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Abstract: Biogas is a significant renewable fuel derived by sources of biological origin. One of today’s
research issues is the effect of biofuels on engine efficiency. The experiments on the engine are
complicated, time consuming and expensive. Furthermore, the evaluation cannot be carried out
beyond the permissible limit. The purpose of this research is to build an artificial neural network
successfully for dual fuel diesel engine with a view to overcoming experimental difficulties. Authors
used engine load, bio-gas flow rate and n-butanol concentration as input parameters to forecast
target variables in this analysis, i.e., smoke, brake thermal efficiency (BTE), carbon monoxide (CO),
hydrocarbon (HC), nitrous-oxide (NOx). Estimated values and results of experiments were compared.
The error analysis showed that the built model has quite accurately predicted the experimental
results. This has been described by the value of Coefficient of determination (R2), which varies
between 0.8493 and 0.9863 with the value of normalized mean square error (NMSE) between 0.0071
and 0.1182. The potency of the Nash-Sutcliffe coefficient of efficiency (NSCE) ranges from 0.821 to
0.8898 for BTE, HC, NOx and Smoke. This research has effectively emulated the on-board efficiency,
emission, and combustion features of a dual-fuel biogas diesel engine taking the Swish activation
mechanism in artificial neural network (ANN) model.

Keywords: bio-gas; dual fuel mode; artificial neural network; swish activation function; emission
parameters; engine performance

1. Introduction

Due to higher fuel economy, greater performance and low fuel prices, diesel engines
are now favoured in many industries. However, these engines’ combustion emissions
have long been negatively impacting civilization and habitat. Researchers are now em-
phasizing alternative fuels due to reduced fossil fuel supplies and concerns about the
effect of the use of fossil fuels on ecological concerns, such as environmental pollution.
To solve these challenges, diesel engine researchers plan to seek an appropriate, blended
fuel that can improve the machine’s efficiency and reduce emissions. Since traditional
methods are very time-consuming and costly, researchers have turned to methods that
could achieve the same performance more easily and efficiently. Artificial Neural Network
(ANN) has already been used to develop computational technology for various automotive
engineering problems [1].
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ANNs have been used to handle a wide range of scientific and engineering challenges,
especially in areas where traditional modelling approaches lack. An ANN’s predictive
capability benefits from experimental data training and then independent data validation.
The off-line characterization of engine systems using machine learning models has a great
prospective to create a very swift, scalable and versatile engine output and emissions model.
ANN will assist in real time where there is no choice for tests by individual sensors or where
the prospects of expense and practicality are overlooked. In addition, ANN modelling
being fundamentally data-oriented is vulnerable to the intrinsic drawbacks related to
overfitting, if posing operating data outside its training range. Therefore, the reliability
of all such frameworks must be examined before implementation for real-time forecasts.
ANN’s flexibility in emulating the dynamics of performance and emission responses in a
dual-fuel mode engine [2,3] has already been widely praised.

In order to approximate engine parameters, viz., pilot fuel flow rate, intake airflow
rate and the exhaust gas temperature Naim Akkouche et al. [4] in 2020 built three models
based on ANN. In their research findings the values for root mean square error (RMSE)
ranged between 0.34 percent to 0.62 percent, while the R2 value ranges from 0.99 and 1.
Kakatia et al. [5] used log-sigmoid to forecast the output for Soot, HC, CO2, NOx, CO and
BSFCeq, taking inputs as oxygen, methanol flow rate, diesel flow rate, and air flow rate
etc. Hariharana et al. [6] carried out experiments to assess the effects of using hydrogen
(H2) and Lemon Grass Oil (LGO) as a selective diesel replacement fuel, in a Compression
Ignition (CI) engine with single-cylinder. The ANN model has been developed using a
regular backpropagation algorithm to predict the association between engine performance
responses and input factors (i.e., load, LGO and hydrogen). To forecast brake specific fuel
consumption (BSFC), overall in-cylinder pressure and exhaust emissions, Agbulut et al. [7]
used ANN. For BSFC, NOx, CO, HC, and CPmax the R2 value obtained was 0.9995, 0.9999,
0.9902, 0.9990, and 0.9979 respectively.

