data Eng. 2007,

19, 711–725. [CrossRef]
42. Fung, B.C.; Wang, K.; Chen, R.; Yu, P.S. Privacy-preserving data publishing: A survey of recent developments. ACM Comput.

Surv. (Csur) 2010, 42, 1–53. [CrossRef]
43. Central Statistics Office (Internet). 2011. Available online: https://www.cso.ie/en/census/census2011reports/ (accessed on

2 March 2021).
44. Spark Overview. In Overview—Spark 2.1.0 Documentation. Available online: https://spark.apache.org/docs/2.1.0/ (accessed on

2 March 2021)
45. Mehta, B.B.; Rao, U.P. Improved l-diversity: Scalable anonymization approach for privacy preserving big data publishing. J. King

Saud Univ. Comput. Inf. Sci. 2019. [CrossRef]
46. Gopalani, S.; Arora, R. Comparing apache spark and map reduce with performance analysis using k-means. Int. J. Comput. Appl.

2015, 113, 8–11. [CrossRef]
47. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,

10, 95.
48. Kifer, D.; Gehrke, J. Injecting utility into anonymized datasets. In Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, Chicago, IL, USA, 27–29 June 2006; ACM: New York, NY, USA, 2006; pp. 217–228.
49. Ayala-Rivera, V.; McDonagh, P.; Cerqueus, T.; Murphy, L. A systematic comparison and evaluation of k-anonymization algorithms

for practitioners. Trans. Data Priv. 2014, 7, 337–370.
50. Ashwin, M.; Daniel, K.; Johannes, G.; Muthuramakrishnan, V. l-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl.

Discov. Data 2007, 1, 1–52.
51. Niu, B.; Li, Q.; Zhu, X.; Cao, G.; Li, H. Achieving k-anonymity in privacy-aware location-based services. In Proceedings of

the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 754–762.

52. Chakravorty, A.; Wlodarczyk, T.W.; Rong, C. A Scalable K-Anonymization solution for preserving privacy in an Aging-in-Place
welfare Intercloud. In Proceedings of the 2014 IEEE International Conference on Cloud Engineering, Boston, MA, USA, 11–14
March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 424–431.

53. LeFevre, K.; DeWitt, D.J.; Ramakrishnan, R. Mondrian multidimensional k-anonymity. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE’06), Atlanta, GA, USA, 3–7 April 2006; IEEE: Piscataway, NJ, USA, 2006; p. 25.

54. Li, N.; Li, T.; Venkatasubramanian, S. t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In Proceedings of the 2007 IEEE
23rd International Conference on Data Engineering, Istanbul, Turkey, 11–15 April 2007; pp. 106–115.

http://dx.doi.org/10.4018/IJDWM.2018040101
http://dx.doi.org/10.1145/3341698
https://archive.ics.uci.edu/ml/about.html
http://dx.doi.org/10.1142/S0218488502001648
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/TC.2014.2360516
http://dx.doi.org/10.1007/s10586-017-1167-y
http://dx.doi.org/10.1109/TKDE.2007.1015
http://dx.doi.org/10.1145/1749603.1749605
https://www.cso.ie/en/census/census2011reports/
https://spark.apache.org/docs/2.1.0/
http://dx.doi.org/10.1016/j.jksuci.2019.08.006
http://dx.doi.org/10.5120/19788-0531

	Introduction
	Related Work
	Subtree Generalization
	Preliminaries
	Subtree Generalization Algorithm
	Review of Subtree Implementation in MapReduce
	Partition
	Memory
	Iteration

	Our Proposal
	Phase 1—Initialization
	Phase 2—Generalization
	Phase 3—Validation

	Experimental Results
	Datasets
	System Environment Configurations
	Performance and Scalability
	Performance Comparison with Existing Subtree Approaches
	Performance comparison with existing Spark-based k-anonymity approaches
	Performance Comparison on Adult and Irish Datasets
	Memory Effects on Performance and Scalability
	Iteration Effects on Scalability

	Privacy & Utility Trade-Off
	Kullback-Leibler-Divergence (KLD)
	Information Entropy (IE)
	Discernibility Metric (DM)
	Average Equivalence Class Size Metric (CAVG)
	Information Loss (IL)

	Conclusions and Future Work
	References

