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Abstract: In recent years, grid-connected photovoltaic (PV) power generations have become the most
extensively used energy resource among other types of renewable energies. Increasing integration of
PV sources into the power network and their dynamic performances under fault conditions is an
important issue for grid code requirements. In this paper, a PV source as a unified interphase power
controller (UIPC) is used to enhance the low voltage ride through (LVRT) and transient stability
of a multi-machine power system. The suggested PV-based UIPC consists of two series voltage
inverters and a parallel inverter. The UIPC injects the required active and reactive power to prevent
voltage drop under grid fault conditions. Accordingly, a dynamic control system is designed based
on proportional-integral (PI) controllers for the PV-based UIPC to operate in both normal and fault
conditions. Simulations are done using Matlab/Simulink software, and the performance of the
PV-based UIPC is compared with the conventional unified power flow controller (UPFC). The results
of this study indicate the more favorable impact of the PV-based UIPC on the system compared to
UPFC in improving LVRT capabilities and transient stability.

Keywords: grid-connected photovoltaic; low-voltage ride through; voltage controller; transient stability

1. Introduction

Distributed generations (DGs) can be defined as small-scale energy resources that
are connected to distributed networks near local consumers [1]. These sources include
wind turbines (WTs), small hydropower generations, gas turbines, photovoltaics (PVs),
microturbines, fuel cells, geothermal energy, and so on [2]. DGs are located closer to the
end-users to improve the power quality and reliability of the power system. Moreover, DGs
can provide significant benefits in energy efficiency, emissions reductions, voltage profile,
and component lifetimes [3]. However, with the high penetration of DGs, the stability of
networks can be affected.

Today, many countries use PV systems to provide clean energy with low operating and
maintenance costs [4]. PV systems are connected to the main grid using inverters to convert
DC to AC power [5]. To incorporate the PVs into the main grid efficiently, low-voltage
ride-through (LVRT) is suggested for PV systems [6]. According to the new grid code
requirements, grid-connected PV systems should remain connected to the power system
in normal circumstances [6]. LVRT capability refers to the ability to maintain and connect
power sources to the grid during a fault or short circuit. Therefore, this capability can help
to prevent network blackout during grid faults [7]. In addition to staying connected to
the power grid, the solar system must inject the reactive power needed to recover the grid
voltage. However, with the increasing use of solar systems in the power network, concerns
about their stability are increasing.
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With the development of power electronic equipment, the use of these devices for
controlling the network, compensating reactive power, and improving transient stability
has been expanded. Static compensators, active power filters, and unified power flow
controllers are common examples of these devices. With this new equipment, the power
grid receives the required reactive power to recover the voltage and increases the reliability
under abnormal conditions. Under fault circumstances, the grid is subject to voltage drop
and severe oscillations. Power electronic devices can react quickly by injecting the required
active/reactive power and improving the LVRT in the power network.

Many papers have been published on LVRT controllers. In [8], using a unified power
flow controller (UPFC), the LVRT is improved for a WT during voltage fluctuation. The
UPFC consists of series and parallel voltage source converters. In [9], a WT using the
UPFC remains connected to the network to improve the transient stability during abnormal
conditions. A comprehensive review of the LVRT capability enhancement using flexible
alternating current transmission system (FACTS) under fault circumstances has been
performed in [10]. In [11], the authors discussed the impact of the UPFC on wind turbines
and the enhancement of LVRT capability. Additionally, in [12,13], the LVRT is developed
by using a static synchronous compensator (STATCOM) in wind sources with different
turbines and generators. The capability of LVRT in the presence of a PV solar source
without any control equipment is investigated in [14]. The proposed adaptive control
algorithm can be effective in increasing the capability of LVRT capability in a network
including several PVs. In [15], a solar source connected to the main grid with a boost
converter and an additional transformer is used to enhanced the LVRT capability. In [16],
using sequence components, the reactive power is controlled for improving the LVRT
capability. In [17], the stability of a wind source using a static reactive power compensator
and an adaptive fuzzy controller is ensured. In [18], the grid voltage profile is improved by
the STATCOM and the hysteresis controller.