Kurtgoz et al. [8] measured the thermal efficiency (TE), BSFC, and volumetric effi-
ciency (VE) values of a spark ignition biogas engine taking varied ratios of engine loads
and methane (CH4). To compare observed and expected values output metrics like corre-
lation coefficient, mean absolute percentage error and root mean square error were used.
Leo et al. [9] conducted an experimental study on a diesel/gasoline premixed HCCI-DI en-
gine using WCO biodiesel as a direct injection fuel. Shojaeefard et al. [10] proposed a study
in which the efficiency and emission characteristics of a castor oil biodiesel (COB)-diesel
blended fuel in direct injection diesel engine were experimentally tested, and then forecast
using ANN. Fuel mixes have been checked with varying biodiesel concentrations (0 percent,
5 percent, 10 percent, 15 percent, 20 percent, 25 percent, and 30 percent) at varying loads
and speed of an engine. The feed-forward NN yielded R2 values of 0.999978–0.999998.
Tests conducted by Shukri et al. [11], indicated that the blend of diesel fuel with palm oil
and methyl ester have improved the engine efficiency. For the in-cylinder pressure, heat
release, thermal efficiency, and volume, the R2 value of 0.996, 0.999, 0.989 and 0.998 was
obtained respectively.

In order to assess the performance features of the variable compression ratio (VCR) CI
engine Kumar et al. in [12] described the application of ANN. The performance parame-
ters, viz., brake power, BTE, indicated power, indicated thermal efficiency, specific energy
consumption, exergy efficiency, and exhaust gas temperature were taken for the research
work. The model calculated the VCR diesel engine’s output with regression coefficients
between 0.996 and 0.997. Using two separate artificial intelligence approaches, i.e., ANN
and support vector machines (SVM) for a four-stroke, four-cylinder diesel engine, vibra-
tion, noise level, and emission characteristics were investigated by Yıldırım et al. in [13].
Hidayet et al. [14] applied ANN to the automotive sector as well as to several different
areas of technology, and aimed for solving experimental problems by reducing expense,
time and workforce waste. The output and exhaust temperature values of a gasoline engine
were analyzed by Yusuf Cay in [15]. The fuel properties such as engine rpm, engine torque,
mean effective pressure and injection timing were used at the input layer in order to train
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the network; and the measurements of brake specific fuel consumption, effective power and
engine exhaust temperature were anticipated. For training and testing datasets, R2 values
of 0.99 were obtained; RMS values were lower than 0.02; and for test results, mean error
percentage (MEP) values were lower than 2.7 percent. The sigmoid function was found to
be the most commonly used activation function in models of the Artificial Neural Network
in most of the studies so highlighted. The output varies from 0 to 1 for the sigmoid function,
and from 0 to 0.25 for the derivatives of the sigmoid function. The Sigmoid is usually
susceptible to the issue of vanishing gradient and method outcome is not zero-centered. In
addition, the exponent and power operations make it costly to compute.

Motivating Factor for This Research Work

Intervention of data oriented artificial intelligence technologies has significant poten-
tial to build a really quick, responsive and reliable off-line engine system for predicting the
engine efficiency and emission behavior within a selected simulation environment [16,17].
However, analyzing related experiments using the ANN approach to emulate pollution
and output responses in a dual-fuel diesel context provides little or no consideration to
the need to evoke relevant activation functions in order to rationalize the robustness of the
proposed models. Thus, this research devises a meta-model to produce a trustworthy and
steady virtual sensing framework for real-time prediction while characterizing emission
and performance parameters in the biogas-diesel engine. Authors in this analysis have
used engine load, bio-gas flow rate and concentration of n-butanol as input parameters
to forecast target variables, viz., BTE, HC, NOx, Smoke. The researchers used the swish
activation function to build a three layered ANN model.

2. Materials and Methods

The low-in-sulphur diesel was procured from the Indian Oil Company Limited petrol
station. In the current study, biogas was the essential fuel produced through anaerobic
treatment of cow extracts and kitchen waste in a Deenbandhu-based facility of 6 m3 capacity.
Deenbandhu-based biogas plant has been traditionally used in provincial territories as
cooking fuel. In a vault, the composite gas was stored and piped into the engine. To examine
the physiochemical properties of fuels, the set standard of the American Society for Testing
and Materials (ASTM) was used. Table 1 displays some associated fuel characteristics.

Table 1. Various traits of the test fuel along with its ASTM based test scheme (# Not provided by the supplier).

Features Diesel n-Butanol Test Scheme
(ASTM) Biogas Test Scheme

(ASTM)

Density (kg/m3)@15 ◦C 840 810 D4052 0.92 D3588

Viscosity (mm2/s)@40 ◦C 2.72 3.64 D445 -

Heating Value (MJ/kg) 42.6 33.2 D4809 26.23 D1945

Flash Point (◦C) 78 35 D93

-Fire Point (◦C) 83 42 D93

Cloud Point (◦C) −8 # DL500

Pour Point (◦C) −6 −45 D97

Cetane Number (CN) 50 22 D613

Table 2 demonstrates the few additional properties of n-butanol fuel used to conduct
the procedure with the biogas.
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Table 2. Allied characteristics of the n-butanol [18,19].

Chemical Formula C4H10O

Boiling point 117 (◦C)
Temperature for Auto ignition 343 (◦C)
Octane number 96
Oxygen 21.62 (% by weight)
Latent heat of vaporization at 25 ◦C 626 (kJ/kg)

Experimental Setup

The current research has used a four-stroke, direct-injection single-cylinder diesel
engine with a 3.5 kW output at 1500 rpm. All tests were performed after the engine
attained a steady 70 ◦C coolant temperature and a 1500 rpm speed. Table 3 lists test engine
requirements. Figure 1 displays the configuration test summary.

Table 3. Feature set of the engine used here for conducting the experimentation.

Make Kirloskar

Model Specifications TV 1
System used for Cooling Water Cooled
Cylinder Count 01
Rated Brake Power 5.2 kW @ 1500 rpm
Displacement volume 661 (cc)
Rated Speed 1500 (rpm)
Standard Fuel Injection Timing 23◦ before TDC
Bore × Stroke 87.5 × 110 (mm)
Compression Ratio 17.5:1Electronics 2021, 10, x FOR PEER REVIEW 5 of 20
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Figure 1. Diagrammatical depiction of the experimental setup used.

All fuel mixtures were checked at rated speed for engine efficiency and emission
characteristics under different load conditions (20%, 40%, 60%, 80%, 100%). Biogas flow
ranged at various speeds, i.e., 0.55, 1.55, 2.55 kg/h. N-butanol was volumetrically blended
with baseline diesel at three proportions, i.e., nB10/D90, nB15/D95, and nB20/D80.

The CO, HC (unburned hydrocarbon), NOx, and Smoke were measured using a Di-
gas analyser (AVL 4000). The % volume has been used to note CO and Smoke, whereas,
gm/kW.hr for both HC and NOx. In order to measure smoke exhalation, a diesel smoke
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metre (AVL 437) has been used; particularly the smoke opacity. In compliance with ASTM-
D6522, the exhalations of gas are strictly regulated.

3. Application of Artificial Neural Network (ANN)

ANN is a computational model that is made up of an artificial neuron array. Math-
ematical equations determining the performance of a neural network are the activation
functions. It is linked to every neuron in the network to decide whether or not it should be
triggered (“fired”).

Every neuronal relation has a weight that reflects an ANN model’s memory. ANN can
be used to treat strongly nonlinear, non-limiting and non-convex processes [20]. An ANN
model’s performance depends on connection modes, weights, and activation functions that
can be expressed as Equation (1):

y = f (∑
j

wijxj + b) (1)

f ∈ activation f unctionw ∈ weightx ∈ input vectorb ∈ bias

3.1. Back Propagation and ANN for Current Study

While methods have been employed to enhance ANN model predictive performance,
back propagation (BP) neural network remains the most widely used techniques in this
area. In back propagation, error values are propagated backward, whereas, the input vector
is propagated forward. It usually has an input layer, a hidden layer, and a layer of output.
In a standard BP neural network, Gradient descent algorithm has been used [18].

The aim of this analysis is to model the performance and emissions indices for a single
cylinder diesel engine with dual fuel mode. Consequently, the ANN input vector provides
essential parameters for evaluating the output and emission index. Model includes the
input parameters as Bio-gas flow rate, engine load, and n-Butanol concentration. The
outcome parameters were determined as BTE, CO, HC, NOx and Smoke. Figure 2 demon-
strates the ANN model used here in this study work and Table 4 lists the parameter values
used in ANN.
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Table 4. Details related to the NN model used in this research.