As mentioned above, the UPFC has great ability in coping with transient instabilities
and compensating for active/reactive power under abnormal situations. In general, the
applications of this equipment can be summarised as voltage control, power compensation
control, and phase shift control, simultaneously [19]. Unified interphase power controller
(UIPC) is also one of the newest FACTS devices. In such a new device, the phase shift
transformers have been eliminated and replaced with power electronics [20,21]. This power
controller has three voltage source converters consists of two series converters and one
parallel converter. Series inverters by series voltage injection can change the phase angle of
the bus voltage to which it is connected. The parallel converter can compensate the bus
voltage using the capacitive link; hence, the active power required by the series inverter is
provided. All of these converters are connected to a DC capacitor link [22].

Previous research has indicated that various FACTS devices have a positive influence
on the LVRT in power systems. Most studies in the field of the LVRT have only focused
on WT-based UPFC. However, the UIPC has the ability to deliver the active and reactive
power requirements of the main grid, perform voltage compensation, and keep sources
joined to the grid by increasing the transient stability level. Hence, the applicability of
the UIPC for PVs needs to be investigated and important parameters for increasing LVRT
capability under abnormal conditions are evaluated.

A PV-based UIPC to enhance LVRT ability for a multi-machine power system is
proposed in this paper. It consists of two series voltage inverters and a parallel inverter.
The suggested UIPC has the ability to inject the needed active/reactive powers to avoid
voltage drop under grid fault situations. For this objective, a dynamic controller is designed
for the PV-based UIPC. The suggested controller can effectively enhance the stability under
grid fault circumstances.

The rest of this paper is as follows. The UIPC is presented in Section 2. The proposed
controller is described in Section 3. Results and discussion are provided in Section 4. Lastly,
the conclusion is given in Section 5.
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2. The UIPC Operation

The integrated inter-phase power controller, or UIPC, consists of two series voltage
converter and one parallel converter. Series inverters act as the inductance and reactance
branches, which can change the voltage phase. These converters perform active power
exchange between the source and the network at the connection point. The DC-link and
parallel converter provide the required power for series converters. All three converters
have a common DC link capacitor [23]. Figure 1 shows the model of the UIPC. It can be
seen that the series inverters change the primary bus voltage angle (Vs) by injecting the
series voltage with the specified amplitude and the angle in each branch. These voltages
are named Vse1 and Vse2, according to their converters. Moreover, Vr is the connection
point voltage. From Figure 1, the value of the magnitude and the voltage of the branches
of the series converter is

|Vsei| =
1
2

Vs sin(ϕi) (1)

θsei = θs − ϕi +
π

2
i = 1, 2 (2)

where ϕi, θs, and Vs are the amount of the phase change, the angle, and voltage bus,
respectively.
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Figure 1. The actual model of unified interphase power controller (UIPC) equipment. Figure 1. The actual model of unified interphase power controller (UIPC) equipment.

The parallel converter controls both the UIPC bus voltage and the DC link voltage
to provide the active power needed to swap between two other series converters. Note
that XL and XC values of the series branches at the main system frequency (50 Hz) must
be equal to each other. Figure 2 displays the circuit of the UIPC, including the equivalent
series circuit and parallel converters as well as transformers.

The value of series transformer losses depends on Rse, and parallel converter losses
are related to Rsh, as shown in Figure 2. Given these losses, the power exchange equation
between series and parallel converters is

Pse1 + Pse2 + Psh = 0 (3)

where Pse1 and Pse2 are active powers of series converters and Psh is the parallel converter’s
power, which can be defined as

Pse1 = Re
[
Vse1iL

u + RseiL2

u

]
(4)
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Pse2 = Re
[
Vse2ic

u + Rseic2

u

]
(5)

Psh = Re
[
Vshish + Rshi2sh

]
(6)

where losses of the transformers are modelled by Rse and voltage source converters are
modelled by Rsh.