Structure of the Network Used Here 3 inputs, 01 hidden layer, and 5 outputs

Percentage of Data used for training and
testing

Training: 130 rows for training
Testing: 20 rows for testing

Type of the Network Feed Forward Back Propagation

Function used for Training Backpropagation

Optimization Function Adam

Transfer/Activation Function Swish

Criteria used to Stop On-set of enhancement in validation error will
results into breaking of training network

A single hidden layer network with only a small number of neurons can be trained to
approximate a function with an arbitrary, but constrained, degree of randomness. In other
words, in order to learn any feature, a single hidden layer is powerful enough. Growing
the number of hidden layers adds to the issue of overfitting and vanishing gradients.

3.2. Swish Activation Function and Its Importance

Swish activation function zeroes the extreme negative weights. This offers advantages
when tuning the convergence of the model to minimal loss. It is mathematically defined
as [21]:

swish(x) = x× sigmoid (βx) =
x

1 + e−βx (2)

where, β is either a constant or trainable model parameter. For β = 1, the function is similar
to the Sigmoid-weighted Linear Unit (SiL) function used in reinforcement learning. The
functions are translated to the scaled linearly Equation f (x) = x

2 for β = 0. In this research
work, the steps that have been deployed for implementing ANN based model are depicted
in Figure 3.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

3.2. Swish Activation Function and Its Importance 

Swish activation function zeroes the extreme negative weights. This offers ad-

vantages when tuning the convergence of the model to minimal loss. It is mathematically 

defined as [21]: 

𝑠𝑤𝑖𝑠ℎ(𝑥) = 𝑥 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝛽𝑥) =  
𝑥

1 + 𝑒−𝛽𝑥
 (2) 

where, β is either a constant or trainable model parameter. For β = 1, the function is similar 

to the Sigmoid-weighted Linear Unit (SiL) function used in reinforcement learning. The 

functions are translated to the scaled linearly Equation 𝑓(𝑥) =  𝑥
2⁄  for 𝛽 = 0. In this re-

search work, the steps that have been deployed for implementing ANN based model are 

depicted in Figure 3. 

 

Figure 3. Steps followed for deploying ANN based model. 

3.3. Count of Neurons for the Hidden Layer in ANN 

One of ANN’s big problems in modelling is preventing overfitting. When the net-

work has been learned to predict its target performance with almost no error, it is often 

anticipated that the network can further forecast new data sets. Sometimes, however, new 

trends with higher error levels are expected due to data over fits. Selecting the required 

number of hidden nodes plays a vital role for bypassing data overfitting. Hecht-Nelson et 

al. [22] proposed a hidden neuron maximum bound using Kolmogorov’s method as 𝑛ℎ ≤

2𝑛𝑖 + 1. where, 𝑛𝑖 = count of input neurons, 𝑛ℎ = count of hidden neurons. 

Considering Kolmogorov’s formula the number of highest possible neurons at hid-

den layer is estimated as 2 × 3 + 1 = 7. Whereas, according to Belman-Flores et al. [23], 

the maximum neurons in single hidden layer can be computed using the formula 𝑛𝑇 ≥

𝑐 [𝑛ℎ(𝑛𝑖 + 1)], where, 𝑛𝑇 = count of training sets. 

With Belman-Flores equation, the maximum count of neurons in the hidden layer 

can be computed as: 

Figure 3. Steps followed for deploying ANN based model.



Electronics 2021, 10, 584 7 of 19

3.3. Count of Neurons for the Hidden Layer in ANN

One of ANN’s big problems in modelling is preventing overfitting. When the network
has been learned to predict its target performance with almost no error, it is often anticipated
that the network can further forecast new data sets. Sometimes, however, new trends with
higher error levels are expected due to data over fits. Selecting the required number of
hidden nodes plays a vital role for bypassing data overfitting. Hecht-Nelson et al. [22]
proposed a hidden neuron maximum bound using Kolmogorov’s method as nh ≤ 2ni + 1.
where, ni = count of input neurons, nh = count of hidden neurons.

Considering Kolmogorov’s formula the number of highest possible neurons at hidden
layer is estimated as 2× 3 + 1 = 7. Whereas, according to Belman-Flores et al. [23], the maxi-
mum neurons in single hidden layer can be computed using the formula nT ≥ c [nh(ni + 1)],
where, nT = count of training sets.

With Belman-Flores equation, the maximum count of neurons in the hidden layer can
be computed as:

nh ≤
[

nT − cn0

c (ni + n0 + 1)

]
(3)

where, c = 4 is the coefficient value and count of outputs is referred as n0. In this research
work, neuron numbers can be determined as nh ≤

[
120−4×5

4 (3+5+1)

]
= 100

36 = 2.77 ≈ 3.
However, Belman-Flores et al. (nh = 3) and Hecht-Nelson et al. (nh = 7) estimated

the lower neuron value as the maximum number of neurons in a single hidden layer
structure [24]. The 3, 5 and 7 numbers of hidden neurons were therefore chosen for all of
this analysis.

3.4. Selection among Sigmoid and Swish

Present literature indicates effectiveness of the sigmoid activation function in the ANN
model for the field under study. Authors here used SWISH, an unexplored yet powerful
activation function. For all said parameters, i.e., BTE, CO, HC, NOx, and Smoke, the value
of RMSE was determined taking hidden neuron counts as 3, 5, and 7. ANN model employs
sigmoid and swish activation function separately. Table 5 reveals that the RMSE values
obtained for swish activation are lower relative to the commonly used sigmoid function,
which proves swish, a better choice than the sigmoid. Also, when compared with rectified
linear unit (ReLU) activation function, Swish is as effective as ReLU in computation, but
demonstrates greater efficiency than ReLU. Swish values vary from infinity to infinity in
the negative. The function curve is smooth and at all points the function is distinguishable,
which is one of the reasons for outperforming swish from ReLU.

Table 5. RMSE value for BTE, CO, HC, NOx, and Smoke computed using swish and sigmoid
activation function taking number of neurons as 3, 5 and 7 at hidden layer of the ANN model.

O/P Transfer Function
(At Layer 1-2-3) No. of Neurons RMSE

BTE

swish

3 1.741

5 3.927

7 3.288

sigmoid

3 15.713

5 15.693

7 15.691
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Table 5. Cont.

O/P Transfer Function
(At Layer 1-2-3) No. of Neurons RMSE

CO

swish

3 0.078

5 0.059

7 0.056

sigmoid

3 0.08

5 0.067

7 0.078

HC

swish

3 0.286

5 0.304

7 0.307

sigmoid

3 0.69

5 0.61

7 0.57

NOx

swish

3 1.491

5 1.435

7 2.207

sigmoid

3 16.94

5 16.863

7 16.86

Smoke

swish

3 2.448

5 3.154

7 3.170

sigmoid

3 20.327

5 20.326

7 20.31

4. Model Evaluation
4.1. Metrics for Evaluation

The authors evaluated the credibility of the established model in this analysis by con-
fining it to the several error metrics and uncertainty estimation tests, which rationalised the
validity of the proposed method. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) Equa-
tion (4) correlation metric was used as a real model correlation assessment tool in order to
prevent overestimated correlation as computed by standard R2 measure Equation (5), [25],
which was found to be constrained by its intrinsic sensitivity to the expected and observed
values of means and variances.

NSCE =

[
1−

{
∑n

i=1(ti − oi)
2

∑n
i=1
(
ti − t

)2

}]
(4)

R2 = 1−
(

∑n
i=1(ti − oi)

2

∑n
i=1(oi)

2

)
(5)

where,
ti = observed value
oi = predicted value
n = count of elements under consideration
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t = average of observed values
o = average of predicted values
In this research work, the root mean square error (RMSE) Equation (6) and normalized

mean square error (NMSE) Equation (7) were used which are often recommended over
mean square error (MSE), as MSE is much more prone to the outliers. Normalized value of
RMSE, i.e., NRMSE, Equation (8) has been used, though, to reduce the scale dependence of
RMSE, which allows a contrast across datasets of various size where lower value indicates
smaller residual variance. In this analysis, mean square relative error (MSRE) Equation (9)
was also used as an additional scale-independent metric indicator that determines the
model’s susceptibility to higher relative errors [2].