For the series converter, the current can be written as

iu = iL
u + ic

u =
Vs∠ϕ1 −Vr∠δ

jXL
+

Vs∠ϕ2 −Vr∠δ

−jXc
(7)

Considering the equality of impedances and rewriting the following equation:

iu = Vs
X sin(α)∠β

α = ϕ1−ϕ2
2

β = ϕ1+ϕ2
2

(8)

Therefore, the UIPC can be considered as an independent current source on the basis
of the phase angle inserted from the series converters. The active and reactive power
injections into the network shown in Figure 1 can be expressed as follows:

Pr = 2
|Vs||Vr|

X
sin(α) cos(δ + β) (9)

Qr = 2
|Vs||Vr|

X
sin(α) sin(δ + β) (10)

These equations show that the amount of active and reactive power, and the apparent
power produced by the UIPC depends on the difference and the sum of the angles of the
series converter phases.Electronics 2021, 10, x FOR PEER REVIEW 4 of 11 
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3. Proposed Controller

In this section, the proposed controller is described. For the derivation of the dynamic
mathematical model, the model of the UIPC given in [21] is used. The ideal lossless inverter
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at the fundamental frequency is modeled using a dc voltage-controlled ac voltage source.
The output apparent power for each UIPC branch can be written as [21]

Sk = Pk + jQk = Vr.I∗k (11)

Ik = jBeqk(Vs −Vsek −Vr) f or k = 1 and 2 (12)

The active/reactive power of the UIPC can be obtained as

Pr = ∑
k=1,2

Pk = −2VsVr ∑
k=1,2

Beqk sin(δsr − ϕk) (13)

Qr = ∑
k=1,2

Qk = 2VsVr ∑
k=1,2

Beqk cos(δsr − ϕk) (14)

where Beq is the equal susceptance. More details about the model is given in [21].
Considering Xeq1 = −Xeq2 or Beq1 = −Beq2, (13) and (14) are rewritten as

Pr = −2VsVrBeq1 sin(α) cos(δsr − β) (15)

Qr = 2VsVrBeq1 sin(α) sin(δsr − β) (16)

where α and β can be defined as(
α =

ϕ2 − ϕ1

2

)
and
(

β =
ϕ2 + ϕ1

2

)
(17)

Using (15) and (16), the following equation can be defined

P2
r + Q2

r = 4V2
s V2

r B2
eq1 sin2(α) (18)

Qr

Pr
= tan(β− δsr) (19)

The Equations (18) and (19) indicate the dependency of the apparent output power as
well as the ratio of the reactive to active power on α and β, respectively. In other words,
the apparent power can be controlled using α. In addition, active and reactive powers
(operating point) are regulated via β for constant apparent power. Consequently, the
apparent power and one of the active or reactive power can be adjusted by tuning α and
β at the same time. The phase angle of the ac voltage of the shunt converter is in charge
of adjusting the exchanged active power between the shunt device and the ac network.
Furthermore, the voltage amplitude of the UIPC can be regulated using the amplitude of
the ac voltage of the shunt converter.

The block diagram of the proposed controller is displayed in Figure 3. The control
system is divided into two parts: the series and parallel converter controllers. The parallel
converter controls the amplitude of the bus voltage and DC link voltage to provide the
required power by the series converter. The value of the bus voltage and the DC link can
be regulated by varying the mesh modulation value (msh) and the angle of fire (θsh) at the
PWM switch shown in Figure 3.

According to Figure 3b, the reference current in the d-component can be obtained by
comparing the measured active power and the active power reference and then compen-
sating through a proportional-integral (PI) controller [24]. Likewise, the reactive power
reference (Qe_ref) is compared with the actual value and compensated using a PI controller
to provide the q-component of the reference current for the switching. The gains of a PI
controller can be obtained by the trial and error method [20,25,26].

Then, based on the equations in Figure 3, the angle values needed to switch the series
converter are attained. According to Figure 3a, the amplitude of the current is determined
by α and the point of reactive power operation is obtained using β. The amount of reactive
power produced or the amount of output current is limited by the rated current of the
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series converters. The proposed controller is capable of operating under balanced grid
fault conditions (three-phase to ground faults). For unbalanced grid fault conditions like
single-phase to ground faults, it is necessary to compensate positive, negative, and zero
sequences currents, separately.
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4. Results

In this part, simulations are accomplished to confirm the efficiency of the proposed
LVRT method. The test system includes a power system with four generators (G) in two
symmetrical zones. The PV-based UIPC is linked to the 6th bus. The test system, including
the conventional generators in two symmetrical zones and the solar system with UIPC,
is shown in Figure 4. For better comparison, the performance of the suggested UIPC
is compared with the UPFC. As seen, the UIPC is connected to the main grid using a
transformer. To confirm the effectiveness of the offered technique, the performance of the
PV-based UIPC is compared with the PV-based UPFC.
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By using this scheme, the PV inverter can behave similarly to conventional syn-
chronous generators. The parameters of UIPC are given in Table 1. It is noteworthy that
these parameters are the same for both UIPC and the UPFC.
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Table 1. Parameters of UIPC.