RMSE =

√
1
n

n

∑
i=1

(ti − oi)
2 (6)

NMSE =
1
n

n

∑
i=1

(ti − oi)
2(

t
)
× (o)

(7)

NRMSE =

√
1
n ∑n

i=1(ti − oi)
2

tmax − tmin
(8)

MSRE =

∣∣∣∣∣ 1n n

∑
i=1

(
ti − oi

ti

)2
∣∣∣∣∣ (9)

The Theil uncertainty metric, widely known as U2 suggested by Theil [26], is a pre-
dictive performance indicator of an established model. It gives a standardised calculation
comparing the mean error of the predicted and observed values with the variance of errors.
The lower value of the Theil implies greater model forecasting accuracy. In this current
analysis [27], a KL-N metric model based on Kullback-Leibler (KL) divergence was used to
determine the accuracy of the proposed ANN model. Lower divergence value indicates
better generalisation potential of the model with better estimation efficiency index.

U2Theil =


√

∑n
i=1(ti − oi)

2√
∑n

i=1 t2
i

 (10)

Centred on the Kullback-Leibler (KL) divergence, KL-N has been proposed, where,
calculation corresponds to the scaled quadratic loss function with variance estimation. Its
formula is:

KL =

√√√√ 1
n

n

∑
i=1

(ti − oi)
2

S2
i,j

(11)

where, S2
i,j =

1
j ∑i−1

k=i−(j+1) yk and variance estimate has been used which considers the last
j periods.

4.2. Solver Architecture

In this work, an analytical method was used to pick optimal neurons in the hidden
layer. As discussed in the Section 3.3, to stop overfitting, the maximum number of neurons
was chosen as 3, 5 and 7. Table 6 provides R2, RMSE, NMSE, NRMSE, MSRE, NSCE, Theil,
and KL values computed at 3, 5, and 7 hidden layer neurons using ANN with SWISH
activation function.
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Table 6. Computation of R2, RMSE, NMSE, NRMSE, MSRE, NSCE, Theil, KL using 3, 5, and 7 neurons at hidden layer with
swish activation function while computing BTE, CO, HC, NOx, and Smoke.

O/P TF
(At Layer 1-2-3)

No. of
Neurons R2 RMSE NMSE NRMSE MSRE NSCE Theil KL

BTE

swish
+

swish
+

swish

3 0.9705 1.741 0.0119 0.1235 0.0193 0.8211 0.1047 0.0068

5 0.915 3.927 0.0716 0.2786 0.0405 0.0898 0.2361 0.008

7 0.943 3.288 0.0489 0.2332 0.0282 0.3618 0.1977 0.007

CO

3 0.6576 0.078 0.2652 0.2609 0.1182 0.2497 0.3802 0.025

5 0.8475 0.059 0.1332 0.199 0.0673 0.5635 0.29 0.018

7 0.9332 0.056 0.1182 0.1872 0.0625 0.6139 0.2727 0.013

HC

3 0.9863 0.286 0.0938 0.1359 0.0673 0.8450 0.2294 0.016

5 0.9038 0.304 0.1069 0.1441 0.0686 0.8256 0.2434 0.019

7 0.9006 0.307 0.1101 0.1457 0.0629 0.8218 0.246 0.016

NOx

3 0.9923 1.491 0.0077 0.0932 0.0067 0.8810 0.0837 0.027

5 0.9288 1.435 0.0071 0.0897 0.0064 0.8898 0.0805 0.028

7 0.9813 2.207 0.0178 0.138 0.0129 0.7393 0.1239 0.04

Smoke

3 0.8493 2.448 0.0147 0.1224 0.0125 0.8209 0.1152 0.0079

5 0.9817 3.154 0.0216 0.1577 0.028 0.7027 0.1484 0.0057

7 0.9798 3.170 0.0299 0.1585 0.0211 0.6997 0.1491 0.0086

Table 6 and Figures 4–6 indicate that the model for 3 neurons has the potential to
forecast BTE with significant precision, while for CO, 7 neurons are considerable. The
optimal count of the neurons at hidden layer in the proposed ANN model to predict HC
was found to be 3, while 5 and 3 neurons were found to predict NOx and Smoke.

4.3. Uncertainty Analysis for the Proposed Model

The ANN model was developed to forecast performance results such as BTE, CO,
HC, NOx, and Smoke; considering load, bio-gas flow rate, n-butanol as data, which was
obtained from the experimental results. In this study, the model’s predictability toward
engine responsiveness showed good alignment with statistics of correlation. However, the
complete uncertainty involved in measurement model derives from two distinct factors.
One is the uncertainty of Theil that was considered in the development of the ANN model
and the second is related to experimental tools. Total uncertainty estimation is seen in
Table 7 using the Equation (12).

Total Uncertainty =

√
(Instrumental uncertainty)2 + (ANN Model Theil uncertainty)2 (12)
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Table 7. Total uncertainty values obtained taking uncertainty values of the measuring instrument
and the proposed ANN model.

Parameters Values for the
Uncertainties Computation Cumulative Uncertainties

UT (%)

BTE 2.5, 0.11
√
(2.5)2 + (0.11)2 2.5024

CO 0.2, 0.27
√
(0.2)2 + (0.27)2 0.3360

HC 0.1, 0.23
√
(0.1)2 + (0.23)2 0.2507

NOx 0.2, 0.08
√
(0.2)2 + (0.08)2 0.2154

Smoke 1, 0.11
√
(1)2 + (0.11)2 1.0060

5. Results and Discussion

As seen in Figures 7–11, the expected values are laudably consistent with the real mea-
surement for the entire engine operation. This indicates the forecast model’s robustness to
predict performance, emissions, and combustion specifications successively with excellent
accuracy regardless of the engine’s operation.

Figure 7 revealed the contrast of expected values vs. experimental BTE values. The pre-
dicted values display an exceptionally low0.0193 MSRE with 0.1047 Theil uncertainty and
0.0068 KL-N prediction. NMSE and NRMSE were 0.0119 and 0.1235 for BTE. Nash-Sutcliffe
Performance (NSCE) also demonstrated outstanding alignment with the experimental find-
ings showing a value of 82.11%. Related trends were also noted for CO, as seen in Figure 8,
in which the value of MSRE, NMSE, NRMSE was found to be 0.0625, 0.1182 and 0.1872.
The Theil value was also found to be as minimal as 0.2727 along with KL-N as 0.013. For
HC, Figure 9 indicates a very low MSRE and RMSE value of 0.0673 and 0.287 respectively.
The value for the Theil uncertainty across all test points was found to be 0.2294. Figure 10
revealed statistical compatibility of predicted values with NOx experimental outcomes. It
exhibits remarkably low 0.0805 Theil uncertainty along with 0.0064 MSRE. Other statistical
tests such as NMSE, NRMSE also displayed very low significance, i.e., 0.0071 and 0.0897.
NSCE was observed as high as 88.98 percent in special error metrics, while KL-N was
reported to be 0.080 which fulfilled the stronger compatibility of expected values with
experimental findings. Figure 11 showed the similarity of forecasted smoke by the model
presented with observed smoke through experiments. The values for Smoke MSRE, NMSE
and NRMSE were 0.0625, 0.1182 and 0.1872, respectively. With Theil’s uncertainty as low as
0.1152, the model designed scored NSCE efficiency as high as 82.09 percent. In particular, a
very low value of 0.0079 showed the KL-N divergence effectiveness, suggesting its good
predictive accuracy.
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6. Conclusions

In this analysis, a machine learning tool was used to forecast the efficiency, emissions
and combustion variables of a dual-fuel biogas-diesel engine. Built ANN model includes
a 3-neuron input layer, a single hidden layer of 3/5/7 neurons and a 5-neuron output
layer. The error analysis showed that experimental outcomes were estimated with a
robust degree of precision, with minimum R2 as 0.8493 and maximum as 0.9863. Also
the values for NMSE spans between 0.0071 to 0.1182. NSCE performance ranged from
0.821 to 0.8898 for BTE, HC, NOx and Smoke. The NSCE performance was found to range
from 0.821 to 0.8898 for BTE, HC, NOx and Smoke. Therefore, it can be concluded that the
on-board performance and exhaust characteristics of a dual-fuel biogas-diesel engine can
be effectively simulated by the proven ANN model.
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