Parameters Values

Rated SEC1 50 MVA
Rated SEC2 50 MVA
Rated SHC 50 MVA

XL = XC 78.89 Ω
L 280 mH
C 38.18 uF

DC-link voltage (VDC) 5 kV

In this simulation, it is assumed that the PV system can compensate for the test system
under abnormal conditions. To establish the voltage drop conditions and investigate the
impact of the UIPC on improving the voltage drop, a three-phase-to-ground fault in line L3
occurs in the test system at t = 30 s. Then, breakers separate the short circuit fault quickly
from the rest of the power system. Figure 5 displays the output power of Generator 1 (left
side G1) in three different modes, including without compensator, with the UPFC, and
with the UIPC. It is evident that after the short-circuit event, using the UIPC the oscillations
in the output power can be minimised quickly. In other words, the PV-based UIPC shows
a fast transient response and zero steady-state performance in comparison with the UPFC
method in improving stability. According to the waveforms, the output power fluctuations
are effectively reduced compared to the other two states. The UPFC can improve transient
stability, but with a more significant delay than the UIPC.
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compensator (P G1), with unified power flow controller (UPFC) (P G1upfc), and with UIPC (PG1uipc).

Figure 6 also shows the output power of generator 2 (left side G2) in the three different
states. As seen, PV-based UIPC shows enhanced stability performance in both transient
and steady-state cases. It is obvious that after the fault, the fluctuations can be canceled
very fast when using the UIPC. In fact, the UIPC indicates a fast transient response and zero
steady-state, unlike the UPFC. The output power fluctuations are successfully mitigated
compared to the other two states. The UPFC can enhance transient stability but with a
more noteworthy delay than the UIPC. Figure 7 depicts the speed of generators 1 and 2
(left side G1 and G2) in three states using UIPC and UPFC and without using them. As
seen, the UIPC effectively can reduce deviations and velocity fluctuations.
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Figure 7. Speed of generators 1 and 2 (left side G1 and G2) in three states without a compensator,
using UIPC and UPFC.

Figure 8 shows the DC-link voltage of the UIPC and UPFC. It can be seen that the
DC-link voltage using the UIPC returns to its initial value quickly. However, the DC-link
voltage returns to its original value after a few fluctuations using the UPFC. Figure 9 also
displays the values of the active and reactive power outputs of the UIPC and UPFC. At the
moment of the fault, the reactive power value increases to compensate for the voltage drop.
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It reaches its steady-state value after some fluctuations. Active power is also reduced at
first with short-circuit occurrence, and after a number of swings and providing the power
of the line requirement, the active power returns to its steady-state value. It can be seen
that the performance of the UIPC is significantly faster than the UPFC.Electronics 2021, 10, x FOR PEER REVIEW 9 of 11 
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Figure 10 demonstrates the voltage of these devices at the connection point. It can
be seen that the UIPC reaches the steady-state very fast. Overall, UIPC shows better
administration than the UPFC in improving transient stability.
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5. Conclusions

Recently, PV systems have been widely used as green energy resources in distribution
networks. However, the dynamic performances of PV systems under fault circumstances
are a significant matter that needs to be resolved. In this study, the UIPC with a PV
system to improve the transient stability and the LVRT capability is studied. The UIPC
model consists of two series voltage source inverters and a parallel inverter equipped with
PI controllers. The gains of a PI controller are obtained by trial and error method, and
optimization of controller parameters is recommended for future works. The suggested
method can improve the LVRT of the power system under abnormal conditions. For
LVRT mode, the UIPC operates as a STATCOM for the main grid, capable of injecting
active/reactive powers by controlling currents in the dq frame. The connecting point
voltage can be compensated for by injecting reactive current to deal with LVRT needs. In
addition, the use of UIPC, which is an interface between the PV system and the main grid,
can increase the stability of the power system under grid fault and can also be compensated
by injecting active power at the connecting point. Simulation results show that UIPC
has superior performance in comparison with the UPFC for the power grid recovery and
stability. It is suggested to compare the adoption of UIPC over UPFC in terms of costs and
maintenance for future works.
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